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Almost∗ realcompactness
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Abstract. We provide a new generalization of realcompactness based on ultrafilters of
cozero sets and contrast it with almost realcompactness.
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All the spaces mentioned in this paper are assumed to be Tychonoff. For
the definitions of zero-sets, cozero-sets, and ultrafilters, see [8]. We say that an
ultrafilter F is fixed if and only if ⋂ F̄ 6= ∅. The zero-set community of a set
B (or z-community of B) is the collection ZB = {Z : Z is a zero-set of X and
B ⊆ Z}. The z-community of a family B is the collection Z = ⋃

B∈B ZB . Since
the zero-sets of X are a basis for the closed sets in a Tychonoff space, note that⋂ZB = clXB when ZB is the z-community of B. Consequently

⋂Z = ⋂ F̄ ,
whenever Z is the z-community of F .
A space is said to be realcompact if every ultrafilter of zero-sets with the count-

able intersection property (cip) is fixed. A space is said to be almost realcompact
if every ultrafilter of open sets with the closed countable intersection property
(ccip) is fixed.
A result of Froĺık [6, 1] states that a topological space X is almost realcompact

if and only if the collection of countable open covers of X is complete. Moreover it
can be inferred from Froĺık’s work (cf. [7]) that X is realcompact if and only if the
collection of countable cozero covers of X is complete. The fact that cozero-sets
produce a stronger result in this particular context leads one to wonder whether
they might also strengthen the original definition of almost realcompact. We shall
see that this is not the case.

Definition 1. A space X is said to be almost∗ realcompact if whenever F is an
ultrafilter of cozero-sets such that F̄ has the countable intersection property, then⋂ F̄ 6= ∅.
We call a topological property P a weak realcompactness condition if every

realcompact space has P and if every pseudocompact space with P is compact.
We shall see that almost∗ realcompact is a weak realcompactness condition. We
shall also see that the almost∗ realcompact property neither implies nor is implied
by almost realcompactness.
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Lemma 2 ([13, 12]). X is realcompact if and only if every ultrafilter of cozero
subsets of X whose z-community has the countable intersection property is fixed.

Proposition 3. If X is realcompact, then X is almost∗ realcompact.

Proof: Let F be a cozero ultrafilter on X with ⋂ F̄ = ∅. Then since X is
realcompact, the z-community Z of F does not have the countable intersection
property. Now if F̄ had the countable intersection property, then since clXF ⊆ Z
for every F ∈ F and for every Z ∈ ZF , Z would have the countable intersection
property as well. Thus F̄ does not have the countable intersection property and
so X is almost∗ realcompact. �

The converse is false; the following lemma will assist us with the counterexam-
ple.

Lemma 4. Let U be an open (resp. cozero-set) ultrafilter on X with ccip, and
let U ∈ U . If clXU is almost (resp. almost∗) realcompact, then

⋂U 6= ∅.
Proof: We give the “cozero-set” version. The “open” version is similar.
Let U be a cozero-set ultrafilter with ccip and let U be a cozero-set of X with

U ∈ U . Assume also that clXU is almost∗ realcompact. We will show
(∗) If H ∈ U ↾ clXU , then H ∩ U ∈ U .
LetH ∈ U ↾ clXU and note thatH∩U 6= ∅. Further note thatH∩U is a cozero-

set of U , hence of X . Now if P ∈ U , then P ∩ U ∈ U and so P ∩ U ∈ U ↾ clXU .
Thus H ∩ U ∩ P 6= ∅. We conclude that H ∩ U ∈ U .
We show next that U ↾ clXU is a cozero-set ultrafilter base on clXU . Let W

be a cozero-set of clXU and assume that W ∩ G 6= ∅ for all G ∈ U ↾ clXU . In
particular, W ∩ U 6= ∅ and is a cozero-set of X . Let G ∈ U . Then G ∩ U ∈ U
and so G ∩ U ∈ U ↾ clXU which implies that W ∩ U ∩ G 6= ∅. We conclude that
W ∩ U ∈ U and so W ∩ U ∈ U ↾ clXU . Since W ∩ U ⊂W our claim is proved.
Let P be a cozero-set ultrafilter on clXU with U ↾ clXU ⊆ P . We claim that

P has ccip. Let {Vn : n ∈ ω} ⊂ P . Each Vn ⊃ Hn where Hn ∈ U ↾ clXU .
By (∗) {Hn ∩ U : n ∈ ω} ⊂ U . Thus there is x ∈ ⋂

n∈ω clX(Hn ∩ U). Clearly
x ∈ ⋂

n∈ω clclXUVn.

Since clXU is almost
∗ realcompact, there is x ∈ ⋂P . We claim that x ∈ ⋂U .

Let P ∈ U . Then P ∩ U ∈ U and so P ∩ U ∈ U ↾ clXU ⊆ P and so x ∈
clX (P ∩ U) ⊂ clXP . This completes the proof. �

Example 5. The Mysior plane is almost∗ realcompact, but not realcompact.

In [11], Mysior provides an example of an almost realcompact space that is not
realcompact. He defines a topology on R

2 by first isolating the points not on the x-
axis. For every point (x, 0) on the x-axis, he defines a base of neighborhoods to be
the family {Un(x, 0) : n ∈ N} where each Un(x, 0) is the union of three segments:
{(x, y) : − 1n < y < 1

n}, {(x + 1 + y, y) : 0 < y < 1
n} and {(x +

√
2 + y,−y) :
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0 < y < 1
n}. Mysior demonstrates that the half-planes X+ = {(x, y) : y ≥ 0} and

X− = {(x, y) : y ≤ 0} are both closed in X and realcompact.
To see that the Mysior plane is almost∗ realcompact, let P be an ultrafilter

of cozero sets of X with the closed countable intersection property. Note that
the open half-planes U = {(x, y) : y > 0} and L = {(x, y) : y < 0} are both
cozero-sets in X whose union is dense in X . Therefore either U or L must be a
member of P . Without loss of generality, assume U ∈ P . But X+ = clXU is
realcompact and so P must be fixed by Lemma 4. Consequently X is almost∗
realcompact.
In a similar way it follows from Lemma 4 that the more well known Mrówka

example (see e.g. [15, 16.4]) — the example traditionally used to show that the
union of two realcompact spaces need not be realcompact — is also almost∗

realcompact.

We now wish to know the circumstances under which an almost∗ realcompact
space is realcompact. We take a cue from Dykes [3]. First recall that a space X
is a cb space if for every decreasing sequence of closed sets {Fn : n ∈ N} with⋂
n∈N Fn = ∅, there exists a decreasing sequence of zero-sets {Zn : n ∈ N} such
that Fn ⊆ Zn for every n, and

⋂
n∈N Zn = ∅. A space X is weak cb if for every

decreasing sequence {Fn} of non-empty regular closed subsets of X with empty
intersection, there is a sequence of zero-sets {Zn} of X with empty intersection
such that for each n, Fn ⊆ Zn.

Definition 6. A space X is almost weak cb if for every decreasing sequence
of cozero-sets {Pn : n ∈ N} with ⋂

n∈N clXPn = ∅, there exists a decreas-
ing sequence of zero-sets {Zn : n ∈ N} such that Pn ⊆ Zn for every n, and⋂
n∈N Zn = ∅.

Note 7. Clearly, if X is weak cb, then X is almost weak cb. Furthermore if X
is weak Oz, then X is almost weak cb. (Recall that a space is Oz if every regular
closed set is a zero set. If the closure of every cozero-set is a zero-set, we say the
space is weak Oz.)

Proposition 8. If X is almost∗ realcompact and almost weak cb, then X is
realcompact.

Proof: We proceed as did Dykes in [3, 1.2]. Let F be a free z-ultrafilter on X .
Let B = {P : P is cozero and there exists a Z ∈ F with Z ⊆ P}. Let G be a
cozero ultrafilter containing B. We show that ⋂ Ḡ = ∅. Indeed, let p ∈ X . Since
F is free, p ∈ X − Z for some Z ∈ F . X is completely regular, so there exists a
cozero set Q and a zero-set Ẑ such that p ∈ Q ⊆ Ẑ ⊆ X − Z. Thus Z ⊆ X − Ẑ
and so X − Ẑ ∈ G. But p /∈ clX(X − Ẑ). Therefore p /∈ ⋂ Ḡ.
Since X is almost∗ realcompact, Ḡ must not have the countable intersection

property. Thus there exists a collection {Pn : n ∈ N} ⊆ G with ⋂
n∈N clXPn = ∅.
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Let Qn =
⋂{Pi : i ≤ n}. Then {Qn : n ∈ N} is a decreasing sequence of cozero-

sets with
⋂
n∈N clXQn = ∅. Since X is almost weak cb, there exists a collection

of zero-sets {Zn : n ∈ N} with clXQn ⊆ Zn for each n and
⋂
n∈N Zn = ∅. We

need to show that each Zn meets every member of F . If not, then there exists a
set Z ∈ F with Z ∩ Zn = ∅ for some n. Then Z ⊆ X − Zn and so X − Zn ∈ G.
But Qn ∈ G (since G is a filter) and (X − Zn) ∩ Qn = ∅, contradicting the fact
that G is a filter. Thus Zn ∈ F for each n, and so F fails to have the countable
intersection property. Therefore X is realcompact. �

Since every pseudocompact space is known to be weak cb [12, 8.5d], Proposi-
tion 8 implies that every pseudocompact almost∗ realcompact space is compact.
As we shall soon see, almost∗ realcompact is a relatively strong generalization of
realcompactness. But it is not so strong as to entail almost realcompactness.

Example 9. An almost∗ realcompact space need not be almost realcompact.

Steve Watson notes that a “fringed plank” is almost∗ but not almost. We take
the Tychonoff Plank and add a convergent sequence {xj,n : n ∈ ω} to each point
(ω1, j) on the right edge. So now those points have their usual neighborhoods
plus enough tails of those sequences to make it a topology. All the added points
are isolated.
First observe that X is not almost realcompact. Indeed, note that the Ty-

chonoff Plank (which is not almost realcompact) is closed in X . Thus X cannot
be almost realcompact, because closed subspaces inherit almost realcompactness.
X is however almost∗ realcompact. Let P be an ultrafilter of cozero sets on X

with ccip. If we let P be all the added points, then P is a Lindelöf (in fact, σ-
compact) cozero-set, and so clXP is realcompact and hence almost

∗ realcompact.
So if P ∈ P , then by Lemma 4, P is fixed. On the other hand, if P /∈ P , then
there is Q ∈ P with Q ∩ P = ∅. But then Q cannot meet the right edge since if
(ω1, j) is in Q, then so is some tail of the convergent sequence. But then some
tail of each point in the right edge misses Q. So Q has to be contained in some
countable subset of the plank which again by the lemma makes the ultrafilter
converge.

It is not known at this time whether or not almost∗ realcompact is productive.
But the above example shows that almost∗ realcompactness is not preserved by
perfect maps. Let X be the fringed plank and Y the Tychonoff Plank. Let
f : X → Y be the identity map on Y ⊂ X while all the added points in each
sequence go to the point to which the sequence converges. This map is perfect,
X is almost∗ realcompact, while Y is not.
Nor is almost∗ realcompactness preserved inversely by perfect maps. We now

take the range space Y to be the fringed plank while the domain X consists of
the disjoint union of the Tychonoff Plank together with ω many copies of the
convergent sequence. The obvious map between them is perfect. But X is not
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almost∗ realcompact since the Tychonoff Plank is now a support of X . (See
Proposition 10.)

The same example also clearly demonstrates that almost∗ realcompactness is
not closed hereditary. There is, however, at least one class of subsets that does
inherit the property, the supports of X , that is, the closures of cozero-sets.

Proposition 10. Let X be almost∗ realcompact. Then the supports of X are
also almost∗ realcompact.

Proof: Let A = clXP where P is cozero inX , and let U be a cozero-set ultrafilter
on A with ccip.

First note that if V is any cozero ultrafilter on X with U ↾ P ⊆ V , then V has
ccip. Indeed, pick cozero Q ∈ V . Then since U ∩ P is cozero for every U ∈ U ,
Q∩U ∩P 6= ∅ for every U ∈ U . Thus Q∩U ∩P ∈ U ↾ P and since Q∩U ∩P ⊆ Q,
U ↾ P must be a base for V . Now pick some collection {Vn : n ∈ ω} ⊆ V . Since
U ↾ P is a base, there exist Hn ⊆ Vn for each n ∈ ω with Hn ∈ U ↾ P . But U has
ccip, so there is an x ∈ ⋂

n∈ωHn ⊆ ⋂
n∈ω Vn and so V has ccip as well.

It remains to note then that since X is almost∗ realcompact,
⋂ V̄ 6= ∅. Since⋂

V ∈V clXV ⊆ ⋂
U∈U clXU it follows that A = clXP must be almost

∗ realcom-
pact. �

Let CK(X) denote the collection of continuous functions on X with compact
support, and let Cψ(X) denote the collection of continuous functions on X with
pseudocompact support. In [10], Mandelker discusses a generalization of real-
compactness called ψ-compact: X is ψ-compact if and only if Cψ(X) = CK(X).
Since pseudocompact spaces are weak cb, and since supports inherit almost∗ re-
alcompactness, the next proposition is an immediate corollary:

Proposition 11. Every almost∗ realcompact space is ψ-compact.

Recall that a space X if c-realcompact iff for every p ∈ βX −X there exists a
normal lower semi-continuous (nlsc) function f on βX such that f(p) = 0 and f
is positive on X . It is known that almost realcompact spaces are c-realcompact
[4, 3.3]. A nearly identical proof establishes that the same is true for almost∗

realcompact spaces.

Proposition 12. Every almost∗ realcompact space is c-realcompact.

Proof: Pick p ∈ βX − X and let P be an ultrafilter of cozero-sets on βX
such that

⋂ P̄ = {p}. Then P ↾ X is a cozero ultrafilter on X with
⋂
clXP =

∅. By hypothesis there is a decreasing sequence {Pi : i ∈ N} ⊂ P such that⋂
i∈N clX(Pi ∩X) = ∅. Define fi(x) = 0 if x ∈ clXPi and fi(x) = 1 otherwise,
with 0 ≤ f ⊂≤ 1 for all i ∈ N. Now let f = ∑

i∈N
fi

2i
. Then f is nlsc, f(p) = 0

and f is positive on X . �
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We were able to recover realcompactness from an almost∗ realcompact space
by insisting that the space be almost weak cb. Is there a property we can add to
almost∗ realcompact to achieve almost realcompactness? Yes.

Definition 13. X is said to be almost weak Oz if whenever F is an ultrafilter
of open sets of X , then G = {P : P is cozero and P ∈ F} is an ultrafilter of
cozero-sets.

Proposition 14. If X is almost∗ realcompact and almost weak Oz, then X is
almost realcompact.

Proof: Let F be an ultrafilter of open sets of X with ⋂ F̄ = ∅, and let G be
the ultrafilter of cozero sets guaranteed by the space being almost weak Oz. Note⋂ Ḡ = ∅. To see this, pick p ∈ X . Then p ∈ X − clXF for some F ∈ F . By
complete regularity there is a cozero-set Q and a zero-set Z such that p ∈ Q ⊆
Z ⊆ X − clXF . Thus F ⊆ X − Z and so X − Z ∈ G. But p /∈ clX (X − Z), so
p /∈ ⋂ Ḡ.
Now sinceX is almost∗ realcompact, Ḡ does not have the countable intersection

property, so there is a collection {Pn : n ∈ N} ⊆ G such that ⋂
n∈N clXPn = ∅.

But each Pn ∈ F , so F̄ does not have the countable intersection property either.
Thus X is almost realcompact. �

Note 15. Just as it follows from Proposition 8 that the Mysior plane is an ex-
ample of a space that is not almost weak cb, it follows immediately from Propo-
sition 14 that the “fringed” plank is not almost weak Oz.

Proposition 16. If X is weak Oz, then X is almost weak Oz.

Proof: Suppose not. Then there is an ultrafilter F of open sets such that
G = {P ∈ F : P is a cozero-set } is not an ultrafilter of cozero-sets. Note G is a
filter, so G must be properly contained in some cozero ultrafilter, say H. Thus
there exists a cozero-set P ∈ H with P ∩ Q 6= ∅ for every Q ∈ G, but for which
P ∩ U = ∅ for some U ∈ F . But then clXP ∩ U = ∅ and since X is weak Oz,
clXP is a zero-set. Thus R = X− clXP is a cozero-set containing U . This means
that R ∈ F and, since R is cozero, R ∈ G and consequently H. But then P and
R are members of H which fail to intersect, a contradiction since H is a filter.

�

It is natural at this point to wonder whether almost weak Oz is a genuine
weakening of weak Oz. To see that it is, we will first need two lemmas.

Lemma 17. Let X be perfectly normal and locally compact. Then βX is almost
weak Oz.

Proof: We begin as in the proof of Proposition 16. Suppose not. Then there is an
ultrafilter U of open sets of βX such that G = {P ∈ U : P is a cozero-set of βX}
is not an ultrafilter of cozero-sets. Note G is a filter, so G must be properly
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contained in some cozero ultrafilter, say H. Thus there exists a cozero-set P ∈ H
with P ∩Q 6= ∅ for every Q ∈ G, but for which P ∩U = ∅ for some U ∈ U . Since
P /∈ U , and U is an open ultrafilter, βX − clβXP ∈ U .
Now X is locally compact, so X is open in βX [12, 4.3e]. Therefore U ∩X is

an open ultrafilter on X , and, since every open set is a cozero-set in a perfectly
normal space [5, 1.5.19], a cozero ultrafilter as well. Note that X − clβXP is a
cozero subset of X and that X − clβXP ∈ U ∩X . Since X is z-embedded in βX ,
there exists a cozero-set R of βX which extends X − clβXP . But now R meets
every element of U , and so must belong to U , and consequently G and H as well.
But R ⊆ βX − clβXP , and therefore R is disjoint from P , contradicting the fact
that H is a filter. �

Lemma 18. Let X be σ-compact, locally compact, and perfectly normal. Then
βX is Oz if and only if βX is weak Oz.

Proof: Necessity is clear. For sufficiency, let P be an open subset of βX . Now
X is σ-compact, and therefore an Fσ-set of βX . Moreover, since X is locally
compact, it is open in βX . Its complement, then, is a closed Gδ-set of βX and
consequently a zero-set of βX [8, 3.11(b)]. X is therefore a cozero-set of βX .
Now X is perfectly normal, so P ∩X is open in X and hence a cozero-set of X .
But X is a cozero-set of βX , so P ∩X must be a cozero-set of βX as well. By
hypothesis then, clβX (P ∩ X) is a zero-set of βX . Our conclusion now follows
immediately from the fact that clβX(P ∩X) = clβXP . �

Note 19. An almost weak Oz space need not be weak Oz. R is perfectly normal
and locally compact, and so by Lemma 17, βR must be almost weak Oz. On the
other hand, βR is not Oz [1,3], and so fails to be weak Oz by Lemma 18.

We have already ruled out the possibility that an almost∗ realcompact space
need be almost realcompact. The converse too is false.

Example 20. The Dieudonné Plank D [12, 6V] is almost realcompact but not
almost∗ realcompact.

Recall that D = (ω1+1)×(ω+1)−{(ω1+1, ω+1)}, with all the points not on
the top or right edges isolated. The points on the right edge have neighborhoods
containing tails. The points on the top edge have basic neighborhoods that also
contain tails (not “rectangles”). Let Pn,α be a northeast corner of the plank
bounded on the south by n and on the west by α. Let P be the cozero ultrafilter
containing all the Pn,α. Then P has empty intersection, but also ccip: any
countable collection of cozero-sets that meets the Pn,α’s will have to have a point
on the top edge in the intersection of the closures.

There are however at least two properties which we may add to almost realcom-
pact to capture almost∗ realcompact. The first is a strengthening of countably
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paracompact. Recall that we may characterize a space X as being countably para-
compact [5, 5.2.1] iff for every decreasing sequence of closed sets {Fn : n ∈ N}
with

⋂
n∈N Fn = ∅, there exists a decreasing sequence of open sets {Gn : n ∈ N}

with Fn ⊆ Gn for each n and
⋂
n∈N clXGn = ∅. Furthermore if X is normal we

can say that a space is countably paracompact iff for every decreasing sequence
of closed sets {Fn : n ∈ N} with ⋂

n∈N Fn = ∅, there exists a decreasing sequence
of open sets {Gn : n ∈ N} with Fn ⊆ Gn for each n and

⋂
n∈NGn = ∅.

Definition 21. X is said to be super countably paracompact if for every de-
creasing sequence of closed sets {Fn : n ∈ N} with ⋂

n∈N Fn = ∅, there exists a
decreasing sequence of cozero-sets {Pn : n ∈ N} with Fn ⊆ Pn for each n and⋂
n∈N clXPn = ∅.
Note 22. If X is super countably paracompact, then X is countably paracom-
pact. If X is normal and countably paracompact, then X is super countably
paracompact. If X is almost weak cb and super countably paracompact, then X
is a cb space.

Proposition 23. If X is almost realcompact and super countably paracompact,
then X is almost∗ realcompact.

Proof: We proceed once more with the usual technique. Let F be an ultrafilter
of cozero-sets with

⋂ F̄ = ∅. Let

B = {U : U is open and there exists an F ∈ F with F ⊆ U}.

Let G be an open ultrafilter containing B. We show that ⋂ Ḡ = ∅. Indeed, let
p ∈ X . Then p ∈ X − clXF for some F ∈ F . X is regular, so there exists an
open set U such that p ∈ U ⊆ clXU ⊆ X − clXF . Thus F ⊆ X − clXU and so
X − clXU ∈ G. But p /∈ clX(X − clXU), so p /∈

⋂ Ḡ.
Since X is almost realcompact, Ḡ does not have the countable intersection

property. That is, there exists a collection {Un : n ∈ N} ⊆ G with ⋂
n∈N clXUn =

∅. Let Gn =
⋂{Ui : i ≤ n}. Then {Gn : n ∈ N} ⊆ G is a decreasing sequence of

open sets with
⋂
n∈N clXGn = ∅. SinceX has Property Q, there exists a collection

of cozero-sets {Pn : n ∈ N} with clXGn ⊆ Pn for each n and
⋂
n∈N clXPn = ∅.

Now each Pn meets every member of F . If not, suppose there exists a set F ∈ F
with F ∩ Pn = ∅ for some n. Then F ⊆ X − clXPn and so X − clXPn ∈ G. But
then Gn∩(X−clXPn) = ∅, contradicting the fact that G is a filter. Thus Pn ∈ F
for each n, and so F̄ does not have the countable intersection property. Therefore
X is almost∗ realcompact. �

Another way to retrieve almost∗ realcompact from almost realcompact estab-
lishes equivalence between the two.

Definition 24. We say that X is rc=s if every regular closed set ofX is a support
of X .
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Note 25. If we note that regular open sets are cozero-sets in an Oz space, then
it is easy to see that a space is Oz if and only if it is weak Oz and rc=s. Likewise,
given that a clopen set is cozero and consequently a support, a space is extremally
disconnected if and only if it is basically disconnected and rc=s. (Recall that a
space is said to be extremally disconnected if every regular closed set is open and
basically disconnected if every support is open.)

Clearly, if every regular closed set is a support, then an almost realcompact
space will be almost∗ realcompact. That an almost∗ realcompact rc=s space is
almost realcompact is a consequence of the following:

Proposition 26. If X is rc=s, then X is almost weak Oz.

Proof: Let U be an ultrafilter of open sets and P be a cozero-set that meets
every cozero-set in U . Let V ∈ U . Now clXV = clXQ where Q is a cozero-set.
Since V ∈ U and V ⊆ intXclXV , intXclXV ∈ U . Now Q is dense in intXclXV
since they have the same closure, and so Q meets every member of U . Thus P
meets Q and consequently V , which implies that P ∈ U . The subcollection of
cozero-sets of U thus forms an ultrafilter. �

Note 27. The converse is not true. Since every basically disconnected space
is weak Oz, it suffices to produce a basically disconnected space that is not ex-
tremally disconnected (see Note 25). [8, 4N] is such a space.

Note 28. The properties rc=s and super countably paracompact are indepen-
dent. βN − N is compact and hence super countably paracompact, but it follows
from [9, 5.3(e) and 5.6] that βN−N is not rc=s. On the other hand, the existence
of an extremally disconnected Dowker space [2], demonstrates that rc=s does not
even imply countably paracompact.

In conclusion, we would like to discuss the relationship of almost∗ realcompact-
ness to the property which van der Slot has called ℵ1-ultracompactness. A space
X is said to be m-ultracompact relative to a closed subbase S iff each ultrafilter F
in X , for which F∩S satisfies the m-intersection property, is convergent. A space
X is then said to be m-ultracompact iff there is a closed subbase S for X such
that X is m-ultracompact relative to S. Froĺık has shown that for regular spaces,
ℵ1-ultracompactness is equivalent to almost realcompactness [7, 2.7]. It follows
immediately for the purposes of this paper that ℵ1-ultracompactness is a property
independent of almost∗ realcompactness.
This gives us the occasion to point to the existence of a remark in van der

Slot’s tract [14] which seems to be in error. On page 47, he prefaces a theorem by
saying, “The following theorem generalizes the result stating that a completely
regular space is realcompact iff for each maximal centered family D of cozerosets
for which D̄ has cip, the intersection ⋂ D̄ is non empty.” Van der Slot does not
provide a citation for this claim, so its precise origins are unclear. In any case,
our work indicates that the assertion is false.
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