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Kneser-type theorem

for the Darboux problem in Banach spaces

Mieczys law Cichoń, Ireneusz Kubiaczyk

Abstract. In this paper we study the Darboux problem in some class of Banach spaces.
The right-hand side of this problem is a Pettis-integrable function satisfying some con-
ditions expressed in terms of measures of weak noncompactness. We prove that the set
of all local pseudo-solutions of our problem is nonempty, compact and connected in the
space of continuous functions equipped with the weak topology.

Keywords: Pettis integral, Fubini theorem, Darboux problem, measure of weak noncom-
pactness

Classification: 35R20, 46G10

1. Introduction

In this paper we study the set of solutions for the Darboux problem in a Banach
space E:

(1)





∂2z
∂x∂y

= f(x, y, z(x, y)), (x, y) ∈ P ,

z(x, 0) = 0,

z(0, y) = 0,

where P = {(x, y) : 0 ≤ x ≤ a1, 0 ≤ y ≤ a2}. By
∂2z

∂x∂y
we will denote the second

mixed pseudo-derivative and, consequently, we are looking for pseudo-solutions
of the above problem.

In this paper we consider the case when the function f is Pettis-integrable
but not necessarily Bochner integrable. This problem generalizes already known
results with Carathéodory solutions or weak solutions (cf. [6], [8], [15], [22]). We
prove also a full Kneser-type theorem, i.e. we show that a set S of all pseudo-
solutions is nonempty, compact and connected in the space C(J, E) endowed
with its weak topology, where the set J is a rectangle included in P . By C(J, E)
we denote the space of all continuous functions from J = 〈0, α1〉 × 〈0, α2〉 into
E and, consequently, (C(J, E), ω) is the space C(J, E) with the weak topology
σ(C(J, E), C(J, E)∗).



268 M.Cichoń, I. Kubiaczyk

The problem (1) has been studied by many specialists, for instance Alexiewicz
and Orlicz [1], Negrini [19], Dawidowski and Kubiaczyk [9], DeBlasi and My-
jak [4], Górniewicz and Pruszko [13], Górniewicz, Bryszewski and Pruszko [14],
Bugajewski and Szufla [5].

The key point of the problem (1) is the Fubini theorem. The classical version
of this theorem for the Lebesgue integral remains valid for the Bochner integral
but fails for the Pettis integral.

In the proof of the existence theorem we use a new Fubini type theorem for
some Pettis integrable functions (recently obtained by Michalak in [17]).

Throughout the paper, (E, ‖ · ‖) will denote a real Banach space and E∗ its
topological dual. We set (E, ω) = (E, σ(E, E∗)) the space E with its weak topol-
ogy, Br = {x ∈ E : ‖x‖ ≤ r}. By 〈a, b〉 we denote a closed interval in R.

A function f : E −→ E will be called weakly-weakly sequentially continuous
iff for each weakly convergent sequence (xn) in E the sequence (f(xn)) is weakly
convergent. Some comparison results between different concepts of the continuity
can by found in [2] (cf. also [20]).

By (P)

∫
and

∫
we will denote the Pettis integral and Lebesgue integral,

respectively.

For any bounded subset A of E we denote by β(A) the DeBlasi measure of
weak noncompactness of A, i.e.

β(A) = inf{ε > 0 : A ⊂ Bε +W, W − weakly compact subset of E}.

Let us recall some facts that will be used in the sequel.

Lemma 1 ([18]). Let H ⊂ C(P , E) be a family of strongly equicontinuous func-
tions. Then

(2) β(H(P)) = sup
(x,y)∈P

β(H(x, y))

and the function

(x, y) 7→ v(x, y) = β(H(x, y))

is continuous on P .

Lemma 2 ([7]). Let (X, d) be a metric space and let f : X −→ (E, ω) be
sequentially continuous. If A ⊂ X is a connected subset in X , then f(A) is a
connected subset in (E, ω).

We will need the following fixed-point theorem
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Proposition 1 ([16], cf. also [20]). Let X be a metrizable locally convex topo-
logical vector space, D a closed convex subset of X , and let F be a weakly
sequentially continuous map of D into itself. If for some x ∈ D the implication

(3) V = conv({x} ∪ F (V )) =⇒ V is relatively weakly compact,

holds for every subset V of D, then F has a fixed point.

2. Pseudo-solutions and the Fubini theorem

Fix arbitrary x∗ ∈ E∗ and consider functions z : P −→ E and x∗z : P −→ R.

We will investigate the following problem

(1′)






∂2(x∗z)
∂x∂y

(x, y) = x∗f(x, y, z(x, y)), (x, y) ∈ P ,

z(x, 0) = 0,

z(0, y) = 0.

By a pseudo-solution of (1) we understand an absolutely continuous function
z : P → E such that

z(x, 0) = 0, 0 ≤ x ≤ a1,

z(0, y) = 0, 0 ≤ y ≤ a2,

where z has second mixed pseudo-derivative ∂2

∂x∂y (x
∗z) for each x∗ ∈ E∗ (cf. [7],

[8], [21]) and z satisfies (1′) a.e.

Now, consider the problem

(4) z(x, y) = (P)

∫ y

0
(P)

∫ x

0
f(s, t, z(s, t)) ds dt, (x, y) ∈ P .

This problem is equivalent to (1) in the following sense: z is a solution of (4) iff
z is a pseudo-solution of (1). Indeed, under the assumption that f(·, ·, z(·, ·)) is
Pettis-integrable for each z ∈ C(P , E) and the Fubini theorem holds in E for the
Pettis integral (see next part of this section) we have:

∂

∂x

(
∂(x∗z)

∂y

)
(x, y) = x∗f(x, y, z(x, y))

for each x∗ ∈ E a.e. on P . Therefore
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∂(x∗z)

∂y
(x, y) =

∫ x

0
x∗f(s, y, z(s, y)) ds,

∂(x∗z)

∂y
(x, y) = x∗

(
(P)

∫ x

0
f(s, y, z(s, y)) ds

)
,

x∗z(x, y) =

∫ y

0
x∗

(
(P)

∫ x

0
f(s, t, z(s, t)) ds

)
dt,

x∗z(x, y) = x∗
(
(P)

∫ y

0
(P)

∫ x

0
f(s, t, z(s, t))

)
ds dt,

z(x, y) = (P)

∫ y

0
(P)

∫ x

0
f(s, t, z(s, t)) ds dt.

Hence, in fact the problem (4) appears.
Since the Fubini theorem fails, in general, we fix a possible large class of spaces

for which this useful theorem holds.
Let X be a weakly compactly generated (WCG) Banach space containing no

isomorphic copy of l1 and let E = X∗. Such spaces will be called (FP)-spaces
(Fubini-Pettis spaces). For WCG-spaces see [11], for instance.

Remark. The class of (FP)-spaces contains all reflexive Banach spaces but of
course not only such spaces. The James space J , the James tree space JT or the
dual to the last space which is nonreflexive and nonseparable are also interesting
examples of nonreflexive (FP)-spaces (see [11]). A full characterization for sepa-
rable spaces (hence WCG Banach spaces) containing no isomorphic copy of l1 is
given in Theorem 4.1 [11].

Functions f, g : P −→ E are scalarly equivalent if x∗f = x∗g a.e. on P for
every x∗ ∈ E∗.

Theorem 1 ([17] Fubini theorem). For every Pettis-integrable function f : P →
E such that f is bounded and E is an (FP)-space there exists a function f1 : P →
E scalarly equivalent to f such that

(i) the function s 7→ f1(s, t) is Pettis-integrable for a.a. t ∈ 〈0, a2〉,
(ii) the function t 7→ f1(s, t) is Pettis-integrable for a.a. s ∈ 〈0, a1〉,

(iii) (P)

∫∫

A×B

f ds dt = (P)

∫∫

A×B

f1 ds dt = (P)

∫

B

(
(P)

∫

A
f1(s, t) ds

)
dt

= (P)

∫

A

(
(P)

∫

B
f1(s, t) dt

)
ds

for every measurable subsets A ⊂ 〈0, a1〉, B ⊂ 〈0, a2〉.

It will cause no confusion if we use the same letter f to designate our function
f and f1 which is scalarly equivalent to the function f .



Kneser-type theorem for the Darboux problem in Banach spaces 271

The assumption that E is an (FP)-space is really essential and cannot be
omitted (see [17]).

3. Main results

Now, we are able to prove a Kneser-type theorem for the problem (1).
Let B = {x ∈ E : ‖x‖ ≤ b} and P = 〈0, a1〉 × 〈0, a2〉.
Assume that f : P × B −→ E is such that

‖f(x, y, z)‖ ≤ M for (x, y) ∈ P , z ∈ B, M ≥ 0.

We will assume in the sequel that E is an (FP)-space.
Choose positive numbers d1, d2 is such a way that

d1 ≤ a1, d2 ≤ a2 and M · d1 · d2 < b/2.

Put K = 〈0, d1〉 × 〈0, d2〉.
Now define a set

B̃ = {z ∈ C(K, E) : z(K) ⊂ B, ‖z(x, y)− z(x, y)‖

≤ M · d2 · |x − x|+M · d1 · |y − y| for each (x, y), (x, y) ∈ K}.

Note that B̃ is nonempty, closed, bounded, convex and equicontinuous in C(K, E).

Theorem 2. Assume that for each strongly absolutely continuous function z :
K −→ E, f(·, ·, z(·, ·)) is Pettis-integrable and f(x, y, ·) is weakly-weakly sequen-
tially continuous. Moreover, assume that there exists a continuous nondecreasing

function h such that the function u identically equal to zero is the unique contin-
uous solution of the inequality

0 ≤ u(x, y) ≤

∫ y

0

∫ x

0
h(u(s, t)) ds dt, (x, y) ∈ K.

If the function f satisfies

(5) β(f(K × X)) ≤ h(β(X)) for each X ⊂ B,

then the set S of all pseudo-solutions of the Darboux problem (1) defined on K
is nonempty, compact and connected in (C(K, E), ω).

Proof: I. Recall that the problem (1) is equivalent to (4). Put

F (z)(x, y) = (P)

∫ x

0
(P)

∫ y

0
f(s, t, z(s, t)) ds dt, (x, y) ∈ K, z ∈ B̃.
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By our assumptions there exists an integral (P)

∫∫

K

f(x, y, z(x, y)) dx dy and, by

Fubini theorem, the operator F is well-defined. We will show that F : B̃ −→ B̃.
Fix arbitrary x∗ ∈ E∗, ‖x∗‖ ≤ 1, (x, y), (x, y) ∈ K. Then

|x∗(F (z)(x, y)− F (z)(x, y))|

=

∣∣∣∣x
∗
[
(P)

∫ x

0

(
(P)

∫ y

0
f(s, t, z(s, t) ds) dt

)

− (P)

∫ x

0

(
(P)

∫ y

0
f(s, t, z(s, t)) ds

)
dt

]∣∣∣∣

=

∣∣∣∣x
∗
[
(P)

∫∫

〈0,x〉×〈0,y〉

f(s, t, z(s, t)) ds dt

− (P)

∫∫

〈0,x〉×〈0,y〉

f(s, t, z(s, t)) ds dt

]∣∣∣∣

=

∣∣∣∣x
∗
[
(P)

∫∫

〈x,x〉×〈0,y〉

f(s, t, z(s, t)) ds dt

+ (P)

∫∫

〈0,x〉×〈y,y〉

f(s, t, z(s, t)) ds dt

]∣∣∣∣

≤

∫ x

x

∫ y

0
|x∗f(s, t, z(s, t))| ds dt+

∫ x

0

∫ y

y
|x∗f(s, t, z(s, t))| ds dt

≤ M · |x − x| · y +M · |y − y| · x

≤ M · d2 · |x − x|+M · d1 · |y − y| < b.

Thus
‖F (z)(x, y)− F (z)(x, y)‖ ≤ M · d2 · |x − x|+M · d1 · |y − y|

and F : B̃ −→ B̃.

Using the Lebesgue dominated convergence theorem for the Pettis integral (see
[12]), we deduce that F is weakly-weakly sequentially continuous.

Now we will prove that the implication (3) holds for subsets of B̃.

Let V ⊂ B̃ be such that for some z ∈ B̃

V = conv({z} ∪ F (V )).

From the definition of F and by Lemma 1 it follows that the function

v : (x, y) 7→ β(V (x, y))
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is continuous on K.
For fixed (x, y) ∈ K we divide intervals 〈0, x〉 and 〈0, y〉 into m and n parts

respectively

0 = x0 < x1 < . . . < xm = x,

0 = y0 < y1 < . . . < yn = y,

where xi =
i · x
m , yj =

j · y
n (i = 1, . . . , m , j = 1, . . . , n).

Let Pij = {(x, y) : xi−1 ≤ x ≤ xi , yj−1 ≤ y ≤ yj} and

V (Pij) = {u(x, y) : u ∈ V, (x, y) ∈ Pij}.

By Lemma 1 and the continuity of v there is a point (ξi, ηj) ∈ Pij such that

(6) β(V (Pij)) = sup{β(V (ξ, η)) : (ξ, η) ∈ Pij} = v(ξi, ηj).

On the other hand, by the mean value theorem and using Fubini theorem we
obtain

F (z)(x, y) = (P)

∫ x

0
(P)

∫ y

0
f(s, t, z(s, t)) ds dt = (P)

∫∫

〈0,x〉×〈0,y〉

f(s, t, z(s, t)) ds dt

=

m∑

i=1

n∑

j=1

(P)

∫∫

Pij

f(s, t, z(s, t)) ds dt

⊂
m−1∑

i=0

n−1∑

j=0

(xi+1 − xi) · (yi+1 − yi) · convf(K × V (Pij))

for each z ∈ V . Therefore

F (V )(x, y) ⊂
m−1∑

i=0

n−1∑

j=0

(xi+1 − xi) · (yi+1 − yi) · convf(K × V (Pij)).

By (6) and the corresponding properties of β (see [3]) it follows that

β(F (V )(x, y)) ≤
m−1∑

i=0

n−1∑

j=0

(xi+1 − xi) · (yj+1 − yj) · h(v(ξi, ηj)).

But if m, n tends to infinity then the last sum tends to the integral

∫ x

0

∫ y

0
h(v(s, t)) ds dt.



274 M.Cichoń, I. Kubiaczyk

Thus

(7) β(F (V )(x, y)) ≤

∫ x

0

∫ y

0
h(v(s, t)) ds dt for (x, y) ∈ K.

Because V = conv({z}∪F (V )) by properties of the measure of weak compactness,
we have β(V ) = β(V ) = β(F (V )), β(V (x, y)) = β(F (V )(x, y)) and finally by (7)

v(x, y) ≤

∫ x

0

∫ y

0
h(v(s, t)) ds dt for (x, y) ∈ K.

By our assumptions on h, this inequality implies that v(x, y) = 0 for (x, y) ∈ K.

So V (x, y) is relatively weakly compact in E and since V ⊂ B̃, V is equicontinuous
and by the Ascoli theorem V is compact in (C(K, E), ω).

By Proposition 1 the map F has a fixed point in B̃, which is a pseudo-solution
of (1).
As S = F (S), using the same arguments one gets that S is relatively compact in

(C(K, E), ω) and by the Eberlein-Šmulian theorem weakly compact in C(K, E).

II. For any η > 0 denote by Sη the set of all functions z : K −→ E satisfying the
following conditions

(i) z(0, 0) = 0,
‖z(x, y)− z(x, y)‖ ≤ 2Md1|x − x|+ 2Md2|y − y| for (x, y), (x, y) ∈ K,

(ii) sup
(x,y)∈K

‖z(x, y)− (P)

∫ x

0
((P)

∫ y

0
f(ξ, η, z(ξ, η)) dξ) dη‖ < η.

The set Sη is nonempty as S ⊂ Sη. Now, we will prove the connectedness of Sη.
In fact, we will show that this set can be presented in the formW =

⋃
z∈Sη

Tz∪V ,

where the sets V and Tz are connected and the sets V ∩ Tz are nonempty.
We are in a position to construct the set V .

Let β1 = min
(
d1,

η
4Md2

)
, β2 = min

(
η

4Md1

)
and

Pε1,ε2 = {(x, y) : 0 ≤ x ≤ ε1, 0 ≤ y ≤ ε2} for any ε1 ∈ (0, β1), ε2 ∈ (0, β2).

We define a function v(·, ·, ε1, ε2) by the formula

v(x, y, ε1, ε2) =






0 for (x, y) ∈ Pε1,ε2 ,

(P)

∫ x−ε1

0

(
(P)

∫ y−ε2

0
f(ξ, η, v(ξ, η, ε1, ε2)) dξ

)
dη

for (x, y) ∈ P2ε1,2ε2 \ Pε1,ε2 .

Because v(x, y, ε1, ε2) = 0 for (x, y) ∈ Pε1,ε2 , the integral

(P)

∫ x−ε1

0
((P)

∫ y−ε2

0
f(ζ, η, v(ζ, η, ε1, ε2)) dζ) dη

= (P)

∫ x−ε1

0
((P)

∫ y−ε2

0
f(ζ, η, 0) dζ) dη
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is well-defined for (x, y) ∈ P2ε1,2ε2 \ Pε1,ε2 .

Consider the following case:

ε1 < x < x < 2ε1, ε2 < y < y < 2ε2.

For x∗ ∈ E∗ with ‖x∗‖ ≤ 1 we have

|x∗[v(x, y,ε1, ε2)− v(x, y, ε1, ε2)]|

=

∣∣∣∣x
∗
[
(P)

∫ x−ε1

0
(P)

∫ y−ε2

0
f(ζ, η, 0) dζ dη

− (P)

∫ x−ε1

0
(P)

∫ y−ε2

0
f(ζ, η, 0) dζ dη

]∣∣∣∣

=

∣∣∣∣x
∗
(
(P)

∫ x−ε1

x−ε1

(P)

∫ y−ε2

y−ε2

+(P)

∫ x−ε1

x−ε1

(P)

∫ y−ε2

0

+ (P)

∫ x−ε1

0
(P)

∫ y−ε2

y−ε2

)∣∣∣∣

≤

∫ x−ε1

x−ε1

∫ y−ε2

y−ε2

|x∗(f(ζ, η, 0))| dζ dη

+

∫ x−ε1

x−ε1

∫ y−ε2

0
|x∗(f(ζ, η, 0))| dζ dη

+

∫ x−ε1

0

∫ y−ε2

y−ε2

|x∗(f(ζ, η, 0))| dζ dη

≤ M [(|y − y| · |x − x|) +Mβ2|x − x|+Mβ1|y − y|]

≤ 2Mβ2|x − x|+Mβ1|y − y|

≤ 2M [β2|x − x|+ β1|y − y|].

Hence

(8) ‖v(x, y, ε1, ε2)− v(x, y, ε1, ε2)‖ ≤ 2Mβ2|x − x|+ 2Mβ1|y − y|.

In the remaining cases for (x, y), (x, y) ∈ P2ε1,2ε2 − Pε1,ε2 we can obtain the
same estimation.
So our function v is strongly continuous on P2ε1,2ε2 − Pε1,ε2 and by our as-

sumptions the integral

(P)

∫ x−ε1

0
((P)

∫ y−ε2

0
f(ζ, η, v(ζ, η, ε1, ε2)) dζ) dη

exists on P3ε1,3ε2 \ P2ε1,2ε2 .
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By induction we can prove that this integral exists on K \ Pε1,ε2 .
Now we define the function v on the whole K:

v(x, y, ε1, ε2) =





0 for (x, y) ∈ Pε1,ε2,

(P)
∫ x−ε1
0 ((P)

∫ y−ε2
0 f(ζ, η, v(ζ, η, ε1, ε2)) dζ) dη

for (x, y) ∈ K \ Pε1,ε2 .

Similarly as in the proof of (8) we can show that the function v is strongly con-
tinuous on K and satisfies the condition (i).

Furthermore for x∗ ∈ E∗, ‖x∗‖ ≤ 1, one gets

|x∗(v(x, y, ε1, ε2)− (P)

∫ x

0
(P)

∫ y

0
f(ζ, η, v(ζ, η, ε1, ε2)) dζ dη)|

≤





∣∣∣∣
∫ x

0

∫ y

0
x∗(f(ζ, η, v(ζ, η, ε1, ε2))) dζ dη

∣∣∣∣
for (x, y) ∈ Pε1,ε2∣∣∣∣
∫ x

0

∫ y

y−ε2

x∗f

∣∣∣∣+
∣∣∣∣
∫ x

x−ε1

∫ y

0
x∗f

∣∣∣∣+
∣∣∣∣
∫ x

x−ε1

∫ y

y−ε2

x∗f

∣∣∣∣

for (x, y) ∈ K \ Pε1,ε2





≤

{
Mε1ε2

Md1ε2 +Md2ε1 +Mε1ε2

}

≤ 2Md1ε2 + 2Md2ε1 < η,

where the supremum is taken over all x∗ ∈ E∗ such that ‖x∗‖ ≤ 1 so v(·, ·, ε1, ε2)
satisfies (ii).

Put v(·, ·, ε1, ε2) = vε1,ε2 , then

vε1,ε2(x, y) =

{
0 for (x, y) ∈ Pε1,ε2 ,

F (vε1,ε2)(x − ε1, y − ε2) for (x, y) ∈ K \ Pε1,ε2 .

Define the set V = {vε1ε2(·, ·) : 0 < ε1 < β1, 0 < ε2 < β2}. The set V
is a connected set in (C(K, E), ω). To prove this, we will show that a map-
ping (ε1, ε2) −→ vε1,ε2(·, ·) is sequentially continuous from (0, β1) × (0, β2) into
(C(K, E), ω).
Let 0 < ε1 < δ1 < d1 and 0 < ε2 < δ2 < d2 (in other cases the argumentation

given below is similar).

For (x, y) ∈ Pε1,ε2 and x∗ ∈ E∗

(9) |x∗(vε1ε2(x, y)− vδ1δ2(x, y))| = 0.
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For (x, y) ∈ Pδ1,δ2 \ Pε1ε2 one gets as in (8) that

(10) |x∗(vε1ε2(x, y)− vδ1δ2(x, y))| ≤ ‖x∗‖{2Md1(δ2 − ε2) + 2Md2(δ1 − ε1)}.

Let (εn
1 , ε

n
2 ) be a sequence such that (ε

n
1 , ε

n
2 ) −→ (ε01, ε

0
2), εn

i ≥ ε0i , i = 1, 2.
By (10) it follows that vεn

1
εn
2
(x, y) converges weakly to vε0

1
,ε0
2

(x, y) uniformly

for (x, y) ∈ K. So F (vεn
1
εn
2
)(x, y) → F (vε0

1
ε0
2

)(x, y) weakly on K, the map

(ε1, ε1) −→ vε1,ε2(·, ·) from K into (C(K, E), ω) is sequentially continuous (cf.
[18, Lemma 1.9]).
Therefore by Lemma 2, the set V = {vε1ε2(·, ·) : 0 < ε1 < β1, 0 < ε2 < β2}

is connected in (C(K, E), ω).

Now we define the set Tz. Let z ∈ Sη. Choose ε1, ε2 > 0 such that

sup
(x,y)∈K

‖z(x, y)−

∫ x

0

∫ y

0
f(ζ, η, z(ζ, η)) dζ dη‖+ 2Md2ε1 + 2Md1ε2 < η.

For any (p1, p2) ∈ K we define a function y(·, ·, p1, p2) by the formula

y(x, y, p1, p2) =





z(x, y) for 0 ≤ x ≤ p1, 0 ≤ y ≤ p2,

z(p1, p2) for (x, y) ∈ Pp1+ε1 , p2 + ε2,

p1 ≤ x ≤ min(d1, p1 + ε1),

p2 ≤ y ≤ min(d2, p2 + ε2),

z(x, p2) + (P)
∫ x
0 (P)

∫ y−ε2
p2

f(ζ, η, y(ζ, η, p1, p2)) dζ dη

for 0 < x ≤ p1, min(d1, p2 + ε2) < y < d2,

z(p1, y) + (P)
∫ x−ε1
p1

(P)
∫ y
0 f(ζ, η, y(ζ, η, p1, p2)) dζ dη

for min(d1, p1 + ε1) < x < d1, 0 < y < p2,

z(p1, p2) + (P)
∫ x−ε1
p1

(P)
∫ x−ε2
p2

f(ζ, η, y(ζ, η, p1, p2)) dζ dη

for min(d1, p1 + ε1) < x < d1,

min(d2, p2 + ε2) < y < d2.

Applying the same argument as above with y(·, ·, p1, p2), one shows that
y(·, ·, p1, p2) ∈ Sη for each (p1, p2) ∈ K and that the mapping (p1, p2) −→
y(·, ·, p1, p2) from K into (C(K, E), ω) is sequentially continuous.
Consequently, by Lemma 2, the set Tz = {y(·, ·, p1, p2) : 0 < p1 < β1, 0 < p2 <

β2} is connected in (C(K, E), ω).
As y(·, ·, 0, 0) = v(·, ·, ε1, ε2) ∈ V ∩Tz , the set V ∪Tz is connected, and therefore

the set
W =

⋃

z∈Sη

Tz ∪ V is connected in (C(K, E), ω).

Moreover Sη ⊂ W , because z = y(·, ·, β1, β2) ∈ Tz for each z ∈ Sη. On the other
hand W ⊂ Sη, since Tz ⊂ Sη and V ⊂ Sη. Finally Sη =W is a connected subset
of (C(K, E), ω).
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III. Suppose that the set S is not connected.
As S is weakly compact, there exist nonempty weakly compact sets W1 and

W2 such that S = W1 ∪ W2 and W1 ∩ W2 = ∅. Consequently there exist two
disjoint weakly open sets U1, U2 such that W1 ⊂ U1, W2 ⊂ U2. Suppose that for
every n ∈ N there exists a un ∈ Vn \ U , where Vn = S

ω
1

n
and U = U1 ∪ U2. Put

H = {un : n ∈ N}
ω
.

Since un − F (un) −→ 0 in C(K, E) as n → ∞ and H(x, y) ⊂ {un(x, y) −
F (un)(x, y) : un ∈ H}+ F (H)(x, y), an analysis similar to that in part I. shows
that there exists u0 ∈ H such that u0 = F (u0), i.e. u0 ∈ S. On the other hand,
H ⊂ (C(K, E), ω) \ U , as U is weakly open, so u0 ∈ S \ U , a contradiction.
Therefore, there is m ∈ N such that Vm ⊂ U .
Since U1 ∩ Vm 6= ∅ 6= U2 ∩ Vm, Vm is not connected, a contradiction with the

connectedness of each Vn. Consequently, S is connected in (C(K, E), ω). �

Remarks

If f(·, x) is scalarly measurable, f(t, ·) is weakly-weakly continuous, f is bound-
ed and E is a WCG space then for each absolutely strongly continuous function
x(·) f(·, x(·)) is Pettis-integrable, so our assumption on f seems to be natural.
One can easily prove that the integral of a weakly continuous function is weakly

differentiable with respect to the right endpoint of the integration interval and its
derivative equals the integral at the same point. In this case a pseudo-solution
is, actually, a weak solution ([22]). Moreover, in separable Banach spaces our
pseudo-solutions are also strong Carathéodory solutions.
It seems to be natural to point out that S is strongly equicontinuous in C(K, E),

so S is a continuum in Cω(K, E) (cf. [6], [7]). A very interesting lecture about
the structure of the solution sets, including the Darboux problem, one can find
in [10].
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