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On remote points, non-normality and π-weight ω1

Sergei Logunov

Abstract. We show, in particular, that every remote point of X is a nonnormality point
of βX if X is a locally compact Lindelöf separable space without isolated points and
πw(X) ≤ ω1.
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1. Introduction

We investigate some types of points in remainders X∗ = βX \X of Čech-Stone
compactifications.
A point p ∈ X∗ is called a remote point of X if it is not in the closure of any

nowhere dense subset of X . This kind of points became popular after the papers
[3], [4] of van Douwen had been published. The existence of remote points in
the remainders of ccc nonpseudocompact spaces with π-weight ω1 was proved by
Dow [2]. An inspection of the relevant results in the literature reveals that the
remote points constructed so far satisfy our condition (∗) below. This leads us to
the notion of a strong remote point. It is unknown to the author whether there
is an example of a remote point, which is not a strong remote point.
If removing a point p from a compact Hausdorff space results in obtaining a

nonnormal subspace, then p is called a nonnormality point of the space. There
are several simple proofs that, under CH, any point of ω∗ is a nonnormality point
of ω∗ ([8], [9]). “Naively”, it is known only for special points of ω∗. If p is an
accumulation point of some countable discrete subset of ω∗, or if p is a strong R-
point , or if p is a Kunen’s point, then p is a nonnormality point of ω∗ (Blaszczyk
and Szymanski [1], Gryzlov [5], van Douwen, respectively). If X is a normal
second countable space without isolated points, which is either locally compact
or zero-dimensional, then every point of its remainder is a nonnormality point of
βX ([6], [7]).
In some cases the fact that p ∈ X∗ is a strong remote point of X permits to

show that p is a b-point of βX , i.e. that there are sets F and G ⊂ X∗ \ {p} which
are closed in βX \ {p}, disjoint and have p as a limit point [7], [10] (see below). It
easily implies that p is a nonnormality point of βX , i.e. βX \ {p} is not normal.
In our paper, the following results are obtained.
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Theorem 1.1. Let X be a locally compact Lindelöf separable space without

isolated points and πw(X) ≤ ω1. Then every remote point p ∈ X∗ of X is a
b-point (and, consequently, a nonnormality point) of βX .

Theorem 1.2. Let X =
⋃

i∈ω Xi be a normal separable space without isolated
points and πw(X) ≤ ω1. Then every strong remote point p ∈ X∗ of X is a

b-point (and, consequently, a nonnormality point) of βX .

2. Proofs

We will present a proof of Theorem 1.2 below, assuming its conditions hold. By
Claims 1 and 2 it is clear that Theorem 1.1 is an easy corollary to Theorem 1.2.
The set of all functions from ω to ω is denoted by ωω. For a set U ⊂ X let

U ǫ = βX \ ClβX(X \ U) if U is open and U∗ = ClβXU \ X if U is closed. A set
U ⊂ X∗ is called τ -bounded for a cardinal τ iff for any F ⊂ U , |F | < τ implies
ClβXF ⊂ U . A π-base U for X is a set of nonempty open subsets of X with
the property that each nonempty open subset of X contains a member of U . The
π-weight of X , πw(X), is the minimum cardinality of a π-base for X .

Let 2X be set of all subsets of X . A subset π of 2X is called strong cellular if
the closures of its members in X form a pairwise disjoint family. One refines a
subset σ of 2X , π > σ, if U ∩ V 6= ∅ implies U ⊂ V for any U ∈ π and V ∈ σ. If,
in addition, {U ∈ π : U ⊂ V } is finite for every V ∈ σ, then π finitally refines σ,
π >fin σ. And, finally, π ∗-refines σ, π >∗ σ, iff there is a finite subset δ ⊂ π
such that π \ δ refines σ.

If π0, . . . , πn are nonempty subsets of 2
X , then the collection

n∏

k=0

πk = {
n⋂

k=0

Uk : Uk ∈ πk and

n⋂

k=0

Uk 6= ∅}

is said to be their product .
From now on X =

⋃
i∈ω Xi is a free topological sum and π0 = {Xi : i ∈ ω}.

Definition 2.1. A point p ∈ X∗ is called a strong remote point of X iff p is a
remote point of X and

(∗) for any family of open sets W ⊂ 2X the following holds: if W > π0 and
p ∈

⋃
Wǫ, then there is a subfamily W ′ ⊂ W such that W ′ >fin π0 and

p ∈ (
⋃

W ′)ǫ.

From now on a strong remote point p ∈ X∗ is fixed. It is easy to see that
p /∈ ClβXXi for each i ∈ ω and that (∗) is trivial if every Xi is compact.

A discrete in X countable family of nonempty open sets π ⊂ 2X is called a
p-chain if π >fin π0 and p ∈

⋃
πǫ. Thus π0 is a p-chain. Next we put

[π] =
⋂

{ClβX

⋃
σ : σ ⊂ π is a p-chain}
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for any p-chain π and S = {s ∈ [π0] : s is a strong remote point of X}. We fix
Y =

⋃
i∈ω Yi, where Yi = {yij : j ∈ ω} is a countable everywhere dense subset of

Xi, and put

T = {t ∈ [π0] : t ∈ ClβXD for some D ⊂ Y, for which every D ∩ Yi is finite }.

From now on
ξ(p) = {A ⊂ ω : p ∈ (

⋃

i∈A

Xi)
ǫ}

is an ultrafilter on ω. For any f, g ∈ ωω, f <p g iff {i ∈ ω : f(i) < g(i)} ∈ ξ(p). It
is a folklore and easy to see that there are so called ξ(p)-dominant families {fα :
α < τ} ⊂ ωω having the following properties: fα <p fβ whenever α < β < τ and
for any g ∈ ωω, g <p fα for some α < τ . We fix one of them F = {fα : α < λ(p)}
of the smallest cardinality λ(p). Then, obviously, λ(p) ≥ ω1. For any G ⊂ ωω,
|G| < λ(p) implies g <p f for each g ∈ G and for some f ∈ ωω.
Now for every i ∈ ω we fix a π-base Ui = {Uiα : α ∈ ω1} for Xi. For any

β ∈ ω1, for {Uiα : α < β} ⊂ Ui we fix a cellular refinement {Vij(β) : j ∈ ω} with
the following properties:

1) every Vij(β) is a maximal strong cellular family of nonempty open subsets
of Xi;

2) Vij+1(β) > Vij(β) for each j ∈ ω;
3) for every α < β, Vij(i,α,β)(β) > {Uiα} for some j(i, α, β) ∈ ω.

We put, also, Vg(β) =
⋃

i∈ω Vig(i)(β) for each g ∈ ωω and fix a p-chain πg(β)

so that πg(β) ⊂ Vg(β).
Claims 1 through 4 are easy and sometimes well-known and are left as exercises

to the reader.

Claim 1. If p ∈ X∗ is a b-point of βX , then βX \ {p} is not normal.

Claim 2. Let p ∈ X∗, where X is a locally compact Lindelöf space. Then there
exists a family {Xn : n ∈ ω} of compact regularly closed subsets of X such that
{Xn : n ∈ ω} is a discrete in X family and p ∈ ClβX

⋃
{Xn : n ∈ ω}.

Claim 3. For any p-chains π and σ, if π >∗ σ, then [π] ⊂ [σ].

Claim 4. For any finite family of p-chains {πi}
n
i=0,

∏n
i=0 πi is a p-chain refining

every πi.

Claim 5. For any countable family of p-chains {πi : i ∈ ω} there is a p-chain π
*-refining every πi.

Proof: Let σ =
⋃

n∈ω σ(n), where

σ(n) =
n∏

i=0

{U ⊂ Xn : either U ∈ πi or U = Xn \ Cl
⋃

πi}.
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Then Cl
⋃

σ = X . So ClβXOp ⊂
⋃

σǫ for some neighborhood Op ⊂ βX . Any
p-chain π such that π ⊂ {Op ∩ U : U ∈ σ meets Op} is as required. �

Claim 6. T is λ(p)-bounded.

Proof: Let F ⊂ T and |F | < λ(p). For every x ∈ F , x ∈ ClβX

⋃
i∈ω{yij ∈ Y :

j ≤ fx(i)} for some fx ∈ ωω. For some f ∈ ωω, fx <p f for each x ∈ F . But
then

ClβXF ⊂ ClβX

⋃

i∈ω

{yij ∈ Y : j ≤ f(i)} ∩ [π0] ⊂ T.

�

Claim 7. S is λ(p)-bounded.

Proof: Let q ∈ [π0] \ S. Then there is a maximal strong cellular family of open
setsW = {Vij ⊂ Xi : i, j ∈ ω} such that q /∈ ClβX

⋃
σ for any σ ⊂ W , σ >fin π0.

Let F ⊂ S and |F | < λ(p). Then for every x ∈ F , x ∈ (
⋃

i∈ω

⋃
j≤fx(i) Vij)

ǫ for

some fx ∈ ωω. For some f ∈ ωω, fx <p f for each x ∈ F . But then

ClβXF ⊂ ClβX

⋃

i∈ω

⋃

j≤f(i)

Vij ⊂ βX \ {q}.

�

Claim 8. For any family of p-chains {πα}α<τ , if τ < λ(p) then
⋂

α<τ [πα]∩T 6= ∅.

Proof: For any finite ρ ⊂ τ we can fix a point t(ρ) ∈ T so that

t(ρ) ∈ [
∏

α∈ρ

πα] ⊆
⋂

α∈ρ

[πα].

But then the set ClβX{t(ρ) : ρ ⊂ τ is finite}, which is contained in T by Claim 6,
meets

⋂
α<τ [πα]. �

Claim 9. For any family of p-chains {πα}α<τ , if τ < λ(p), then p is not isolated
in

⋂
α<τ [πα].

Proof: Let
⋂

α<τ [πα]∩ClβXOp = {p} for some neighborhood Op ⊂ βX . Then
for a p-chain π = {Op ∩ Xi : i ∈ ω} we have

⋂
α<τ [πα] ∩ [π] ∩ T = ∅ in a

contradiction to Claim 8. �

Claim 10. Let
⋂

α<τ [πα] ∩ S = {p} for some family of p-chains {πα}α<τ of
cardinality τ < λ(p). Then p is a b-point of βX .

Proof: For any finite ρ ⊂ τ we can fix a point s(ρ) ∈ S \ {p} so that s(ρ) ∈
[
∏

α∈ρ πα] by [2]. But then the sets ClβX{s(ρ) : ρ ⊂ τ is finite} \ {p} and⋂
α<τ [πα] \ {p} are as required. �

Below we have only to examine the case when the hypotheses of Claim 10 are
wrong.
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Claim 11. For an arbitrary neighborhood Op ⊂ βX , [πfα
(β)] ⊂ Op for some

fα ∈ F and β ∈ ω1.

Proof: Let ClβXO′p ⊂ Op for a neighborhood O′p ⊂ βX . As p is a strong

remote point, p ∈ (
⋃⋃

i∈ω U
′

i )
ǫ ⊂ O′p for some finite U

′

i ⊂ Ui. For some β < ω1,

U
′

i ⊂ {Uiα : α < β} for each i ∈ ω. For every Uiα ∈ U
′

i we can choose j(i, α, β) ∈ ω
so that Vij(i,α,β)(β) > {Uiα} (see above). Let g ∈ ωω be defined for any i ∈ ω

as follows: g(i) = max {j(i, α, β) : Uiα ∈ U
′

i} if U
′

i 6= ∅ and g(i) = 1 otherwise.

Then Vg(β) >
⋃

i∈ω U
′

i by our construction. Let, finally, fα ∈ F be chosen so

that g <p fα. But then [πfα
(β)] ⊂ [πg(β)] ⊂ ClβX

⋃⋃
i∈ω U

′

i ⊂ Op. �

Claim 12. If |F| > ω1, then p is a b-point of βX .

Proof: For every fα ∈ F there are points tα ∈ T and sα ∈ S \ {p}, belonging
to Bfα

=
⋂

β<ω1
[πfα
(β)] by Claims 8 and 10. Then the sets F = ClβX{tα : α <

λ(p)} \ {p} and G = ClβX{sα : α < λ(p)} \ {p} are as required. Indeed, they
have p as a limit point by Claim 11. For every λ < γ < λ(p), fλ <p fγ clearly
implies [πfγ

(β)] ⊂ [πfλ
(β)] for each β < ω1, so Bfγ

⊂ Bfλ
. But then

F ∩ G \ Bfλ
⊂ ClβX{tα : α < λ} ∩ ClβX{sα : α < λ} ⊂ T ∩ S = ∅.

�

Claim 13. If |F| = ω1, then p is a b-point of βX .

Proof: Let {πfα
(β) : fα ∈ F , β ∈ ω1} be listing into the form {πγ : γ ∈ ω1}. By

Claim 5 we can construct p-chains σγ (γ < ω1) so that σγ >∗ πγ and σγ >∗ σλ

if λ < γ < ω1. We can fix points tγ ∈ T and sγ ∈ S \ {p}, belonging to [σγ ], and
repeat the proof of Claim 12, using these points.
Our proof is complete. �
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