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On clopen sets in Cartesian products

Raushan Z. Buzyakova

Abstract. The results concern clopen sets in products of topological spaces. It is shown
that a clopen subset of the product of two separable metrizable (or locally compact)
spaces is not always a union of clopen boxes. It is also proved that any clopen subset
of the product of two spaces, one of which is compact, can always be represented as a
union of clopen boxes.
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In notation and terminology we will follow [ENG]. In particular, a set A is
clopen in a space X if it is closed and open in X . A clopen box in a space X ×Y
is a clopen subset of the form U × V , where U and V are clopen subsets of X
and Y , respectively. It is known that a subset of the Cartesian product of two
spaces is open if and only if it can be represented as a union of open boxes. When
the same is true for clopen subsets?

§1. Example 1

The following question was first formulated by Alexander Shostak at the begin-
ning of 90’s. He posed it in his talk at a seminar on General Topology at Moscow
University. Independently, Andrej Bauer asked the same question, motivated by
some problems in Computer Science on which he was working on.

Question 1 (A. Bauer and A. Shostak). Is it always true that any clopen subset
of the Cartesian product of two spaces can be represented as a union of clopen

boxes?

Bauer also noticed the following interpretation of Question 1.
For a topological space X let z(X) be its zero-dimensional reflection, i. e., the

same underlying set X but with topology generated by the collection of all clopen
subsets of X . Does zero-dimensional reflection commute with product operation?
Motivation of Shostak for the question was purely topological. He considered

the following property P of a space X : every covering of X by clopen subsets

contains a finite subcovering. Shostak wanted to know if this property is preserved
by finite products. Clearly, if the answer to Question 1 were affirmative then the
answer to the question about productivity would be positive as well. Later, several
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counterexamples to the latter question were found (see [STE], [SHO], and [SaS]).
That provides counterexamples to Question 1. However, the spaces involved in
those counterexamples are of large cardinality, non-metrizable, and non-locally
compact. So, it would be interesting to restrict Question 1 to separable metrizable
spaces or to spaces with strong compactness-type properties.

Question 2 (A. Bauer and A. Shostak). Is it always true that any clopen subset
of the Cartesian product of two separable metrizable spaces can be represented

as a union of clopen boxes?

Example 1. There exist two spaces, X (a locally compact subspace of R
2 )

and Z (a countable Gδ-subspace of R), whose product contains a clopen set that
cannot be represented as a union of clopen boxes.

Construction of X.

Let X1 be a subset of R
2 consisting of the ray {(x, y) ∈ R

2 : y = 0, x ≥ 1}.
For any n ∈ N, take the sequence Sn = {(n, 1/k) : k ∈ N \ {1}} that converges to
(n, 0). Put X = X1 ∪ (

⋃
{Sn : n ∈ N}). The topology in X is inherited from R

2.

For further reference, let Ok
n be a fixed neighborhood of (n, 0) of radius 1/k.

Construction of Z.

Let Z = {0} ∪ {Kn : n ∈ N \ {1}}, where Kn = {an
k : a

n
k = 1/n+ (1/(n − 1)−

1/n)/2k, k ∈ N}. That is, Kn is a sequence of numbers converging to 1/n and
lying in between 1/n and 1/(n−1). So, Z is a countable metrizable non-compact
space with only one non-isolated point 0.

The space X × Z is the space we are looking for.

Indeed, X × Z contains a clopen set A that cannot be represented as a union of
clopen boxes.

Construction of A.

Let A1 be the union of all copies of the connected part X1 of X in X × Z.
That is,

A1 = X1 × Z.

A1 is closed in X × Z but not open since points of the form (n, 0, z) are on
the boundary. Let us first supply points (n, 0, 0) with their neighborhoods. Let
U(n, 0, 0) = O1n × (Z \

⋃
{Kl : l < n}). So, the sets U(n, 0, 0)’s form together a

staircase.

Let A2 = A1 ∪ (
⋃
{U(n, 0, 0) : n ∈ N}). The set A2 is still not clopen since

points (n, 0, z), where z ∈ Kl for l < n, are on the boundary. Let us supply these
points with neighborhoods.
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Consider Kl = {al
k : k ∈ N} (see the definition of Z). For each al

k ∈ Kl, let

U(n, 0, al
k) = Ok

n × {al
k}. That is, U(n, 0, al

k) is the neighborhood of (n, 0) of

radius 1/k on level X × {al
k}.

Put

A = A2 ∪ (
⋃

{U(n, 0, al
k) : n, l, k ∈ N}).

A is the set we need.

The set A is open for the following reasons:

1. Every point of form (x, y, z), where x is not a natural number, is in A with an
open neighborhood since (X1 \ {(n, 0) : n ∈ N})×Z is open, is a subset of A, and
contains all points of this form. (That is, the ray X1 is in A on each level).

2. All other points in A are either in U(n, 0, 0) or in U(n, 0, al
k).

The set A is closed for the following reasons:

1. The closure of A is the union of the closures of the traces of A on each level
X × {z}, where z is in Z, since X × {0} is the only non-isolated level in our
product and it is entirely in A.

2. On each discrete level X × {al
k}, where al

k is in Kl (constructed for Z), the
complement of A is a collection of isolated points, and therefore, open. So, the
trace of A on each level is closed.

Thus, A is clopen. Now, let us prove that A cannot be represented as a union
of clopen sets of the form U × V . Indeed, any clopen neighborhood of the point
(1, 0, 0) of the form U × V in X × Z must contain the entire ray X1 on 0’s level
(that is, set X1 × {0}) because of connectedness. And therefore, any clopen box
of (1, 0, 0) in X × Z must contain a set of the form

⋃
{Ok

n : O
k
n is one of fixed neighborhoods of (n, 0), n ∈ N}×

×(Z \
⋃

{Kl : l < m, for some fixed m ∈ N}),

that is, a set obtained by multiplying the union of neighborhoods of (n, 0)’s by
the space Z without a finite number of Kl’s.

(This is shown by an obvious connectedness argument).

But this is impossible, since for each n, Ok
n × (Z \

⋃
{Kl : l < m}), where m is

fixed, is contained in A only when n ≤ m.

Note. There is nothing special about (1, 0, 0). You can take any point that lies in
the connected part of X × {0}.
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§2. Arhangel’skii’s observations

Example 1 gives us a negative answer to Question 2. However, it would be
interesting to find some conditions under which a clopen set in a product is always
a union of clopen boxes. Arhangel’skii noticed that the following theorem holds.

Theorem 1. Let X and Y be topological spaces and let X be compact. Then
any clopen subset of X × Y can be represented as a union of clopen boxes.

This fact is a direct consequence of Theorem 2 proved below.

The next statement is well known and easy to prove (see Lemma 3.1.15 in
[ENG]):

Lemma 1. Suppose F is a compact subspace of a space Y , x is a point of a space
X , and W is an open subset of the product space X ×Y such that {x}×F ⊂ W .
Then there exists an open subset V in X such that x ∈ V and V × F ⊂ W .

Now we apply Lemma 1 to prove the next statement:

Lemma 2. Suppose F is a compact subspace of a space Y , X a space, and W
an open and closed subset of the product space X × Y . Then the set UF = {x ∈
X : {x} × F ⊂ W} is an open and closed subset of X .

Proof: Indeed, it is immediate from Lemma 1 that UF is open in X . Now take
any x ∈ UF . By the definition of UF , we have UF × F ⊂ W . Therefore,

{x} × F ⊂ UF × F ⊂ UF × F ⊂ W =W,

which implies that x ∈ UF . Hence, the set UF is closed. �

Theorem 2. Suppose Y is a compact space, X is a space, W an open and closed

subset of the product space X × Y , and (a, b) a point in W . Then there exist an
open and closed subset U in X and an open and closed subset V in Y such that
(a, b) ∈ U × V ⊂ W .

Proof: Put F = {y ∈ Y : (a, y) ∈ W}. Since W is closed, the set F is
closed in Y and therefore, compact. Besides, F is open, since W is open. We
also have b ∈ F and {b} × F ⊂ W . From Lemma 2 it follows that the set
UF = {x ∈ X : {x}×F ⊂ W} is an open and closed subset of X . Clearly, a ∈ UF

and (a, b) ∈ UF × F ⊂ W . Thus, U = UF and V = F are the sets we are looking
for. �

Remark. Theorem 2 obviously generalizes to the case when Y is any space sa-
tisfying the following condition:

(lc) For each y ∈ Y there exists an open and closed subset V of Y such that
the subspace V is compact.
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§3. Example 2

Since in Example 1 X is locally compact, compactness of X is important in
Theorem 1. However, a natural question arises.

Question 3 (M. Reed). Let X and Y be locally compact Hausdorff spaces. Is
it true that any clopen subset of X × Y can be represented as a union of clopen
boxes?

Example 2. There exist two locally compact Hausdorff spaces X and Y whose
product contains a clopen subset that cannot be represented as a union of clopen

boxes.

Let X and Z be spaces from Example 1.

Let Y1 =
⋃
{Nn : Nn is a copy of N, n ∈ N} with discrete topology. Consider

Y2 = βY1 \ [
⋃
{βNn \ Nn : n ∈ N}]βY1 . That is, Y2 is obtained from βY1 by

removing the closure of the union of the remainders of Nn’s.
The space Y2 is locally compact (since it is obtained from a compactum by

removing a closed subset) and satisfies the following property.

(0) Any clopen neighborhood of closed set Y2 \Y1 contains almost all Nn’s except

maybe finite number of them. (Proof: any sequence of elements {an ∈ Nn : n ∈ N}
and the set

⋃
{βNn \ Nn : n ∈ N} are disjoint closed subsets of σ-compact space⋃

{βNn : n ∈ N}. Therefore, their closures in Stone-Čech compactification (which
is βY1) do not intersect. So the remainder of any sequence {an ∈ Nn : n ∈ N}
lies entirely in Y2 \ Y1.)

The space Y2 is almost what we need, but we want Y2 \ Y1 to live in a connected
component. To achieve this, let us again consider βY1, take the cone over βY1 \⋃
{βNn : n ∈ N}, and denote the resulting space by Y3. Now, the space

Y = Y3 \ [
⋃

{βNn \ Nn : n ∈ N}]βY1

is the space we need. The space Y has the following properties:

(1) Y consists of closed discrete sets Nn’s and a connected component Y \Y1 (by
construction);

(2) Y is locally compact (since obtained from a compactum by removing a closed
subset);

(3) any neighborhood of Y \ Y1 contains almost all Nn’s except maybe finite

number of them (see property (0)).

Let Y ∗ be a quotient space of Y under a partition whose only non-trivial element
is the connected component Y \ Y1. And let p : Y → Y ∗ be a quotient map. The
map p and space Y ∗ have the following properties.
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(4) Y ∗ is homeomorphic to Z (Z is the space in Example 1). This follows from
properties (1), (3), and from construction of Z.

(5) For any clopen subset U of Y , p(U) is clopen in Y ∗. (It follows from the
definition of p and the fact that any clopen set that intersect Y \Y1 must contain
Y \ Y1 (due to connectedness)).

Now, X and Y are both locally compact. Let us prove that X × Y contains a
clopen set that cannot be represented as a union of clopen boxes. Let f = i × p :
X × Y → X × Z be the product of the identity map i : X → X and the quotient
map p : Y → Z (see property (5)). The map f satisfies the following property.

(6) Image of any clopen box in X ×Y under f is a clopen box in X ×Z (follows
from the definition of product maps, property (5), and the fact that i is identity).

Let A be a clopen subset of X×Z that cannot be represented as a union of clopen
boxes (we constructed such a set in Example 2). Consider f−1(A) in X × Y . By
continuity of f , f−1(A) is clopen in X × Y and, by property (6), f−1(A) cannot
be represented as a union of clopen boxes.

The space Y in our example is not metrizable. Can we make it metrizable?
The following theorem shows that it is impossible.

Theorem 3 (Kenneth Kunen). Suppose X and Y are both locally compact
Hausdorff and paracompact. Then any clopen subset of X × Y is a union of
clopen boxes.

References

[ARH] Arhangel’skii A., private communications, 1999.
[BAU] Bauer A., private communications, 2000.
[ENG] Engelking R., General Topology, Sigma Series in Pure Mathematics 6, Heldermann,

Berlin, revised ed., 1989.
[KUN] Kunen K., private communications, 2000.
[STE] Stephenson R.M., Product space and the Stone-Weierstrass theorem, General Topology

Appl. 3 (1973), 77–79.
[SHO] Shostak A., On a class of spaces containing all bicompacts and all connected spaces,

in General Topology and its Relations to Modern Analysis and Algebra, Proceeding of
the Forth Prague Topological Symposium, Vol. B, 1976.

[SaS] Steprans J., Shostak A., Restricted compactness properties and their preservation under
products, Topology Appl. 11 (2000), 213–229.

Department of Mathematics, College of Arts & Sciences, Morton Hall 321,

Athens, Ohio 45701-2979, USA

E-mail : rbuzyako@bing.math.ohiou.edu

(Received June 5, 2000)


		webmaster@dml.cz
	2012-04-30T20:23:10+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




