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On inverses of δ-convex mappings

Jakub Duda

Abstract. In the first part of this paper, we prove that in a sense the class of bi-Lipschitz
δ-convex mappings, whose inverses are locally δ-convex, is stable under finite-dimensional
δ-convex perturbations. In the second part, we construct two δ-convex mappings from
ℓ1 onto ℓ1, which are both bi-Lipschitz and their inverses are nowhere locally δ-convex.
The second mapping, whose construction is more complicated, has an invertible strict
derivative at 0. These mappings show that for (locally) δ-convex mappings an infinite-
dimensional analogue of the finite-dimensional theorem about δ-convexity of inverse
mappings (proved in [7]) cannot hold in general (the case of ℓ2 is still open) and answer
three questions posed in [7].
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Classification: Primary 47H99; Secondary 46G99, 58C20

1. Introduction

Let X,Y be normed linear spaces, A ⊂ X be an open convex set. A mapping
F :A→ Y is called δ-convex on A, if there exists a continuous function f :A→ R

such that y∗ ◦ F + f is a continuous convex function on A for each y∗ ∈ Y ∗,
‖y∗‖ = 1. If this is the case, we say that f is a control function of F . A mapping
G:B → Y defined on an open set B ⊂ X is said to be locally δ-convex , if for
each point b ∈ B there exists an open convex neighborhood V of b so that G|V is
δ-convex.
This definition of (local) δ-convexity for Banach space-valued mappings is due

to L. Veselý and L. Zaj́ıček and was introduced in [7]. Much about properties of
(locally) δ-convex mappings can be found in that article. The history of the notion
of a δ-convex function goes back to A.D. Alexandrov ([1], [2]). P. Hartman [5]
defined and investigated the notion of delta-convex mappings between Euclidean
spaces. For the history of notions of δ-convex functions and mappings, we refer
the interested reader to [7]. They have applications in many areas of mathematics,
for example in the non-smooth optimization theory. For a recent application of
δ-convex functions in the theory of Banach spaces, see articles of M. Cepedello
Boiso [3], [4].
In the first part of this paper, we prove a theorem about δ-convexity of inverses

of δ-convex mappings (an analogue of the finite-dimensional Theorem 5.2 in [7])

The author was supported by the grant GAČR 201/00/0767.
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for a special class of (infinite-dimensional) δ-convex mappings. This class contains
bi-Lipschitz δ-convex mappings, that arose as a sum of a bi-Lipschitz δ-convex
mapping with a locally δ-convex inverse and a finite-dimensional δ-convex map-
ping. Our theorem is also a strengthening of Theorem 4.5 in [7] for the considered
special class of mappings. So we obtain that a counterexample to Problem 1 in [7]
cannot be found in that class.
L. Veselý and L. Zaj́ıček ask in [7] (Problem 1) whether the inverse of a locally

δ-convex bi-Lipschitz mapping is also locally δ-convex. They prove that it is so
when we consider the finite dimensional case (see Theorem 4.5 in [7]) and that
the answers is yes “almost everywhere” (on an open dense set), when the source
space is an Asplund-Banach space and we consider bi-Lipschitz locally δ-convex
bijections between open convex sets (see Theorem 4.6 in [7]). In the second part
of this paper we construct two δ-convex mappings from ℓ1 onto ℓ1, which are
both bi-Lipschitz and whose inverses are nowhere locally δ-convex. This gives a
negative answer to the question asked in Problem 1 ([7]). The second mapping
also has an invertible strict derivative at 0 (however, we pay for this property by
substantial technical complications). This gives a (negative) solution to Problem 2
from [7].
The authors of [7] also ask (Problem 3) whether a δ-convex mapping, which

is strictly differentiable at a point, admits a control function, which is strictly
differentiable at that point. In [6] the authors gave an answer to that question
by constructing a δ-convex function R

2 → R, which is strictly differentiable at 0,
but which does not admit a control function having this property. It is possible
to prove (using a part of proof of Theorem 4.6 from [7]) that our second mapping
neither admits a control function, which is strictly differentiable at 0, so we give
another solution to this problem.
Let F :X → Y be a mapping between two normed linear spaces and K > 0.

By Lip F we shall denote the smallest Lipschitz constant of F . We shall say, that
F is K-bi-Lipschitz if for all x, y ∈ X it holds that 1K ‖x− y‖ ≤ ‖F (x)−F (y)‖ ≤
K‖x − y‖. We say that F :X → Y is bi-Lipschitz , if there is a constant L > 0
such that F is L-bi-Lipschitz.
Let X,Y be normed linear spaces, D ⊂ X and F :D → Y a mapping. We say

that A ∈ L(X,Y ) is a strict derivative of F at a point a ∈ D (see [7]), if for any
ε > 0 there exists δ > 0 such that ‖F (y)−F (x)−A(y−x)‖ ≤ ε‖y−x‖, whenever
x, y ∈ B(a, δ), where we take B(a, δ) = {x ∈ X ; ‖x− a‖ < δ}.
Let us recall some facts about δ-convex mappings:

Lemma 1.1 ([7, Lemma 1.5]). Let X,Y, Z, T be normed linear spaces, let A ⊂ X
and B ⊂ Z be open convex sets. Suppose that F :A→ Y is a δ-convex mapping
with a control function f on A and let G:Z → X,H :Y → T be continuous affine
mappings. Then the following assertions hold.

(a) The mapping H ◦F is δ-convex with the control function Lip(H) ·f on A.
(b) If G(B) ⊂ A, then F ◦G is δ-convex with the control function f ◦G on B.
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Proposition 1.2 ([7, Proposition 1.10]). Every δ-convex mapping is locally Lip-
schitz.

Corollary 1.3 ([7, Corollary 1.18]). Let X,Y be normed linear spaces, A ⊂ X
be an open convex set and let both F :A→ Y, f :A→ R be continuous. Then the

following assertions are equivalent:

(i) F is δ-convex on A with a control function f ;

(ii)
∥∥∥F (x)+F (y)

2 − F
(

x+y
2

)∥∥∥
Y

≤
f(x)+f(y)

2 − f
(

x+y
2

)
whenever x, y ∈ A.

Proposition 1.4 ([7, Proposition 4.1]). Let X,Y, Z be normed linear spaces and
let A ⊂ X , B ⊂ Y be open convex sets. Let F :A → B be δ-convex on A with a
control function f and let G:B → Z be δ-convex on B with a control function g.
Suppose further that G, g are Lipschitz on B with constants LG, Lg.

Then the composite mapping G ◦ F is δ-convex on A with a control function
h = g ◦ F + (LG + Lg)f .

Theorem 1.5 ([7, Theorem 5.1]). Let X,Z be normed linear spaces and let
Y be a finite dimensional normed linear space. Let A ⊂ X , B ⊂ Y be open
convex sets, c > 0 and let G:A × B → Z be a δ-convex mapping such that
‖G(x, y) − G(x, ỹ)‖ ≥ c‖y − ỹ‖ whenever x ∈ A, y, ỹ ∈ B. Let ϕ:A → B be a
mapping satisfying G(x, ϕ(x)) = 0 on A.
Then ϕ is locally δ-convex on A.

2. Inverse theorem

Theorem 2.1. Let X,Z be Banach spaces, A ⊂ X , B,G ⊂ Z be nonempty
open sets, let further A be convex, and let F :A → B be a bi-Lipschitz δ-convex
mapping onto B, such that F−1 is locally δ-convex on B. Let ξ:A → Z be δ-
convex and such that dim span ξ(A) <∞. Further let H = F+ξ be a bi-Lipschitz
mapping onto G.
Then the mapping H−1:G→ A is locally δ-convex.

Remark 1. The mapping H from Theorem 2.1 is δ-convex because it is a sum of
two such mappings.

Proof: We want to prove that H−1 is locally δ-convex. Let us denote Y =
span ξ(A). Choose z0 ∈ G. Denote x0 = H−1(z0) and choose ε > 0 so,
that B(F (x0), ε) ⊂ B and so that F−1 is δ-convex on B(F (x0), ε). Put V =
BY (ξ(x0), ε/2) and choose an open convex neighborhood U of z0 so that

(2.1) ξ
(
H−1 (U)

)
⊂ V and U ⊂ B (z0, ε/2) .

This is possible since H is bi-Lipschitz and ξ is locally Lipschitz (see Proposi-
tion 1.2). Then U − V ⊂ B(F (x0), ε) holds, as for x ∈ U, y ∈ V we have the



284 J. Duda

following inequality

‖x− y − F (x0)‖ = ‖x− F (x0)− ξ(x0) + ξ(x0)− y‖ < 2
ε

2
= ε.

Let us define

L:U × V → Y, L(x, y) = H
(
F−1 (x− y)

)
− x.

It follows from Proposition 1.4 that the mapping L is δ-convex. Take arbitrary
x ∈ U, y, y ∈ V . Then the following holds for L:

‖L(x, y)− L(x, y)‖ =
∥∥∥H

(
F−1 (x− y)

)
−H

(
F−1 (x− y)

)∥∥∥

≥ K−1
∥∥∥F−1(x− y)− F−1(x − y)

∥∥∥

≥ K−1C−1‖y − y‖,

where K > 0 (C > 0, respectively) is a bi-Lipschitz constant of the mapping
H (of the mapping F , respectively). To be able to apply Theorem 5.1 from [7],
it remains to show that for each x ∈ U it holds for ϕ(x) = ξ ◦ H−1(x) that
L(x, ϕ(x)) = 0 and ϕ(x) ∈ V . We put z = H−1(x) and then the following holds:

L(x, ϕ(x)) = H
(
F−1(x− ϕ(x))

)
− x

= H
(
F−1 (F (z) + ξ(z)− ξ(z))

)
−H(z)

= H(z)−H(z) = 0.

From the first formula in (2.1) it is easy to see that ϕ(x) ∈ V . Thus we obtained
a mapping ϕ:U → V . Now all the assumptions of Theorem 1.5 are fulfilled
(following the notation of [7] we take X = Y, Z, Y , A = U , B = V , c = K−1C−1,
G = L,ϕ). So, we get that ϕ is locally δ-convex in U .
Pick a neighborhood U0 of z0 so that ϕ is δ-convex on U0. Then inW = U∩ U0

we have H−1(x) = F−1(x − ϕ(x)) and it follows from Proposition 1.4 that H−1

is δ-convex on W . �

3. Two examples

The following theorem gives answers to questions asked in Problems 1, 2, and 3
in [7].

Theorem 3.1. There is a mapping N : ℓ1 → ℓ1, which is bi-Lipschitz, maps ℓ1
onto ℓ1, is δ-convex, and such that the inverse mapping N

−1 is nowhere locally

δ-convex.
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There even exists a mapping Ñ : ℓ1 → ℓ1, which is bi-Lipschitz, δ-convex, onto

ℓ1, strictly differentiable at 0, Ñ
′(0) = Idℓ1 , and such that the inverse Ñ

−1 is

nowhere locally δ-convex.

Remark 2. 1. A mapping is nowhere locally δ-convex, when it is not locally
δ-convex at any point.

2. The mapping N only gives answer to question in Problem 1, but it is the
most interesting one. The construction of N is substantially simpler than

that of Ñ , regardless of the fact, that they both use a similar idea.

3. Let us also note, that the mapping Ñ is a counterexample to Problem 3,
because it does not admit a control function, which is strictly differentiable
at 0. Suppose such a function exists. Then it follows from the proof of

Theorem 4.6 in [7] that the mapping Ñ−1 is δ-convex in a neighbourhood

of 0 and that is a contradiction with the fact that Ñ−1 is nowhere locally
δ-convex.

4. In the proof of Theorem 3.1 we always consider R
n endowed with the

ℓ1-norm (i.e. ‖x‖ =
∑n

i=1 |xi| for x ∈ R
n).

Let us first prove some auxiliary lemmas. The “building blocks” for our map-
pings will be mappings between R

n with some suitable properties.

Lemma 3.2. Let c ∈ (0, 1), L > 0, and let ξi:R → R, i = 1, . . . , n − 1, be
c-Lipschitz δ-convex functions and let ϕi:R → R, i = 1, . . . , n − 1, be their L-
Lipschitz control functions satisfying ϕi(0) = 0. Then the mapping Ψ:R

n → R
n

(defined as (Ψ(x))i = ξi(xi+1) for i < n and (Ψ(x))n = 0) is c-Lipschitz and

δ-convex with control function ϕ:Rn → R defined as ϕ(x) =
∑n−1

i=1 ϕi(xi+1)
(note that ϕ(0) = 0). If we further define a mapping F :Rn → R

n as F (x) =

x−Ψ(x), then F and F−1 are Lipschitz with the constant max
{
1
1−c , 1 + c

}
, F is

δ-convex with the control function ϕ, and F maps R
n onto R

n. It also holds that

Lip ϕ ≤ L.
Let ε > 0 and M ≥ 0. If there exists an M -Lipschitz function θ:B(0, ε)→ R,

which is a control function for F−1|B(0,ε), then there exists anM -Lipschitz control

function for ξ1 ◦ · · · ◦ ξn−1 on (−ε, ε).

Proof of Lemma 3.2: Let us first prove, that Ψ is Lipschitz. For the rest of
the proof choose x, y ∈ R

n. Then

‖Ψ(x)−Ψ(y)‖1 =

n−1∑

i=1

|ξi(xi+1)− ξi(yi+1)| ≤

n−1∑

i=1

c |xi+1 − yi+1| ≤ c ‖x− y‖1.

Considering ϕ, we get

|ϕ(x) − ϕ(y)| =

∣∣∣∣∣

n−1∑

i=1

ϕi(xi+1)− ϕi(yi+1)

∣∣∣∣∣ ≤ L
n−1∑

i=1

|xi+1 − yi+1| ≤ L‖x− y‖1.
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Let us see why Ψ is δ-convex:

∥∥∥∥
Ψ(x) + Ψ(y)

2
−Ψ

(
x+ y

2

)∥∥∥∥
1
=

n−1∑

i=1

∣∣∣∣
ξi(xi+1) + ξi(yi+1)

2
− ξi

(
xi+1 + yi+1

2

)∣∣∣∣

≤
n−1∑

i=1

ϕi(xi+1) + ϕi(yi+1)

2
− ϕi

(
xi+1 + yi+1

2

)
(3.2)

=
ϕ(x) + ϕ(y)

2
− ϕ

(
x+ y

2

)
.

It follows from Corollary 1.3 that Ψ is δ-convex with the control function ϕ.
Let us now look at F — it is certainly a δ-convex mapping as a sum of such

maps. To see that F is bi-Lipschitz, let us look at the following estimates:

(1− Lip Ψ)‖x− y‖1 ≤ ‖x− y‖1 − ‖Ψ(x)−Ψ(y)‖1

≤ ‖F (x)− F (y)‖1

≤ (1 + Lip Ψ)‖x− y‖1.

So (1− c)‖x− y‖1 ≤ ‖F (x)− F (y)‖1 ≤ (1 + c)‖x− y‖1.
Let us show that a convex function is a control function of F iff it is a control

function of Ψ. It follows from Corollary 1.3 and from the following equality:

∥∥∥∥
F (x) + F (y)

2
− F

(
x+ y

2

)∥∥∥∥
1
=

∥∥∥∥
Ψ(x) + Ψ(y)

2
−Ψ

(
x+ y

2

)∥∥∥∥
1
.

So we get (see (3.2)), that ϕ is a control function of F .
Now we show that F maps R

n onto R
n. Suppose we have y = F (x). Then

y1 = x1 − ξ1(x2), . . . , yn−1 = xn−1 − ξn−1(xn), yn = xn. We see that we can
express xi using yj , j = 1, . . . , n. We can also use a different argument, which is
based on the Banach fixed point theorem.
Let θ be according to the assumptions. For y = (y1, . . . , yn) ∈ B(0, ε) such that

yi = 0 for i < n it holds, that F−1(y) = (ξ1 ◦ · · · ◦ ξn−1(yn), . . . , ξn−1(yn), yn),
what is shown by direct computation. Let us define a function t:R → R

n as t(x) =
( 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

, x) and denote π:Rn → R the projection onto the first coordinate

(i.e. π((x1, . . . , xn)) = x1). Then for x ∈ (−ε, ε) it clearly holds, that ξ1 ◦ · · · ◦
ξn−1(x) = π ◦ F−1 ◦ t(x). According to Lemma 1.1 it is true, that F−1 ◦ t is on
(−ε, ε) δ-convex with the control function θ ◦ t. Applying the same lemma, we
get that π ◦F−1 ◦ t is δ-convex with the control function Lip π · (θ ◦ t). Note that
Lip π = Lip t = 1. As

Lip(Lip π · (θ ◦ t)) ≤ Lip π · Lip θ · Lip t = Lip θ =M,
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the function ξ1 ◦ · · · ◦ ξn−1 is δ-convex on (−ε, ε) with the control function θ ◦ t,
which is M -Lipschitz. This concludes the proof. �

Remark 3. Let f :R → R be a function. Then for x ∈ R we denote by f ′+(x)

(f ′−(x), respectively) the right derivative (the left derivative, respectively) of the
function f at x, if it exists.

Lemma 3.3. Let U ⊂ R be an open interval, f :U → R be a δ-convex function
and ϕ:U → R be its control function. Then the following holds:

ϕ′+(x)− ϕ′−(x) ≥
∣∣f ′+(x)− f ′−(x)

∣∣ for all x ∈ U.

Let x1, . . . , xk ∈ U be an increasing sequence of distinct real numbers, k ∈ N.

Then

Lip ϕ ≥
1

2

k∑

i=1

∣∣f ′+ (xi)− f ′− (xi)
∣∣ .

Proof of Lemma 3.3: Concerning the first part of the lemma: since ϕ is a
control function for f , the functions f + ϕ and −f + ϕ are convex in U . Take an
arbitrary x ∈ U . Then

(f + ϕ)′+(x) ≥ (f + ϕ)
′
−(x) and (−f + ϕ)

′
+(x) ≥ (−f + ϕ)

′
−(x).

It is easy to see that for a δ-convex function unilateral derivatives exist. We get
that

ϕ′+(x) − ϕ′−(x) ≥
∣∣f ′+(x)− f ′−(x)

∣∣ .

Concerning the second part of the lemma: it is easy to see that

ϕ′+(xk)− ϕ′−(x1) =

k∑

i=1

(
ϕ′+(xi)− ϕ′−(xi)

)
+

k∑

i=2

(
ϕ′−(xi)− ϕ′+(xi−1)

)

≥

k∑

i=1

(
ϕ′+(xi)− ϕ′−(xi)

)
.

We only used the fact that ϕ is convex. Now we have

2 Lip ϕ ≥
∣∣ϕ′+(xk)

∣∣+
∣∣ϕ′−(x1)

∣∣ ≥ ϕ′+(xk)− ϕ′−(x1)

≥

k∑

i=1

(
ϕ′+(xi)− ϕ′−(xi)

)
≥

k∑

i=1

∣∣f ′+(xi)− f ′−(xi)
∣∣ .

We again used the fact that ϕ is a convex function. �
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Definition 3.4. In the sequel we shall use the following notation: let ε > 0 and
k > 0 be given. Then we define fk

ε :R → R as

fk
ε (x) =





0 for x ≤ 0,

k x for x ∈ (0, ε],

2 k ε− k x for x ∈ (ε, 2 ε],

0 for x > 2 ε.

We see, that this function is k-Lipschitz. Let us define gk
ε :R → R as

gk
ε (x) =






0 for x ≤ 0,

k x for x ∈ (0, ε],

3 k x− 2 k ε for x ∈ (ε, 2 ε],

4 k x− 4 k ε for x > 2 ε.

Again, it is easy to see that gk
ε is 4k-Lipschitz, convex and further, that (f

k
ε +g

k
ε ),

(−fk
ε + g

k
ε ) are convex, so f

k
ε is δ-convex with the control function g

k
ε .

The following two lemmas will allow us to construct a sequence of functions
with suitable properties. We shall use them for the construction of our mappings.

Definition 3.5. Let U ⊂ R be open, I ⊂ U be an interval, c ∈ R and f :U → R

a function. Then we say, that f is affine in the interval I with tangent c, if there
exists d ∈ R so that for all x ∈ I the equality f(x) = c x + d holds. Further we
define supp f = {x ∈ U ; f(x) 6= 0}.

Lemma 3.6. Suppose we are given δ > 0 and c > 0. Then there exists a sequence
of functions {hn:R → R}n∈N

such that the following conditions are fulfilled for

all n ∈ N:

1. hn(0) = 0, hn is c-Lipschitz, δ-convex and there exists νn convex control
function for hn satisfying Lip νn ≤ 4c, νn(0) = 0,

2. if φn is a control function for hn◦· · ·◦h1 in (0, δ), then Lip φn ≥ c (2c)n−1.

Proof of Lemma 3.6: We shall construct functions hn by induction so that
conditions 1 and 2 of the lemma are satisfied and also that the following conditions
hold for all n ∈ N:

3. hn(x) ≥ 0 for all x ∈ R, supp hn ⊂ [0, δ),
4. there exist 2n disjoint intervals (ai, bi), where i = 1, . . . , 2

n, so that hn ◦
· · · ◦ h1 is in [ai, bi] affine with tangent ± cn and hn ◦ · · · ◦ h1 is equal to 0
in one of the boundary points of each of these intervals,

5. for the function β = hn ◦ · · · ◦ h1 there exist 2
n−1 points in (0, δ), where

the following condition is fulfilled:
∣∣β′+(x)− β′−(x)

∣∣ ≥ 2 cn.
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We take h1 = f
c
δ/4 and ν1 = g

c
δ/4. Everything holds, if we take (a1, b1) = (0, δ/4)

and (a2, b2) = (δ/4, δ/2). Suppose that n > 1 and we have constructed hi for
i < n. Now it suffices to prove, that there exists hn, so that the required conditions
are satisfied. Let us define

d̃ = min
{
max {hn−1 ◦ · · · ◦ h1([ai, bi])} ; i = 1, . . . , 2

n−1
}
,

where ai, bi are as in condition 4 for (n− 1) and finally

(3.3) d = min
{
d̃, δ/2

}
.

Then obviously d > 0. We take hn = f
c
d/2 and νn = g

c
d/2. Conditions 1 and 3 are

clearly satisfied. It remains to show that the rest of the conditions holds.

Ad 4. Let (ai, bi), i = 1, . . . , 2
n−1, be as in condition 4 for (n− 1). Take 1 ≤ i ≤

2n−1. Suppose that hn−1 ◦ · · · ◦h1(ai) = 0. The case when hn−1 ◦ · · · ◦h1(bi) = 0
is analogous. Then the function hn−1 ◦ · · · ◦ h1 is [ai, bi] increasing and equal to
cn−1(x − ai). It follows from (3.3) that there exists ti ∈ (ai, bi] so that hn−1 ◦

· · · ◦ h1(ti) = d. In
[
ai,

ai+ti
2

]
the function hn ◦ · · · ◦ h1 is affine with tangent c

n,

it is equal to 0 in ai, in
[

ai+ti
2 , ti

]
the function hn ◦ · · · ◦ h1 is affine with tangent

−cn and it is equal to 0 in ti.

Intervals of kind either
(
ai,

ai+ti
2

)
,

(
ai+ti
2 , ti

)
or

(
ti,

ti+bi

2

)
,

(
ti+bi

2 , bi

)
(in

case that hn−1 ◦ · · · ◦h1(bi) = 0) form for i = 1, . . . , 2
n−1 a family of 2n intervals,

where condition 4 for n is fulfilled.

Ad 5. It is enough to realize that at points of kind yi =
ai+ti
2 (or yi =

ti+bi

2 )

for i = 1, . . . , 2n−1, ti is taken as in the last two paragraphs, the equality∣∣β′+(yi)− β′−(yi)
∣∣ = 2cn holds, where β = hn ◦ · · · ◦ h1. It follows from the

selection of hn and points ai, bi. But then also condition 5 from the construction
is fulfilled.

Ad 2. Let φ: (0, δ) → R be a convex function and a control function for β =
hn ◦ · · · ◦ h1. We select points zi for i = 1, . . . , 2

n−1. These are taken to be the
2n−1 points of condition 5 for n. Then according to Lemma 3.3 the following
holds:

Lip φ ≥
1

2

2n−1∑

i=1

∣∣β′+(zi)− β′−(zi)
∣∣ = 1
2
· 2n−1 · (2cn) = c (2c)n−1.

�

The more complicated version is the following:
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Lemma 3.7. Suppose we are given δ > 0 and M ∈ (0, 1). Then there exist m ∈

N, such that 12m < M , and a sequence of functions
{
h̃n:R → R

}

n∈N
satisfying

the following conditions for all n ∈ N:

1. h̃n(0) = 0, h̃n is
(
1
2m

)
-Lipschitz, δ-convex and there exists ν̃n, a convex

control function for h̃n satisfying Lip ν̃n ≤ 4 and ν̃n(0) = 0,

2. let ψ: (0, δ)→ R be a control function for h̃n ◦ · · · ◦ h̃1 in (0, δ). Then

Lip ψ ≥ 2n−1,

3. there exists λn > 0 such that h̃i([0, λn]) = {0} for i ≤ n.

Definition 3.8. Suppose we are given a < b, a, b ∈ R, l ∈ R and n ∈ N. Let us
put ε = (b − a)/n. We divide the interval [a, b] into n subintervals of the same
length, with boundary points c1 = a, . . . , cn+1 = b (thus ci = a+(i− 1) · ε, where
i = 1, . . . , n+ 1). We define a function f(a, b, n, l):R → R as

f(a, b, n, l)(x) =

n∑

i=1

f l
ε/2(x− ci).

It is easy to see that f(a, b, n, l) is l-Lipschitz. Further we define a function
g(a, b, n, l):R → R as

g(a, b, n, l)(x) =
n∑

i=1

gl
ε/2(x− ai).

Then g(a, b, n, l) is a convex, 4nl-Lipschitz function, which is a control function
for f(a, b, n, l). So f(a, b, n, l) is δ-convex on R. Also note that f(a, b, n, l) is equal
to 0 outside of (a, b).
It simply follows that for f(a, b, n, l) there exist 2n intervals, in whichf(a, b, n, l)

is affine with tangent ±l, so that it is also equal to 0 in one of the boundary points
and the interiors of these intervals are disjoint. Note that there exist n points in
(a, b), where

∣∣f ′+(x) − f ′−(x)
∣∣ = 2l.

Proof of Lemma 3.7: Take m ∈ N, so that 2−m < M and we shall define

functions h̃n, again by induction, to satisfy conditions 1, 2, 3 and further for all
n ∈ N:

4. it is true that h̃n(x) ≥ 0 for all x ∈ R and supp h̃n ⊂ [0, δ),

5. there exist 2(m+1)n disjoint intervals (ai, bi), where i = 1, . . . , 2
(m+1)n, so

that h̃n ◦ · · · ◦ h̃1 is affine in [ai, bi] with tangent ± (1/2
m)n and in one

of the boundary points of each interval the function h̃n ◦ · · · ◦ h̃1 is equal
to 0,
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6. for the function β̃ = h̃n ◦ · · · ◦ h̃1 there exist 2
n−1+mn points in (0, δ),

where the following inequality holds:

∣∣∣β̃′+(x)− β̃′−(x)
∣∣∣ ≥ 2

(
1

2m

)n

.

We define h̃1, ν̃1 as h̃1 = f(δ/2, δ, 2m, 1/2m) and ν̃1 = g(δ/2, δ, 2m, 1/2m). Fur-

ther we put λ1 =
δ
2 and ε =

δ
2m+2

. If we take for i = 1, . . . , 2m+1, the points ai, bi

to be ai =
δ
2 + (i− 1)ε, bi =

δ
2 + iε, then the intervals (ai, bi) satisfy condition 5.

For j = 1, . . . , 2m, we take tj = a2j . Then in points tj the condition 6 is fulfilled
and the validity condition 2 is clear by the choice of λ1. Now suppose that n > 1

and we have constructed h̃i for i < n. It suffices to show that there exists h̃n so
that all the conditions hold. Define

d̃ = min
{
max

{
h̃n−1 ◦ · · · ◦ h̃1([ai, bi])

}
; i = 1, . . . , 2(m+1)(n−1)

}
,

where ai, bi are taken as in condition 5 for (n− 1) and finally

(3.4) d = min
{
d̃, δ

}
.

Then clearly d > 0. Take h̃n = f
(

d
2 , d, 2

m, 12m
)
and ν̃n = g

(
d
2 , d, 2

m, 12m
)
.

Conditions 1 and 4 are clearly satisfied. It remains to prove that the remaining
conditions hold.

Ad 5. Let (ai, bi), i = 1, . . . , 2
(m+1)(n−1), be taken as in condition 5 for (n− 1).

Take 1 ≤ i ≤ 2(m+1)(n−1). Suppose that h̃n−1 ◦ · · · ◦ h̃1(ai) = 0. The other case

when h̃n−1 ◦ · · · ◦ h̃1(bi) = 0 is analogous. Then the function h̃n−1 ◦ · · · ◦ h̃1 is
increasing in [ai, bi] and equal to (1/2

m)n−1(x − ai). The choice of d in (3.4)

implies, that there exists ti ∈ (ai, bi] such that h̃n−1 ◦ · · · ◦ h̃1(ti) = d. Then in
[ai, bi] the following equality holds:

(3.5) h̃n ◦ · · · ◦ h̃1 = f

(
ai + ti
2

, ti, 2
m, (1/2m)n

)
,

what follows from the special form of h̃n and of h̃n−1 ◦ · · · ◦ h̃1 on [ai, bi].
It follows from the properties of f(·, ·, ·, ·) which were mentioned in Defini-

tion 3.8 that there exist 2m+1 intervals, with disjoint interiors, contained in [ai, bi],

where the function h̃n ◦ · · · ◦ h̃1 is affine with tangent ± (1/2
m)n and in one of the

boundary points of each interval it is equal to 0.

Thus for each interval [ai, bi], where i = 1, . . . , 2
(m+1)(n−1), we found 2m+1

subintervals, whose interiors are disjoint and for each of these (sub)intervals the

condition 5 for n holds. So we get 2(m+1)(n−1) · 2m+1 = 2(m+1)n intervals.
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Ad 6. It follows from above that in each interval [ai, bi], which are taken as in

(Ad 5.), there exist 2m distinct points, where
∣∣∣β̃′+(x) − β̃′−(x)

∣∣∣ = 2
(
1
2m

)n
. It is

a consequence of the equality (3.5) and of properties of f(·, ·, ·, ·) mentioned in

Definition 3.8. Altogether we obtain 2(m+1)(n−1) · 2m = 2mn+n−1 points with
the desired property.

Ad 3. Take λn to be min {λ1, . . . , λn−1, d/2} > 0. Then for i < n condition 3

is fulfilled thanks to the fact, that λn ≤ λi. It is enough to prove that h̃n ≡ 0

on [0, λn]. But we have h̃n = f(d/2, d, 2m, (1/2m)) and from the definition of

f(a, b, n, l) this function is equal to 0 outside of (a, b). As we have λn ≤ d
2 , the

desired property of hn simply follows.

Ad 2. We define zi for i = 1, . . . , 2
n−1+mn, as the points of condition 6 for n.

Let ψ be a control function for β̃ = h̃n ◦ · · · ◦ h̃1 on (0, δ). Lemma 3.3 implies

Lip ψ ≥
1

2

2n−1+mn∑

i=1

∣∣∣β̃′+(zi)− β̃′−(zi)
∣∣∣ =
1

2
· 2n−1+mn · 2

(
1

2m

)n

= 2n−1,

which was to be proved. �

Proof of Theorem 3.1: We shall simultaneously construct mappingsN and Ñ .
We shall write

Y =

∞∑

n=2

⊕ℓ1(R
n, ‖ · ‖1)

and find mappings N, Ñ :Y → Y in form

N(x2, x3, . . . ) = (F2(x2), F3(x3), . . . ),

Ñ(x2, x3, . . . ) =
(
F̃2(x2), F̃3(x3), . . .

)
,

where Fn, F̃n:R
n → R

n. Note that Y is obviously isometrically isomorphic to ℓ1.
In the sequel we shall use the symbol ‖x‖Y =

∑∞
n=2 ‖xn‖1,Rn even for points

x = (x2, x3, . . . ) ∈
∏∞

n=2R
n which might not belong to Y . It makes proofs

shorter.

First we define Fn. Choose c ∈
(
1
2 , 1

)
, fix K such that K > max

{
1
1−c , c+ 1

}
,

and L = 4c. We shall find Fn, n > 1, so that they will satisfy the following
conditions for all n > 1:

1. Fn(0) = 0, Fn is K-bi-Lipschitz, Fn maps R
n onto R

n, and is δ-convex
on R

n,
2. there exists a convex function ϕn:R

n → R, which is L-Lipschitz, ϕn(0) =
0 and ϕn is a control function for Fn on R

n,
3. suppose that ε > 1

n and the function θ:B(0, ε)→ R is a control function

for F−1
n |B(0,ε), then Lip θ ≥ c · (2c)n−2.
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Choose n ∈ N, n > 1. Put δ = 1
n and apply Lemma 3.6 with chosen δ, c. We

obtain a sequence of functions
{
hj

}
j∈N
. We shall use only the first (n − 1)

functions. For j = 1, . . . , n − 1, we define ξn−j :R → R as ξn−j(x) = hj(x) and
ψn−j :R → R as ψn−j(x) = νj(x).

Such ξi and ψi satisfy the assumptions of Lemma 3.2. Denote by Fn the
mapping F obtained by the application of Lemma 3.2 with ξi, ψi, i = 1, . . . , n−1.
Then the mapping Fn is δ-convex, K-bi-Lipschitz, there exists a control function
ϕn for Fn, which is L-Lipschitz and ϕn(0) = 0. It further holds that Fn(0) = 0
(because ξi(0) = 0 for i ≤ n) and Fn maps R

n onto R
n.

Now we define F̃n. Choose K̃ ≥ 2 and L̃ = 2. We shall find F̃n, n > 1, so that
they will satisfy the following conditions for all n > 1:

1. F̃n(0) = 0, F̃n is K̃-bi-Lipschitz, F̃n maps R
n onto R

n and is δ-convex on
R

n,

2. there exists a convex function ϕ̃n:R
n → R, which is L̃-Lipschitz, ϕ̃n(0) =

0 and ϕ̃n is a control function for F̃n on R
n,

3. suppose that ε > 1
n and the function θ:B(0, ε)→ R is a control function

for F̃−1
n |B(0,ε), then Lip θ ≥ 2

n−2,

4. there exists Λn > 0 such that for all x ∈ B(0,Λn) it holds that Ψ̃n(x) =

F̃n(x)− x = 0 and Ψ̃n is
1
n -Lipschitz.

Choose n ∈ N, n > 1. Put δ = M = 1
n and we apply Lemma 3.7. We obtain

a sequence h̃i and denote mn = m. Put Λn = λn−1, where λn−1 is taken as in
condition 3 in Lemma 3.7. Again we shall use the first (n − 1) functions. For

j = 1, . . . , n− 1, we define ξ̃n−j :R → R as ξ̃n−j(x) = h̃j(x) and ψ̃n−j :R → R as

ψ̃n−j(x) = ν̃j(x).

Such ξ̃i and ψ̃i satisfy the assumptions of Lemma 3.2 if we take c =
1
n , K = K̃,

L = L̃, ξi = ξ̃i, ψi = ψ̃i. Denote F̃n the mapping F from Lemma 3.2 used on ξ̃i,

ψ̃i, i = 1, . . . , n−1. Then the mapping F̃n is δ-convex, K̃-bi-Lipschitz, there exists

a control function ϕ̃n for F̃n, which is L̃-Lipschitz and ϕ̃n(0) = 0. Note that the

mapping Ψ̃n(x) = F̃n(x) − x from Lemma 3.7 is 1n -Lipschitz. Further F̃n(0) = 0

and F̃n maps R
n onto R

n. Because it holds for i ≤ n− 1 that h̃i([0,Λn]) = {0},

then for x ∈ R, ‖x‖ ≤ Λn, it is true, that Ψ̃n(x) = 0, what is an easy consequence

of the definition of Ψ̃n.

It remains to show that conditions 3 hold both for Fn and F̃n. It follows from
the next proposition. Choose n ∈ N.

Proposition 3.9. Let ε > 1
n and let ψ be a control function of F

−1
n |B(0,ε)

(F̃−1
n |B(0,ε), respectively). Then Lip(ψ) ≥ c · (2c)n−2 (Lip(ψ) ≥ 2n−2, respec-

tively).
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Proof of Proposition 3.9: Let us suppose first, that ψ is a control function
of F−1

n |B(0,ε). Further, we might suppose, that Lip ψ < ∞. Then it follows

from Lemma 3.2 that there exists a control function for ξ1 ◦ · · · ◦ ξn−1 on (−ε, ε),
which is (Lip ψ)-Lipschitz; we denote the function α. Because ξn−j(x) = hj(x),
it holds that ξ1 ◦ · · · ◦ ξn−1 = hn−1 ◦ · · · ◦h1. The function α is certainly a control
function for hn−1 ◦ · · · ◦ h1 on (−ε, ε). From Lemma 3.6, condition 2, it follows
that Lip α ≥ c · (2c)n−2. As Lip α ≤ Lip ψ, we have proved the first part of the
proposition.

Now suppose, that ψ is a control function for F̃−1
n |B(0,ε). Then everything is

analogous to the case of Fn, the only difference being that we are working with

ξ̃i, h̃i, i = 1, . . . , n − 1, and the estimate follows from Lemma 3.7, condition 2.
This concludes the proof. �

Let us now look closer at the properties of mappings N and Ñ , that were
defined above.

We show first that N maps Y into Y and that it is bi-Lipschitz. Choose
x, y ∈ Y . Remember, that x = (x2, x3, . . . ), where xn ∈ R

n (the same holds
for y). Then

‖N(x)−N(y)‖Y =
∑

n>1

‖Fn(xn)− Fn(yn)‖1,Rn ≤ K
∑

n>1

‖x− y‖1,Rn .

So we get, that ‖N(x)−N(y)‖Y ≤ K‖x−y‖Y . Because N(0) = 0, then if we take
y = 0, we get that N(x) ∈ Y . Similar argument gives, that ‖N(x) − N(y)‖Y ≥
1
K ‖x− y‖Y . For Ñ we use an analogous computation with K̃.

For the proof of δ-convexity of N we define a function ϕ:Y → R as ϕ(x) =∑
n>1 ϕn(xn), where ϕn are control functions of Fn, ϕn(0) = 0 and ϕn is L-

Lipschitz. The function ϕ is well defined, because for x ∈ Y , we obtain

(3.6) |ϕ(x)| =

∣∣∣∣∣
∑

n>1

ϕn(xn)

∣∣∣∣∣ =
∣∣∣∣∣
∑

n>1

(ϕn(xn)− ϕn(0))

∣∣∣∣∣ ≤ L
∑

n>1

‖xn‖1,Rn .

By similar estimates as in (3.6) we get, that ϕ is L-Lipschitz (and thus continuous).
Convexity of ϕ follows from that fact that it is a limit of finite partial sums of
convex functions, which are obviously convex.

Note that ϕ is a control function of N . It follows from Corollary 1.3 and from
the following estimate:
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∥∥∥∥
1

2
(N(x) +N(y))−N

(
x+ y

2

)∥∥∥∥
Y

=
∑

n>1

∥∥∥∥
Fn(xn) + Fn(yn)

2
− Fn

(
xn + yn
2

)∥∥∥∥
1,Rn

≤
∑

n>1

ϕn(xn) + ϕn(yn)

2
− ϕn

(
xn + yn
2

)

=
ϕ(x) + ϕ(y)

2
− ϕ

(
x+ y

2

)
,

for x, y ∈ Y . The proof of δ-convexity of Ñ follows by an analogous argument
using ϕ̃n, n ∈ N.
It is easy to show that N is onto Y . It follows from the fact that Fn’s are uni-

formly bi-Lipschitz and onto. Suppose we are given y ∈ Y . Then y = (y2, y3, . . . ),

where yi ∈ R
i. Define xi ∈ R

i as xi = F
−1
i (yi) for i ∈ N. Then x = (x2, x3, . . . ) ∈

Y , as

‖x‖Y =
∑

i>1

‖xi − 0‖ =
∑

i>1

∥∥∥F−1
i (yi)− F−1

i (0)
∥∥∥ ≤ K

∑

i>1

‖yi‖ = K‖y‖Y .

Thus N(x) = y. That Ñ is onto Y follows by a similar argument.
Let us show that N−1 is nowhere locally δ-convex. For a contradiction let us

suppose that we have a point z ∈ Y and there exists ε > 0 and a continuous
convex function θ:BY (z, ε)→ R so that θ is a control function of N−1|B(0,ε). By

possibly making the ε > 0 smaller, we can suppose that Lip θ <∞ (as continuous
convex functions are locally Lipschitz).
First, there exists n0 ∈ N so that

1. 1n < ε
4 for n ≥ n0;

2.
∑

n≥n0
‖zn‖ ≤ ε

4 .

Fix n > n0. For x ∈ BRn(0, ε/4) we define En(x) ∈ Y as

En(x)i =





zi for i ≤ n0;

x for i = n;

0 elsewhere.

Then En(x) ∈ BY (z, ε), because

‖z − En(x)‖ =
∑

i>n0

‖zi − En(x)i‖ =
∑

i>n0
i6=n

‖zi‖+ ‖zn − x‖

≤
∑

i>n0
i6=n

‖zi‖+ ‖zn‖+ ‖x‖ ≤
3ε

4
< ε.
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Let us denote πn:Y → R
n the projection onto the n-th coordinate (that is

πn((x2, x3, . . . )) = xn for x ∈ Y ). Then it follows from Lemma 1.1, part (b),
that N−1 ◦En is δ-convex with the control function θ ◦En on B(0, ε/4). Another
application of Lemma 1.1, now part (a), yields that πn ◦ N−1 ◦ En is δ-convex
with the control function Lip(πn) · (θ ◦ E

n). As Lip(πn) = Lip(E
n) = 1, we get

(3.7) Lip(Lip(πn) · (θ ◦ E
n)) ≤ Lip(πn) · Lip θ · Lip(E

n) = Lip(θ).

Note that for x ∈ BRn(0, ε/4) it is true, that F−1
n (x) = πn ◦ N−1 ◦ En. So

we obtain, that θ ◦ En is a control function for F−1
n on B(0, ε/4). Condition 3

in definition of Fn implies, that Lip(θ ◦ En) ≥ c · (2c)n−2, and this, together
with (3.7), implies that Lip θ ≥ Lip(θ ◦ En). So we obtained that Lip θ ≥ c ·
(2c)n−2 for all n > n0 and that is a contradiction with the fact that Lip θ < ∞,

because limn→∞ c · (2c)n−2 =∞ thank to the choice of c > 1
2 .

The proof of the fact that Ñ−1 is nowhere locally δ-convex follows the same
lines; the only difference is in the estimates following from Proposition 3.9.

Now we show that Ñ is strictly differentiable at 0. Choose ε > 0. Then
there exists n0 ∈ N, so that 1/n < ε for all n ≥ n0. Take δ > 0 such that

δ < min {Λi; i ≤ n0} (see definition of F̃n, condition 4). Then Ψ̃j(x) = 0 for

x ∈ R
j , ‖x‖ ≤ δ and j ≤ n0. Pick x, y ∈ BY (0, δ). Then

∥∥∥Ñ(x) − Ñ(y)− IdY (x − y)
∥∥∥

Y

=
∑

n>1

∥∥∥F̃n(xn)− F̃ (yn)− (xn − yn)
∥∥∥
1,Rn

=
∑

n>1

∥∥∥Ψ̃n(xn)− Ψ̃n(yn)
∥∥∥
1,Rn

=

n0∑

n=2

∥∥∥Ψ̃n(xn)− Ψ̃n(yn)
∥∥∥
1,Rn

+
∑

n>n0

∥∥∥Ψ̃n(xn)− Ψ̃n(yn)
∥∥∥
1,Rn

≤
∑

n>n0

1

n
‖xn − yn‖ ≤

∑

n>n0

1

n0
‖xn − yn‖

≤
1

n0
‖x− y‖Y ≤ ε ‖x− y‖Y .

Thus IdY is the strict derivative of Ñ at 0. The mapping IdY is obviously invert-
ible.

�

Remark 4. The case X = Y = ℓ2 remains open for Problems 1 and 2 from [7].
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