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Remark on regularity of weak solutions

to the Navier-Stokes equations

Zdeněk Skalák, Petr Kučera

Abstract. Some results on regularity of weak solutions to the Navier-Stokes equations
published recently in [3] follow easily from a classical theorem on compact operators.
Further, weak solutions of the Navier-Stokes equations in the space L2(0, T, W 1,3(Ω)3)
are regular.
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Introduction

Let Ω be a bounded domain in R3 with C2-boundary ∂Ω, let T > 0 and
QT = Ω × (0, T ). We consider the Navier-Stokes initial-boundary value problem
describing the evolution of the velocity u(x, t) and the pressure p(x, t) in QT :

∂u

∂t
− ν∆u + u · ∇u+∇p = f ,(1)

∇ · u = 0,(2)

u = 0 on ∂Ω × (0, T ),(3)

u|t=0 = u0,(4)

where ν > 0 is the viscosity coefficient and f is the external body force. The initial
data u0 should satisfy the compatibility conditions u0|∂Ω = 0 and ∇ · u0 = 0.
The definition and the proof of the existence of weak solutions of the equations

(1)–(4) can be found for example in [3] or [6]. In general, it is unknown whether
weak solutions are regular or not. Serrin ([5]) proved that if a weak solution u

of (1)–(4) belongs to Lα(0, T, Lq(Ω)) for 2/α+ 3/q = 1 and q ∈ (3,∞] then u is
regular. Kozono ([3]) generalized this result to a certain class of functions char-
acterized by means of local singularities in the weak-L3 space. He further showed
that there exists an absolute constant ε > 0 such that if u is a weak solution of
(1)–(4) in L∞(0, T, L3(Ω)3) and lim supt→t∗− ‖u(t)‖L3(Ω) < ‖u(t∗)‖L3(Ω) + ε,

then u is necessarily regular in Ω× (t∗−σ, t∗+σ) for some σ > 0. Let us mention
here that the Kozono’s results were applied in [4] where partial regularity of weak
solutions to the Navier-Stokes equations in the class L∞(0, T, L3(Ω)) was shown.
The main goal of this paper is to show that the results stated above can be

easily derived from the following well known theorem on compact operators ([2]):
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Theorem A. Let X , Y be Banach spaces. Let S be a one to one continuous
linear operator from X onto Y and K a linear compact operator from X to Y . If
Ker (S +K) = o then (S +K)(X) = Y .

Let p > 1. Lp(Ω) is the Lebesgue space with the norm ‖ · ‖p. C∞
0 (Ω) denotes

the set of all infinitely differentiable vector-functions defined in Ω, with a compact
support in Ω. C∞

0,σ(Ω) is a subset of C
∞
0 (Ω) which contains only the divergence-

free vector functions. H is the closure of C∞
0,σ(Ω) in L2(Ω)3 with the scalar

product (·, ·) and the norm ‖ · ‖2. Wm,p(Ω) and Wm,p
0 (Ω) (m ∈ N) are the usual

Sobolev spaces. V denotes the completion of C∞
0,σ(Ω) in the norm of W 1,2

0 (Ω)
3

with the scalar product ((u, v)) =
∫
Ω

∂ui
∂xj

∂vi
∂xj

dx and the norm ‖ · ‖. PH is the

projection operator from L2(Ω)3 onto H .
L

p
w(Ω) denotes the weak Lebesgue space over Ω with the quasi-norm ‖·‖p,w de-

fined by ‖φ‖p,w = supR>0Rµ{x ∈ Ω; |φ(x, t)| > R}1/p, where µ is the Lebesgue
measure. There is another equivalent norm to the above ‖ · ‖p,w (see [3]), so we

may understand L
p
w(Ω) as a Banach space. Let us note that L

p(Ω) ⊆ L
p
w(Ω) and

‖φ‖p,w ≤ ‖φ‖p for every φ ∈ Lp(Ω).
Let D(A) = {u ∈ V ; ∃f ∈ H ; ((u, v)) = (f , v) ∀v ∈ V }. A is the Stokes op-

erator from D(A) onto H defined for every u ∈ D(A) by the equation ((u, v)) =
(Au, v) ∀v ∈ V . D(A) is endowed with the norm ‖u‖D(A) = ‖Au‖2 and

D(A) →֒→֒ V . Since Ω ∈ C2, D(A) = W 2,2(Ω)3 ∩ V and the norm ‖u‖D(A)

on D(A) is equivalent to the norm induced by W 2,2(Ω)3 (see [6, Lemma 3.7]).
We often use this fact throughout the paper. Let us define the Banach spaces
X = {u ∈ L2(0, T, D(A)), ut ∈ L2(0, T, H)} and Y = L2(0, T, H) × V with
‖u‖X = ‖u‖L2(0,T,D(A))+‖ut‖L2(0,T,H) and ‖(f , v0)‖Y = ‖f‖L2(0,T,H)+‖v0‖V .

Throughout the paper, we suppose that in (1)–(4) f ∈ L2(0, T, H) and u0 ∈ H .
For simplicity, we use the following notation: If F is a space of real functions then
u ∈ F means that every component of u is from F , e.g. u ∈ W 1,2(Ω) means in
fact that u ∈ W 1,2(Ω)3. Similarly, ‖u‖F means ‖u‖F 3.

Proof of regularity results

At first, we prove two basic propositions. The results mentioned in Introduction
will then be their straightforward consequences.

Proposition 1. Let u ∈ Lα(0, T, Lq(Ω)) for 2/α+3/q ≤ 1 and q ∈ (3,∞]. Then
the operator w 7−→ PH (u · ∇w) is compact from X to L2(0, T, H).

Proof: Firstly, suppose that 2/α + 3/q < 1 and α, q < ∞. Using the Hőlder
inequality we have for almost every t ∈ (0, T ) and every v ∈ H :

|

∫
Ω

u · ∇w · v dx| ≤ ‖v‖2‖u‖q‖∇w‖2q/(q−2).
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It follows further that

∫ T

0
‖u‖2q‖∇w‖22q/(q−2) dt ≤ ‖u‖2Lα(0,T,Lq(Ω))(

∫ T

0
‖∇w‖

2α/(α−2)
2q/(q−2)

dt)(α−2)/α ≤

‖u‖2Lα(0,T,Lq(Ω))(

∫ T

0
[‖∇w‖

2/α
2 ‖∇w‖

(α−2)/α
(2αq−4q)/(αq−2α−2q)

]2α/(α−2) dt)(α−2)/α ≤

‖u‖2Lα(0,T,Lq(Ω))‖w‖
4/α
L∞(0,T,W 1,2(Ω))

(

∫ T

0
‖∇w‖2(2αq−4q)(αq−2α−2q) dt)(α−2)/α ≤

‖u‖2Lα(0,T,Lq(Ω))‖w‖
4/α
L∞(0,T,W 1,2(Ω))

‖w‖
2(α−2)/α

L2(0,T,W 1,(2αq−4q)/(αq−2α−2q)(Ω))

and, therefore,

(5) ‖PH(u · ∇w)‖L2(0,T,H) ≤

‖u‖Lα(0,T,Lq(Ω))‖w‖
2/α
X ‖w‖

(α−2)/α

L2(0,T,W 1,(2αq−4q)/(αq−2α−2q)(Ω))
,

where we used the fact that X is embedded continuously into L∞(0, T, W 1,2(Ω)).
Since (2αq−4q)/(αq−2α−2q) < 6 it follows e.g. from [5, Theorem 2.1, Chapter III]

that the injection ofX into L2(0, T, W 1,(2αq−4q)/(αq−2α−2q)(Ω)) is compact. The
proof now follows immediately from (5) and the definition of compact operators.
Secondly, let u ∈ Lα(0, T, L∞(Ω)), α > 2. Then |

∫
Ω u · ∇w · v dx| ≤

‖v‖2‖u‖∞‖w‖W 1,2 for almost every t ∈ (0, T ) and every v ∈ H and

∫ T

0
‖u‖2∞‖w‖2W 1,2 dt ≤ ‖u‖2Lα(0,T,L∞(Ω))(

∫ T

0
‖w‖

2α/(α−2)
W 1,2(Ω)

dt)(α−2)/α =

‖u‖2Lα(0,T,L∞(Ω))(

∫ T

0
‖w‖

4/(α−2)
W 1,2(Ω)

‖w‖2W 1,2(Ω) dt)(α−2)/α ≤

‖u‖2Lα(0,T,L∞(Ω))‖w‖
4/α
L∞(0,T,W 1,2(Ω))

(

∫ T

0
‖w‖2W 1,2 dt)(α−2)/α =

‖u‖2Lα(0,T,L∞(Ω))‖w‖
4/α
L∞(0,T,W 1,2(Ω)

‖w‖
2(α−2)/α
L2(0,T,W 1,2(Ω))

.

Therefore,

(6) ‖PH(u · ∇w)‖L2(0,T,H) ≤ ‖u‖Lα(0,T,L∞(Ω))‖w‖
2/α
X ‖w‖

(α−2)/α
L2(0,T,W 1,2(Ω))

.

The injection of X into L2(0, T, W 1,2(Ω)) is compact and the proof follows im-
mediately from (6) and the definition of compact operators.
If u ∈ L∞(0, T, Lq(Ω)) and q > 3 then the proof proceeds in the same way as

in the previous paragraphs and we will skip it.
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Finally, let u ∈ Lα(0, T, Lq(Ω)) for 2/α+ 3/q = 1, q ∈ (3,∞]. Let Mn = {t ∈
(0, T ); ‖u(t)‖q > n}, n ∈ N and define un on (0, T ) as:

un(t) = u(t) if t /∈ Mn,

un(t) = 0 if t ∈ Mn.

Obviously, un ∈ L∞(0, T, Lq(Ω)) and according to the previous paragraphs the
operators w 7−→ PH (un · ∇w) are compact from X to L2(0, T, H). Further, the
Lebesgue measure ofMn goes to zero for n → ∞ so that ‖u−un‖Lα(0,T,Lq(Ω)) =

(
∫
Mn

‖u‖α
q dt)1/α 7−→ 0. Therefore, the operator w 7−→ PH(u · ∇w) is compact

from X to L2(0, T, H) as a limit of compact operators w 7−→ PH (un ·∇w) in the
usual norm of the space of all linear bounded operators from X to L2(0, T, H).

�

Let us consider the following Stokes equations with the perturbed convection
term PH(u · ∇w):

wt + νAw + PH (u · ∇w) = f ,(7)

w(0) = w0.(8)

Proposition 2. Let 2/α+3/q = 1 with q ∈ (3,∞]. Then there exists ε > 0 with
the following property: if u = u0 + u1 in (0, T ), u(t) ∈ V for almost every t ∈
(0, T ), u0 ∈ L∞(0, T, L3w(Ω)), u1 ∈ Lα(0, T, Lq(Ω)) and sup0<t<T ‖u0(t)‖3,w <

ε, then for every w0 ∈ V and f ∈ L2(0, T, H) there exists a unique solution w of

(7), (8) in X .

Proof: The operator w 7−→ (wt + νAw, w(0)) is a one to one continuous linear
operator from X onto Y . It is possible to prove (see also [3, Lemma 2.7]) that
the operator w 7−→ PH (u0 · ∇w) is linear and bounded from X to L2(0, T, H)
with the norm less than C‖u0‖L∞(0,T,L3w(Ω))

. Since the set of linear bounded one

to one operators is open in the space of all linear bounded operators (using the
usual topology) we get that the operator w 7−→ (wt+νAw+PH(u0 ·∇w), w(0))
is a one to one operator from X onto Y for ε being sufficiently small. Finally, it
follows from Proposition 1 that the operator w 7−→ PH (u1 ·∇w) is compact from
X to L2(0, T, H). Moreover, the operator w 7−→ (wt+νAw+PH (u ·∇w), w(0))
is one to one from X to Y and the proof follows immediately from Theorem A.

�

Now, we present proofs of the results stated in Introduction. The proofs are
based on Propositions 1 and 2. Theorem 3 is a generalization of the famous
Serrin’s result ([5]) on regularity of weak solutions in the subcritical case and was
proved in [3]. Theorem 4 which is dealing with the partial regularity of weak
solutions in the supercritical case L∞(0, T, L3(Ω)) was also proved in [3]. We
present these theorems in a little more general way.
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Theorem 3. There exists a constant ε with the following property. If u is a

weak solution of (1)–(4) and there exists a non-negative L2-function M = M(t)
on (0, T ) such that

(9) sup
R≥M(t)

Rµ{x ∈ Ω; |u(x, t)| > R}1/3 ≤ ε

for almost every t ∈ (0, T ), then u is regular, that is ∂u

∂t , Dα
x
u ∈ C(Ω × (0, T ))

for every multi-index α with |α| ≤ 2.

Proof: Due to the condition (9) u can be easily decomposed as u = u0 + u1,
where u0 ∈ L∞(0, T, L3w(Ω)), u1 ∈ L2(0, T, L∞(Ω)) and sup0<t<T ‖u0(t)‖3,w <
ε (see [3]). Let σ ∈ (0, T ) be an arbitrary number. Since the weak solution
u ∈ L2(0, T, V ), there exists a t0 ∈ (0, σ) such that u(t0) ∈ V . If ε is sufficiently
small it follows from Proposition 2 that there exists a unique solution w ∈ X of
(7), (8) on (t0, T ) with w(t0) = u(t0). It is easy to show that u = w on (t0, T )
and therefore u ∈ X on (t0, T ). Since σ was chosen arbitrarily the theorem follows
immediately using the results on interior regularity of weak solutions proved in [5].

�

Theorem 4. There exists a positive constant ε with the following property. If u

is a weak solution of (1)–(4) and there existsw ∈ L3(Ω) such that ‖u(t)−w‖3,w <

ε for almost every t ∈ (a, b) ⊂ (0, T ), then ∂u

∂t , Dα
x
u ∈ C(Ω × (a, b)) for every

multi-index α with |α| ≤ 2.

Proof: There exists w1 ∈ L4(Ω) such that ‖w − w1‖3 < ε. If we put u0 =
u − w1 and u1 = w1, then u = u0 + u1 on (a, b), u0 ∈ L∞(a, b, L3w(Ω)),
u1 ∈ L∞(a, b, L4(Ω)) and supa<t<b ‖u0(t)‖3,w < 2ε. Now, applying again Propo-
sitions 1 and 2 on (a, b) and using the same arguments as in Theorem 3, Theorem 4
follows immediately. �

It was proved in [1] and [3] that if u is a weak solution of (1)–(4) and u ∈
C([0, T ), L3(Ω)) or u ∈ BV ([0, T ), L3(Ω)) — the set of all functions of bounded
variation on [0, T ) with values in L3(Ω) — then u is regular. These results are
consequences of Theorem 4.
The following theorem is another example of the use of Theorem A in the

regularity theory of the Navier-Stokes equations. Let us note here that the space
L2(0, T, W 1,3(Ω)) is not imbedded into any Lα(0, T, Lq(Ω)) with 2/α+ 3/q = 1
and q ∈ (3,∞].

Theorem 5. Let u be a weak solution of (1)–(4) and u ∈ L2(0, T, W 1,3(Ω)).

Then ∂u

∂t , Dα
x
u ∈ C(Ω × (0, T )) for every multi-index α with |α| ≤ 2.

Proof: Firstly, let us show that the operatorw 7−→ PH(w ·∇u) is compact from
X to L2(0, T, H). Using the Hőlder inequality we have for almost every t ∈ (0, T )
and every v ∈ H :

|

∫
Ω

w · ∇u · v dx| ≤ c‖v‖2‖w‖W 1,2(Ω)‖u‖W 1,3(Ω).
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It follows easily as in the first paragraph of Proposition 1 that
‖PH(w · ∇u)‖L2(0,T,H) ≤ c‖w‖X‖u‖L2(0,T,W 1,3(Ω)) so that w 7−→ PH(w · ∇u)

is a linear bounded operator from X to L2(0, T, H). As in the last paragraph of
Proposition 1 it is possible to construct un ∈ L∞(0, T, W 1,3(Ω)) such that ‖u −
un‖L2(0,T,W 1,3(Ω)) 7−→ 0 and the compactness of the operator w 7−→ PH(w ·∇u)

follows now from this and from the fact that the operators w 7−→ PH(w · ∇un)
are compact.
It follows from the standard estimates in Sobolev spaces, the Gronwall lemma

and Theorem A that for everyw0 ∈ V and f ∈ L2(0, T, H), the following problem
has a unique solution w ∈ X :

wt + νAw + PH (w · ∇u) = f ,(12)

w(0) = w0.(13)

The proof is concluded using the same arguments as in the proof of Theorem 3.
�

Remark 6. If e.g. f ∈ H (f independent of time) then in Theorem 3 and The-
orem 5, resp. Theorem 4 u is analytic in time, in a neighborhood of the in-
terval (0, T ), resp. (a, b), as a D(A)-valued function (see [7]). It follows that
u ∈ C∞(0, T, C(Ω)), resp. u ∈ C∞(a, b, C(Ω)). Therefore, u has no singular
points in Ω × (0, T ), resp. Ω × (a, b). Also, u(x, ·) is an infinitely differentiable
function in (0, T ), resp. (a, b), for every x ∈ Ω.

Remark 7. If Ω ∈ C0,1 then the information from the Introduction — D(A) =
W 2,2(Ω)3 ∩V and the norm ‖u‖D(A) on D(A) is equivalent to the norm induced

by W 2,2(Ω)3 — cannot be used. We do not even know in this case whether
D(A) →֒ W 1,2+ε(Ω)3 for a positive ε or not. What we only have here is that
D(A) →֒→֒ V and also X →֒ L∞(0, T, V ). As a consequence, Propositions 1
and 2 can be proved only if u ∈ L2(0, T, L∞(Ω)) and the proofs of Theorems 3
and 4 fail totally. On the other hand, it is interesting that Theorem 5 can be
stated and proved without any change.

Remark 8. If Ω is the half-space or R3 (or possibly some other special unbounded
domain) then we are able to obtain almost the same results as in the case of a
bounded domain. Let us discuss it briefly. V denotes the completion of C∞

0,σ(Ω) in

the norm ofW 1,2(Ω)3 with the scalar product ((u, v))V =
∫
Ω(

∂ui
∂xj

∂vi
∂xj
+uivi) dx.

D(A) is then defined as {u ∈ V ; ∃f ∈ H ; ((u, v))V = (f , v) ∀v ∈ V } and using
the cut-off method it is possible to show that D(A) →֒ W 2,2(Ω). It implies that
X →֒ L2(0, T, W 2,2(Ω)) and, consequently, X →֒→֒ L2(0, T, W 1,6−ε(Θ)) for every
small ε > 0 and every smooth domain Θ ⊆ Ω. As a result, Proposition 1 can be
proved in a similar way as in the case of a bounded domain and Proposition 2
holds with only one change: the weak Lebesgue space L3w(Ω) is replaced by
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the Lebesgue space L3(Ω). In Theorem 3 the condition (9) is replaced by the
assumption u = u0 + u1 and u0 ∈ L∞(0, T, L3(Ω)), u1 ∈ Lα(0, T, Lq(Ω)),
sup0<t<T ‖u0(t)‖3 < ε and 2/α + 3/q = 1 with q ∈ (3,∞]. In Theorem 4, the

space L3(Ω) is used instead of the space L3w(Ω). Theorem 5 can be stated without
any change.

Conclusion

The results on regularity of weak solutions to the Navier-Stokes equations pre-
sented in this paper have been proved recently in [3]. It is interesting, however,
that an easy proof of these results can be based on a well known classical theorem
on compact operators. Further, weak solutions of the Navier-Stokes equations
in the space L2(0, T, W 1,3(Ω)3) are regular (Theorem 5), which is interesting in
connection with the famous Prodi-Serrin’s conditions (see [3]).
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