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Isotype subgroups of mixed groups

Charles Megibben, William Ullery

Abstract. In this paper, we initiate the study of various classes of isotype subgroups of
global mixed groups. Our goal is to advance the theory of Σ-isotype subgroups to a
level comparable to its status in the simpler contexts of torsion-free and p-local mixed

groups. Given the history of those theories, one anticipates that definitive results are to
be found only when attention is restricted to global k-groups, the prototype being global
groups with decomposition bases. A large portion of this paper is devoted to showing
that primitive elements proliferate in Σ-isotype subgroups of such groups. This allows
us to establish the fundamental fact that finite rank Σ-isotype subgroups of k-groups
are themselves k-groups.

Keywords: global k-group, Σ-isotype subgroup, ∗-isotype subgroup, knice subgroup,
primitive element, ∗-valuated coproduct

Classification: 20K21, 20K27

1. Primitive elements, ∗-valuated coproducts and knice subgroups

This section is mainly expository. Here we establish notation and review facts
concerning primitive elements and knice subgroups that will be needed in the
sequel. Those readers familiar with [HM2] and [HM4] may wish to skip this
section and return only as necessary.
Let O∞ denote the class of ordinals with the symbol∞ adjoined as a maximal

element, with the convention that∞ < ∞. If P denotes the set of rational primes,
by a height matrix we mean a P × ω matrix M = [mp,i], where mp,i ∈ O∞ and
mp,i < mp,i+1 for all p ∈ P and i < ω. A height sequence α = {αi}i<ω is any
sequence in O∞ with αi < αi+1 for all i. Thus, the p-row Mp of a height matrixM
is a height sequence. Note that the set of positive integers acts multiplicatively on
the classes of height matrices and height sequences in the usual way; for example,
if |n|p = j is the height in Z of the positive integer n at the prime p, then the height
matrix nM has p-row {mp,i+j}i<ω. Furthermore, the ordering of O∞ induces in
a pointwise manner the lattice relations ≤ and ∧ on the classes of height matrices
and sequences.
If x is an element of an abelian group G, we write |x|p for the height of x at the

prime p. That is, |x|p = σ where σ is the smallest ordinal with x /∈ pσ+1G; if no
such σ exists, set |x|p =∞. With each x ∈ G we associate the height matrix ‖x‖

whose (p, i)-entry is |pix|p. Note that ‖nx‖ = n‖x‖ for each positive integer n.
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When necessary to avoid confusion, we at times affix superscripts to indicate the
group in which heights are computed. For example, if H is a subgroup of G,

‖x+H‖G/H denotes the height matrix of the coset x+H as computed in G/H .

If x ∈ H and p ∈ P, the meaning of the expressions |x|Hp , ‖x‖
H
p and ‖x‖

H should
be clear.
We now assume once and for all that G is an additively written (possibly mixed)

abelian group. For every height matrix M , we let G(M) denote the subgroup of
G consisting of all x with ‖x‖ ≥ M . Two height matricesM and N are said to be
quasi-equivalent , and we write M ∼ N , if there are positive integers k and l such
that kM ≥ N and lN ≥ M . It is important yet completely elementary to observe
that M ∼ N implies that Mp = Np for almost all primes p. If M is now any
height matrix not quasi-equivalent to∞, the height matrix with all entries∞, we
define

G(M∗) = 〈x ∈ G(M) : ‖x‖ ≁ M〉.

On the other hand, if M ∼ ∞ we let G(M∗) be the maximal torsion subgroup
of G(M). For every height sequence α = {αi}i<ω and p ∈ P, G(α∗, p) is the
subgroup generated by those x such that ‖x‖p ≥ α but |pix|p 6= αi for infinitely
many i < ω. Finally, we set

G(M∗, p) = G(M) ∩ [G(M∗) +G(M∗
p , p)].

Definition 1.1. Call an element x ∈ G primitive if for each height matrix M ,
prime p and positive integer n, nx ∈ G(M∗, p) implies that either ‖x‖ ≁ M or
|pinx|p 6= mp,i for infinitely many i < ω.

It is clear that a primitive element must have infinite order. Recall that a
direct sum A =

⊕

i∈I Ai of subgroups of G is a valuated coproduct if A∩G(M) =
⊕

i∈I(Ai ∩ G(M)) for all height matrices M . The following refinement of this
concept is necessary for our purposes.

Definition 1.2. A valuated coproduct A =
⊕

i∈I Ai in G is called ∗-valuated if
A ∩ F =

⊕

i∈I(Ai ∩ F ) for every subgroup F of the form G(M∗), G(α∗, p) or
G(M∗, p).

Knice subgroups were introduced in [HM2] and were used in [HM4] to give an
Axiom 3 characterization of global Warfield groups. For their definition, a version
of niceness more suited to the global setting is needed. Here and throughout the
remainder of this paper, a subgroup N of G is called a nice subgroup if for each
prime p and ordinal σ, the cokernel of the natural map

(pσG+N)/N  pσ(G/N)

contains no element of order p.
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Definition 1.3. A subgroupN ofG is a knice subgroup if the following conditions
are satisfied.

(a) N is a nice subgroup of G.
(b) To each finite subset S of G there corresponds a (possibly empty) set of
primitive elements {x1, x2, . . . , xn} such that

N ′ = N ⊕ 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xn〉

is a ∗-valuated coproduct for whichm〈S〉 ⊆ N ′ for some positive integerm.

We say that G is a (global) k-group if the trivial subgroup 0 is a knice subgroup.
Since nonzero multiples of primitive elements are primitive, it follows that if G is
a k-group and if x ∈ G has infinite order, then there exist a positive integer m
and primitive elements x1, x2, . . . , xn ∈ G such that

mx = x1 + x2 + · · ·+ xn

and

〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xn〉

is a ∗-valuated coproduct.
We conclude this section with three lemmas upon which much of our subsequent

work rests. Our first is a useful characterization of knice subgroups.

Lemma 1.4 ([HM4]). A subgroup N of the group G is a knice subgroup of G if
and only if the following conditions are satisfied.

(1) N is a nice subgroup of G.
(2) G/N is a k-group.
(3) To each g ∈ G there corresponds a positive integer m such that the coset

mg +N contains an element x with ‖x‖G = ‖mg +N‖G/N .

It will be convenient to have the following notation. If x, y ∈ G and if p
is a prime, we say ‖x‖p and ‖y‖p are quasi-equal , and write ‖x‖p ≈ ‖y‖p, if
‖pex‖p = ‖pey‖p for some nonnegative integer e. Note that ≈ is a transitive
relation in the sense that if ‖x‖p ≈ ‖y‖p and ‖y‖p ≈ ‖z‖p, then ‖x‖p ≈ ‖z‖p.

Lemma 1.5 ([HM2]). (1) Suppose A = 〈x〉 ⊕ B is a ∗-valuated coproduct in G
with x a primitive element. If y = x + z for some z ∈ B and if ‖y‖ = ‖x‖, then
y is primitive and A = 〈y〉 ⊕ B is a ∗-valuated coproduct.

(2) If x = x1 + x2 + · · · + xn where 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xn〉 is a ∗-valuated
coproduct, and if the xi’s are primitive elements with mutually quasi-equivalent

height matrices, then x is primitive if and only if, for each prime p, there is some
i ≤ n such that ‖x‖p ≈ ‖xi‖p.
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(3) If N ′ = 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xn〉 ⊕N is a ∗-valuated coproduct in G where
N is a knice subgroup of G and all the xi’s are primitive, then N ′ is a knice

subgroup of G.

Finally, a slight modification of the second half of the proof of Proposition 1.7
in [HM4] yields the following.

Lemma 1.6. Suppose that N is a knice subgroup of G and y ∈ G is such that

y + N is primitive in G/N . If ‖y‖G = ‖y + N‖G/N , then y is primitive and
〈y〉 ⊕ N is a ∗-valuated coproduct.

2. Σ-isotype and ∗-isotype subgroups

Recall that a subgroupH of a groupG is an isotype subgroup ifH∩pσG = pσH
for all primes p and ordinals σ; or equivalently, H ∩G(M) = H(M) for all height

matrices M . Note that H is isotype in G if and only if ‖h‖H = ‖h‖G for all
h ∈ H . We say that H is Σ-isotype in G if

H ∩
n

∑

i=1

G(Mi) =

n
∑

i=1

H(Mi)

for each finite collection of height matricesM1, M2, . . . , Mn. Σ-isotype subgroups
were introduced in the torsion-free setting by [HM3], and considered at length in
the local setting by [HMU].
In this section, we begin by establishing some basic properties of isotype and

Σ-isotype subgroups that culminate in Theorem 2.5 below. Our first lemma and
its corollary will prove to be very useful.

Lemma 2.1. Suppose H is an isotype subgroup of the group G and that h ∈ H
has finite order. If h ∈

∑n
i=1G(Mi) for some height matrices M1, M2, . . . , Mn,

then h ∈
∑n

i=1H(Mi). Therefore, every isotype torsion subgroup of G is Σ-
isotype.

Proof: Decompose the torsion subgroup of H into its primary components and
write h = h1 + h2 + · · ·+ hr, where each hi ∈ H has finite order pαi

i for distinct

primes p1, p2, . . . , pr. Set λj =
∏

i6=j pαi

i for j = 1, 2, . . . , r. Note that (λj , pj) = 1

and that λjh = λjhj . Thus, λjhj ∈
∑n

i=1G(λjMi).
To complete the proof, it is enough to show that hj ∈

∑n
i=1H(Mi) for each j.

So, temporarily fix j and, for convenience of notation, set p = pj . Since |q
khj |q =

∞ for all primes q 6= p and k < ω,

(∗) ‖hj‖q ≥ (Mi)q for all primes q 6= p and i = 1, 2, . . . , n.

For each i, letmi denote the leading term of the height sequence (λjMi)p = (Mi)p
and select l so that

ml = min{m1, m2, . . . , mn}.
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Then, by the triangle inequality, |λjhj |p = |hj |p ≥ ml. If the order of hj is p, this
last inequality and (∗) imply that ‖hj‖ ≥ Ml. In this case,

hj ∈ H ∩ G(Ml) = H(Ml) ⊆
n

∑

i=1

H(Mi).

Proceeding by induction on the order of hj , we may assume that

phj = x1 + x2 + · · ·+ xn

where xi ∈ H(pMi) for i = 1, 2, . . . , n. But H is isotype in G, so there exist
elements h′1, h

′
2, . . . , h

′
n such that h′i ∈ H(Mi) and ph′i = xi for all i. Clearly then

z = hj − (h
′
1 + h′2 + · · ·+ h′n) ∈ H

has order p and |z|p ≥ ml. From what we have just shown above, z ∈ H(Ml). If
we now set h′′l = z + h′l and h′′i = h′i for i 6= l, then h′′i ∈ H(Mi) for all i and

hj = h′′1 + h′′2 + · · ·+ h′′n ∈
n

∑

i=1

H(Mi).

As remarked above, this completes the proof. �

Corollary 2.2. Let H be an isotype subgroup of G. If h ∈ H ∩
∑n

i=1G(Mi)
for some height matrices M1, M2, . . . , Mn and if mh ∈

∑n
i=1H(mMi) for some

positive integer m, then h ∈
∑n

i=1H(Mi).

Proof: By hypothesis,

mh = h1 + h2 + · · ·+ hn

where hi ∈ H(mMi) for i = 1, 2, . . . , n. Since H is isotype in G, it follows that
hi = mh′i for some h′i ∈ H(Mi). Then,

h′ = h − (h′1 + h′2 + · · ·+ h′n) ∈ H

is an element of finite order in
∑n

i=1G(Mi). By Lemma 2.1, h
′ ∈

∑n
i=1H(Mi).

Therefore, h = h′ + (h′1 + h′2 + · · ·+ h′n) ∈
∑n

i=1H(Mi). �

Lemma 2.3. Suppose N is a nice subgroup of G and that a + N ∈ pσ(G/N)
for some prime p and ordinal σ. If a + N has finite order pn in G/N for some
n < ω, then a+N ∈ pσG+N/N .

Proof: We induct on n. The result is clear if n = 0, so assume that n ≥ 1. Then,
pa + N ∈ pσ+1(G/N) has order pn−1. By induction, pa + N ∈ pσ+1G + N/N .
Thus, pa + N = pg + N for some g ∈ pσG. Then, (a − g) + N ∈ pσ(G/N) and
p(a − g) ∈ N certainly implies that p(a − g) +N ∈ pσG+N/N . Hence, because
N is nice, (a − g) + N ∈ pσG + N/N so that (a − g) + N = g′ + N for some
g′ ∈ pσG. Therefore, a+N = (g + g′) +N ∈ pσG+N/N . �

Our next result is a key ingredient in the proof of Theorem 2.5.
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Proposition 2.4. Suppose N is a knice subgroup of G and that H is an isotype
subgroup of G that contains N . Then, H/N is isotype in G/N .

Proof: Suppose h ∈ H and h+N ∈ (G/N)(M) for some height matrix M . To

complete the proof, we need to show that ‖h + N‖
H/N
p ≥ Mp for all primes p.

Since N is a knice subgroup of G, condition (3) of Lemma 1.4 says that there exist

a positive integerm and an element x ∈ mh+N such that ‖x‖G = ‖mh+N‖G/N .
Thus, sinceN ⊆ H andH is isotype in G, x ∈ H∩G(mM) = H(mM) = mH(M).
We conclude therefore that x = mh′ for some h′ ∈ H(M) and that mh + N =
mh′ +N .
Temporarily fix p and write Mp = {α0, α1, α2, . . . }. Then, pi(h − h′) + N ∈

pαi(G/N) for all i < ω, and if pk is the largest power of p that divides m,

pi(m/pk)(h − h′) +N ∈ pαi(G/N). Moreover, pi(m/pk)(h − h′) +N has order a
power of p. Since N is nice, we conclude from Lemma 2.3 that

pi(m/pk)(h − h′) +N ∈ pαiG+N/N.

We can now write pi(m/pk)(h− h′)+N = gi+N with gi ∈ pαiG. Recalling that
N ⊆ H , gi ∈ H ∩ pαiG = pαiH . Therefore,

|pi(h − h′) +N |
H/N
p = |pi(m/pk)(h − h′) +N |

H/N
p = |gi +N |

H/N
p ≥ αi.

Thus, ‖(h−h′) +N‖
H/N
p ≥ Mp. But ‖h

′+N‖
H/N
p ≥ Mp so that ‖h+N‖

H/N
p ≥

Mp, as desired. �

We are now in position to establish the following result. As we shall see, this
will play an important role in an inductive proof of Theorem 4.5 below.

Theorem 2.5. Suppose N ⊆ H where H is an isotype subgroup of G and N is a
knice subgroup of G. Then, H is a Σ-isotype subgroup of G if and only if H/N
is Σ-isotype in G/N .

Proof: Suppose first thatH is Σ-isotype in G and that h+N ∈
∑n

i=1(G/N)(Mi)
for some h ∈ H and height matrices M1, M2, . . . , Mn. Write

h+N = (g1 +N) + (g2 +N) + · · ·+ (gn +N)

with gi ∈ G and gi + N ∈ (G/N)(Mi) for i = 1, 2, . . . , n. The fact that N is
knice together with condition (3) of Lemma 1.4 implies that there exist a positive
integer m and x1, x2, . . . , xn ∈ G such that xi ∈ mgi+N and ‖xi‖ = ‖mgi+N‖.
Therefore, there is an x ∈ N ⊆ H such that

mh+ x = x1 + x2 + · · ·+ xn ∈ H ∩
n

∑

i=1

G(mMi) =
n

∑

i=1

H(mMi)
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and so mh+N ∈
∑n

i=1(H/N)(mMi). Because H/N is isotype in G/N by Propo-
sition 2.4, Corollary 2.2 yields h+N ∈

∑n
i=1(H/N)(Mi).

Conversely, assume that H/N is Σ-isotype in G/N and suppose that

h = g1 + g2 + · · ·+ gn

where h ∈ H and gi ∈ G(Mi) for some height matrices M1, M2, . . . , Mn. Then,
since N is a knice subgroup, there is a positive integer r and a ∗-valuated co-
product N ′ = N ⊕ A that contains each rgi. Thus, for each i, we can write
rgi = xi + ai, with xi ∈ N and ai ∈ A. Notice that xi ∈ H ∩ G(rMi) = H(rMi)
since N ⊆ H , and ai ∈ G(rMi). Furthermore, a = a1 + a2 + · · · + an ∈ A ∩ H
and, since H/N is Σ-isotype,

a+N = (h1 +N) + (h2 +N) + · · ·+ (hn +N)

where hi + N ∈ (H/N)(rMi). But A can also be chosen so that N ′ is a knice
subgroup. So, by enlarging A if necessary, there exists a positive multiple l of r
such that, for each i, lhi = yi + bi with yi ∈ N and bi ∈ A. Moreover, it follows
from Lemma 1.4 that these choices can be arranged so that ‖bi‖ = ‖lhi + N‖ ≥
mMi where m = lr. Now select z ∈ N such that a+ z = h1 + h2 + · · ·+ hn and
observe that

l(a+ z) = (y1 + y2 + · · ·+ yn) + (b1 + b2 + · · ·+ bn).

Consequently, la = b1 + b2 + · · ·+ bn, where bi ∈ H ∩ G(mMi) = H(mMi), and

mh = l(x1 + x2 + · · ·+ xn) + la = (lx1 + b1) + (lx2 + b2) + · · ·+ (lxn + bn)

with lxi + bi ∈ H and ‖lxi + bi‖ = ‖lxi‖ ∧ ‖bi‖ ≥ mMi for all i. Therefore,
mh ∈

∑n
i=1H(mMi) and h ∈

∑n
i=1H(Mi) by Corollary 2.2. �

Corollary 2.6. If H is an isotype knice subgroup of G, then H is a Σ-isotype
subgroup.

Proof: Since the trivial subgroup is a Σ-isotype subgroup, the conclusion follows
by taking H = N in Theorem 2.5. �

It may be of interest to note that an isotype knice subgroup H of a k-group G
is more than just a Σ-isotype subgroup; in fact, by Theorem 2.8 in [HM4], H is
also a k-group.
We conclude this section with the introduction of a new type of isotypeness

that is closely related to the notion of Σ-isotype.

Definition 2.7. An isotype subgroup H of G is called a ∗-isotype subgroup if
for all height matrices M , height sequences α and primes p, the intersections
of H with G(M∗), G(α∗, p) and G(M∗, p) are H(M∗), H(α∗, p) and H(M∗, p),
respectively.
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Proposition 2.8. A Σ-isotype subgroup is ∗-isotype.

Proof: Suppose that H is a Σ-isotype subgroup of G and that h ∈ H∩G(M∗, p)
for some height matrix M and prime p. Then certainly h ∈ H(M). Assuming
without loss that M ≁ ∞,

h = α1y1 + α2y2 + · · ·+ αmym + β1z1 + β2z2 + · · ·+ βnzn

where αi, βj ∈ Z for all i and j, and the yi’s and zj ’s are elements of G which
satisfy the following properties: ‖yi‖ ≁ M and ‖yi‖ ≥ M for i = 1, 2, . . . , m, and
for j = 1, 2, . . . , n, ‖zj‖p ≥ Mp and |pezj |p 6= mp,e for infinitely many e < ω.
Since H is Σ-isotype, there exist elements a1, a2, . . . , am and b1, b2, . . . , bn in H
such that

h = a1 + a2 + · · ·+ am + b1 + b2 + · · ·+ bn,

‖ai‖ ≥ ‖αiyi‖ ≥ ‖yi‖ for all i, and ‖bj‖ ≥ ‖βjzj‖ ≥ ‖zj‖ for all j. Hence, ‖ai‖ ≁

M and ‖ai‖
H ≥ M for all i and we conclude that a1 + a2 + · · ·+ am ∈ H(M∗).

Moreover, it is equally clear that b1 + b2 + · · · + bn ∈ H(M∗
p , p). Therefore,

H ∩ G(M∗, p) = H(M∗, p). The proofs that H ∩ G(M∗) = H(M∗) and H ∩
G(α∗, p) = H(α∗, p) are similar. �

Proposition 2.9. Suppose that G is a k-group and that H is a ∗-isotype sub-
group of G. If H itself is a k-group, then H is a Σ-isotype subgroup of G.

Proof: From the fact that H is ∗-isotype, it follows easily that an element of
H is primitive in G if and only if it is primitive in H . Moreover, a direct sum
of subgroups of H is ∗-valuated in G if and only if it is ∗-valuated in H . These
observations will be used below without further mention.
Now suppose that h ∈ H ∩

∑n
i=1G(Mi) for some height matrices Mi. Write

h = g1 + g2 + · · · + gn where gi ∈ G(Mi) for all i. To show that H is Σ-isotype
in G, Lemma 2.1 allows us to assume that h has infinite order. Therefore, since
H is a k-group, there is a positive integer m such that mh = x1 + x2 + · · ·+ xr,
where each xi ∈ H is primitive and

N = 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xr〉

is a ∗-valuated coproduct. By Lemma 1.5(3), N is a knice subgroup of G. So, we
have a ∗-valuated coproductN ′ = N⊕A and a positive integer k with kgi = yi+ai,
where yi ∈ N ⊆ H and ai ∈ A for each i. But since we may take k to be a multiple
ofm, kh ∈ N and

∑n
i=1 ai ∈ N∩A = 0. Furthermore, yi ∈ H∩G(kMi) = H(kMi)

for each i and therefore,

kh = y1 + y2 + · · ·+ yn ∈
n

∑

i=1

H(kMi).

Since H is an isotype subgroup, Corollary 2.2 yields the desired conclusion that
h ∈

∑n
i=1H(Mi). �



Isotype subgroups of mixed groups 429

3. Lemmas on Σ-isotype subgroups of k-groups

In this section we prove several results that will be needed in the next section
for the construction of primitive elements in Σ-isotype subgroups of k-groups.
First, however, we require a few technical preliminaries provided by Lemmas 3.1
through 3.3 below.
Define a relation ≺ on the classM of all height matrices by decreeing that if

M, N ∈ M, then M ≺ N means M ≤ kN for some positive integer k. Then,M
is “quasi” partially ordered by ≺ in the following sense: for all M, N, K ∈ M,

(1) M ≺ M ;
(2) if M ≺ N and N ≺ M , then M ∼ N ;
(3) if M ≺ N and N ≺ K, then M ≺ K.

Now, ifM′ is a finite collection of height matrices, we say that M ∈ M′ is a
minimal element if whenever N ∈ M′ is such that N ≺ M , then N ∼ M . The
proof of our first lemma is a routine induction using properties (2) and (3).

Lemma 3.1. Every finite collection of height matrices contains a minimal ele-

ment.

Lemma 3.2. Suppose

B = G1 ⊕ G2 ⊕ · · · ⊕ Gr ⊕ C

is a valuated coproduct in a group G such that each Gi is torsion free and every

nonzero element of Gi has height matrix quasi-equivalent toMi for i = 1, 2, . . . , r.
Further suppose that Mi ≁ Mj whenever i 6= j and that the Gi’s are arranged

so that each Mi is minimal in {Mi, Mi+1, . . . , Mr}. If a ∈ B is such that l‖a‖ ≥
Mi for some i ≥ 2 and positive integer l, then a has no nonzero component in
G1 ⊕ · · · ⊕ Gi−1.

Proof: Suppose to the contrary that a has a nonzero component cj ∈ Gj for
some j ≤ i − 1. Then, Mi ≤ l‖a‖ ≤ l‖cj‖ and l‖cj‖ ∼ Mj . Therefore, there
is a positive integer m such that Mi ≤ mMj ; that is, Mi ≺ Mj . However, Mj

is minimal in {Mj, Mj+1, . . . , Mr} and i ≥ j + 1. We conclude that Mi ∼ Mj ,
which contradicts the hypothesis Mi ≁ Mj . �

Lemma 3.3. Suppose N = 〈x1〉⊕〈x2〉⊕· · ·⊕〈xn〉 is a valuated coproduct where
the xi’s are elements of infinite order in G with mutually quasi-equivalent height
matrices. Then, each nonzero element of N has height matrix quasi-equivalent to
‖x1‖.

Proof: Select positive integers k and l such that ‖xi‖ ≤ k‖x1‖ and ‖x1‖ ≤ l‖xi‖
for all i = 1, 2, . . . , n. Thus, if x = α1x1+α2x2+ · · ·+αnxn is a nonzero element
of N with each αi ∈ Z, then there is some j with αj 6= 0. Without loss we assume
that αj > 0 and obtain

‖x‖ ≤ ‖αjxj‖ ≤ k‖αjx1‖ = kαj‖x1‖.
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Moreover, since ‖x1‖ ≤ l‖αixi‖ for all i, it is clear that ‖x1‖ ≤ l‖x‖. Therefore,
‖x‖ ∼ ‖x1‖. �

To establish the notation for our next result, we assume that G is a global
k-group and that H is a Σ-isotype subgroup of G; also, we assume that H is
not torsion. If h ∈ H has infinite order, we can replace h by a suitable nonzero
multiple and write h = x1 + x2 + · · · + xm where each xi is a primitive element
in G and N = 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xm〉 is a ∗-valuated coproduct. Because H is
Σ-isotype, there are elements a1, a2, . . . , am ∈ H such that

h = a1 + a2 + · · ·+ am = x1 + x2 + · · ·+ xm

and ‖ai‖ ≥ ‖xi‖ for i = 1, 2, . . . , m. Since N is knice in G by Lemma 1.5(3), there
is a ∗-valuated coproduct B = N ⊕ C and a positive integer k such that kai ∈ B
for all i. By Definition 1.3 and Lemma 1.5(3), we may also assume that B is a
knice subgroup of G.
Grouping together the xi’s that have quasi-equivalent height matrices, we can

write B as the ∗-valuated coproduct

B = G1 ⊕ G2 ⊕ · · · ⊕ Gr ⊕ C.

By Lemma 3.3, each nonzero element of Gi has height matrix quasi-equivalent
to a fixed height matrix Mi, and Mi ≁ Mj for all i 6= j. Moreover, Lemma 3.1
allows us to arrange the Gi’s so that Mi is minimal in {Mi, Mi+1, . . . , Mr} for
i = 1, 2, . . . , r. Also, after reindexing if necessary, we may assume that

G1 = 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xn〉

for some n ≤ m. Note that if i ≥ n+1, then ‖ai‖ ≥ ‖xi‖ and ‖xi‖ ∼ Mj for some
j ∈ {2, 3, . . . , r}. Thus, there is a positive integer l such that l‖kai‖ ≥ Mj . Since
kai ∈ B, Lemma 3.2 allows us to conclude that no kai has a nonzero component
in G1 whenever i ≥ n+ 1. As a consequence,

k(a1 + a2 + · · ·+ an) = k(x1 + x2 + · · ·+ xn) + z

for some z ∈ G2⊕· · ·⊕Gr ⊕C. Finally, setting W = G2⊕· · ·⊕Gr ⊕C, we arrive
at the following result.

Lemma 3.4. If H is a nontorsion Σ-isotype subgroup of a global k-group G,
then there is a ∗-valuated coproduct B = 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xn〉 ⊕W such that

B is knice in G and the following conditions are satisfied.

(a) Each xi is primitive and ‖x1‖ ∼ ‖x2‖ ∼ · · · ∼ ‖xn‖.
(b) There exist a1, a2, . . . , an ∈ H such that ‖ai‖ ≥ ‖xi‖ for all i and kai ∈ B
for some positive integer k.

(c) k(a1 + a2 + · · ·+ an) = k(x1 + x2 + · · ·+ xn) + z for some z ∈ W .
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Moreover, if we write each kai as

kai = ci,1x1 + ci,2x2 + · · ·+ ci,nxn + wi

with ci,j ∈ Z and wi ∈ W , then condition (c) implies that

c1,j + c2,j + · · ·+ cn,j = k for j = 1, 2, . . . , n.

Eventually, we will return to consider the consequences of the above result.
However, at this juncture, it will be convenient to deal with groups G that satisfy
conditions that are slightly weaker than the conclusions of Lemma 3.4.

Definition 3.5. We say that an abelian group G satisfies the special hypotheses
if it contains a valuated coproduct B = 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xn〉 ⊕ W with the
following properties.

(1) Each xi has infinite order and ‖x1‖ ∼ ‖x2‖ ∼ · · · ∼ ‖xn‖.
(2) There exist a1, a2, . . . , an ∈ G such that ‖ai‖ ≥ ‖xi‖ for all i.
(3) There is a positive integer k such that, for all i = 1, 2, . . . , n,

kai = ci,1x1 + ci,2x2 + · · ·+ ci,nxn + wi

where ci,j ∈ Z, wi ∈ W and

(†) c1,j + c2,j + · · ·+ cn,j = k for j = 1, 2, . . . , n.

Lemma 3.6. If G satisfies the special hypotheses, then, for each prime p, there
exist i, j ∈ I = {1, 2, . . . , n} such that ci,j 6= 0 and

‖kai‖p ≈ ‖kai − wi‖p ≈ ‖ci,jxj‖p.

Proof: First observe that if ‖kai‖p ≈ ‖ci,jxj‖p for some ci,j 6= 0, then ‖kai‖p ≈
‖kai − wi‖p. Indeed,

‖kai‖p ≤ ‖kai − wi‖p ≤ ‖ci,jxj‖p ≈ ‖kai‖p

implies that ‖pekai‖p = ‖pe(kai − wi)‖p for some nonnegative integer e.
The proof that ‖kai‖p ≈ ‖ci,jxj‖p for some ci,j 6= 0 divides into two different

cases depending on the nature of the prime p. Write k = prk′ where (p, k′) = 1,
set y = x1 + x2 + · · ·+ xn, and first consider the case where

(∗) ‖pty‖p 6= ‖ptxi‖p

for all nonnegative integers t and i ∈ I. Select a subset J of I maximal with
respect to the condition:

If j1, j2 ∈ J , there is a corresponding nonnegative integer s such that
either ‖psxj1‖p ≤ ‖psxj2‖p or ‖psxj2‖p ≤ ‖psxj1‖p.
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Note that J enjoys the following properties.

(i) There is a nonnegative integer e such that {‖pexj‖p : j ∈ J} is a totally
ordered set of height sequences.

(ii) With e as in item (i), there exists j0 ∈ J such that ‖pexj0‖p ≤ ‖pexj‖p

for all j ∈ J .
(iii) J is a nonempty proper subset of I. (J is certainly nonempty since the

case j1 = j2 is not excluded. That J is a proper subset follows from (ii)
and (∗), together with the fact that 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xn〉 is a valuated
coproduct.)

Observe that pr+1 | ci,j0 whenever i ∈ I \ J . Indeed, if this were not the case,
then ci,j0 6= 0 and, for all j ∈ J ,

‖pe+rxj‖p ≥ ‖pe+rxj0‖p ≥ ‖peci,j0xj0‖p ≥ ‖pekai‖p = ‖pe+rai‖p ≥ ‖pe+rxi‖p.

However, by the maximality of J , this contradicts i /∈ J . We conclude from
condition (†) in Definition 3.5 that pr+1 ∤ cj,j0 for some j ∈ J . Selecting such a
j, cj,j0 6= 0 and

‖pekaj‖p ≤ ‖pecj,j0xj0‖p ≤ ‖pecj,j0xj‖p ≤ ‖pecj,j0aj‖p ≤ ‖pekaj‖p,

and we have ‖pekaj‖p = ‖pecj,j0xj0‖p. Therefore, ‖kaj‖p ≈ ‖cj,j0xj0‖p.

It remains to consider the case where ‖pty‖p = ‖ptxj‖p for some t < ω and

j ∈ I. In this case, ‖ptxj‖p ≤ ‖ptxi‖p for all i ∈ I. From (†), we know that there

is an i ∈ I such that pr+1 ∤ ci,j . With i so chosen, ci,j 6= 0 and

‖ptkai‖p ≤ ‖ptci,jxj‖p ≤ ‖ptci,jxi‖p ≤ ‖ptkxi‖p ≤ ‖ptkai‖p.

Therefore, ‖ptkai‖p = ‖ptci,jxj‖p so that ‖kai‖p ≈ ‖ci,jxj‖p. �

For our next result, we again assume that G satisfies the special hypotheses
and consider elements of the form

h = k(t1a1 + t2a2 + · · ·+ tnan)

where t1, t2, . . . , tn ∈ Z are not all 0. Thus, h = g + w where

g = c1x1 + c2x2 + · · ·+ cnxn

with

(∗∗) ci = t1c1,i + t2c2,i + · · ·+ tncn,i for i = 1, 2, . . . , n

and
w = t1w1 + t2w2 + · · ·+ tnwn.

By the relation (†), we may assume that h has been chosen so that not all ci’s
are 0. Indeed, one such choice is where all the ti’s are 1 so that all the ci’s are k.
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Lemma 3.7. Assume that G satisfies the special hypotheses and that ci,j 6= 0
for some i and j in {1, 2, . . . , n}. Then, in the above notation, ‖g‖ ∼ ‖kai − wi‖,
‖h‖ ∼ ‖kai‖ and ‖h‖ ∼ ‖g‖.

Proof: By Lemma 3.3, every nonzero element of the valuated coproduct 〈x1〉 ⊕
〈x2〉⊕ · · ·⊕ 〈xn〉 has height matrix quasi-equivalent to ‖x1‖. In particular, ‖g‖ ∼
‖x1‖ and, since ci,j 6= 0, ‖kai − wi‖ ∼ ‖x1‖. Therefore, ‖g‖ ∼ ‖kai − wi‖.
To see that ‖h‖ ∼ ‖kai‖, observe that ‖x1‖ ∼ ‖kxi‖ ≤ ‖kai‖ ≤ ‖ci,jxj‖ ∼ ‖x1‖

implies that ‖kai‖ ∼ ‖x1‖. On the other hand, the relations ‖h‖ ≤ ‖g‖ ∼ ‖x1‖
and

‖h‖ ≥ ‖kt1a1‖ ∧ ‖kt2a2‖ ∧ · · · ∧ ‖ktnan‖ ≥ ‖kt1x1‖ ∧ ‖kt2x2‖ ∧ · · · ∧ ‖ktnxn‖

= ‖k(t1x1 + t2x2 + · · ·+ tnxn)‖ ∼ ‖x1‖

imply that ‖h‖ ∼ ‖x1‖. Therefore, ‖h‖ ∼ ‖kai‖.
Finally, we show that ‖h‖ ∼ ‖g‖. First, as observed above ‖g‖ ∼ ‖x1‖ and,

since ti 6= 0 for some i, Lemma 3.3 implies thatM = ‖t1x1+ t2x2+ · · ·+ tnxn‖ ∼
‖x1‖ ∼ ‖g‖. But ‖xi‖ ≤ ‖kxi‖ ≤ ‖kai‖ ≤ ‖wi‖ for i = 1, 2, . . . , n and we have
that

N = ‖w‖ = ‖t1w1 + t2w2 + · · ·+ tnwn‖ ≥ ‖t1x1‖ ∧ ‖t2x2‖ ∧ · · · ∧ ‖tnxn‖ =M.

It follows that M ∧ mN = M for every positive integer m. So selecting m such
that m‖g‖ ≥ M , we get

m‖h‖ = ‖mh‖ = ‖mg +mw‖ = ‖mg‖ ∧ ‖mw‖ ≥ M ∧ mN =M.

But from M ∼ ‖g‖, there is also a positive integer l with lM ≥ ‖g‖ ≥ ‖h‖. We
conclude that ‖h‖ ∼ M ∼ ‖g‖. �

Observe that the equations (∗∗) (in the discussion preceding the statement of
Lemma 3.7) can be reformulated as the matrix equation At = c where A = [ci,j ]

T ,
and

t =









t1
t2
...
tn









and c =









c1
c2
...

cn









are in Zn. In order to gain better control over this relationship between the
vectors t and c, we require the following version of Cramer’s Rule.

Lemma 3.8. Associated with each nonzero n × n matrix A with integer en-
tries there is a positive integer d with the following property. Whenever c =
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[c1 c2 . . . cn]
T ∈ Zn is such that the matrix equation Ay = c has a solution

y = [t1 t2 . . . tn]
T ∈ Zn, then there is a solution y = [y1 y2 . . . yn]

T where

y1 = t′1/d, y2 = t′2/d, . . . , yn = t′n/d

and each t′i is an integral linear combination of c1, c2, . . . , cn.

Proof: Let R be the (unique) row-reduced echelon form of A. Then, there is
a finite sequence of row-equivalent matrices A0 = A, A1, A2, . . . , Ar = R and
vectors v0 = c,v1,v2, . . . ,vr such that the sequence of augmented matrices

[A0 | v0] = [A | c], [A1 | v1], [A2 | v2], . . . , [Ar | vr] = [R | vr]

satisfies the following condition: For 0 ≤ i < r, [Ai+1 | vi+1] is obtained from
[Ai | vi] by a single elementary row operation of one of the three types:

(a) two rows of [Ai | vi] are interchanged;
(b) a row of [Ai | vi] is multiplied by the reciprocal of a nonzero entry of Ai;
(c) some multiple of a row of [Ai | vi] is added to another row of [Ai | vi],
where the multiplier is an entry of Ai.

A routine induction reveals that vr = [s1/d s2/d . . . sn/d]T , where each si

is an integral linear combination of c1, c2, . . . , cn, and the fixed integer d > 0
depends only on the choice of the sequence of the Ai’s and is independent of c.
Further note that each solution of Ay = c can be written as

y = v∗r − α1z1 − α2z2 − · · · − αmzm,

where v∗r has the same entries as vr in those positions corresponding to leading
variables and 0’s elsewhere, {z1, z2, . . . , zm} is a basis over Q for the nullspace
of A determined by the collection of nonleading variables, and α1, α2, . . . , αm

are arbitrary rational parameters. Thus y = v∗r is a solution with the desired
properties. �

Call the positive integer d in Lemma 3.8 a pseudo-determinant for A.

4. Construction of primitive elements

In this section, we establish a theorem that exhibits, with appropriate hypothe-
ses, the existence of primitive elements in certain finitely generated subgroups of
global k-groups. In particular, this theorem in conjunction with Lemma 3.4 im-
plies that every nontorsion Σ-isotype subgroup H of a global k-group G contains
a primitive element. In turn, the latter result provides an essential ingredient in
the proof of the fundamental Theorem 4.5 below.
We begin by making an important observation that will be utilized repeatedly

without further mention. Suppose that x and y are elements of G with quasi-
equivalent height matrices. Thus, for any p ∈ P, there is a nonnegative integer
e such that ‖pex‖p ≥ ‖py‖p. Under these circumstances, ‖pex + ty‖p = ‖ty‖p

whenever t ∈ Z and p ∤ t. The effect of the factor p in py is that the latter equality
holds even when ∞ is involved in the height sequence ‖pex+ ty‖p.
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Theorem 4.1. Let B be a knice subgroup of a global k-group G such that
B = 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xn〉 ⊕ W is a ∗-valuated coproduct in G, and where
the xi’s are primitive elements with mutually quasi-equivalent height matrices.

Suppose also that there are elements a1, a2, . . . , an in G with ‖xi‖ ≤ ‖ai‖ for
i = 1, 2, . . . , n and such that k(a1 + a2+ · · ·+ an) = k(x1 + x2 + · · ·+ xn) + z for
some positive integer k and z ∈ W . Then, there exists a primitive element y of
G with y ∈ 〈a1, a2, . . . , an〉.

In the special case where k = 1 and W = 0, this theorem has precursors in the
simpler contexts of p-local and torsion-free k-groups. In the p-local setting, the
xi’s may be selected so that each ai is primitive (see Lemma 1.2 in [HMU]). When
G is torsion-free, y = a1 + a2 + · · · + an is itself primitive (see Proposition 2.7
in [HM1]). But for global groups G, these stronger conclusions do not follow.
We begin our discussion of Theorem 4.1 by singling out certain sets of primes.

First, since ‖x1‖ ∼ ‖x2‖ ∼ · · · ∼ ‖xn‖, the set P consisting of all primes p such
that ‖x1‖p = ‖x2‖p = · · · = ‖xn‖p is cofinite in P. The same applies to P \ Λ,
where Λ consists of the prime factors of a positive integer d to be specified in the
proof of Proposition 4.3 below. Therefore, the complement ∆ of P \ Λ in P is a
finite set of primes.
The proof of Theorem 4.1 is technically difficult and requires two quite dif-

ferent constructions to establish the existence of the desired primitive element in
〈a1, a2, . . . , an〉. The first relies heavily on Lemmas 3.6 and 3.7 and yields a first
approximation h ∈ 〈a1, a2, . . . , an〉 with ‖h‖p = ‖g‖p for all p ∈ ∆, where g is
a primitive element in 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xn〉 constructed simultaneously with
h and such that h − g ∈ W . This h is not primitive unless ‖h‖ = ‖g‖. By ap-
plying Lemma 3.8 with a relevant pseudo-determinant d, we introduce a second
h′ ∈ 〈a1, a2, . . . , an〉 with h′ − dg ∈ W and ‖h′‖p = ‖dg‖p for all primes p in
P \ Λ. The proof will then be completed by showing that an appropriate linear
combination y of h and h′ is primitive.

Proposition 4.2. Given the hypotheses of Theorem 4.1, there exist a primitive
element g ∈ 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xn〉 and an h ∈ 〈a1, a2, . . . , an〉 with h − g ∈ W
and ‖h‖p = ‖g‖p for all p ∈ ∆.

Proof: Since B = 〈x1〉⊕ 〈x2〉⊕ · · ·⊕ 〈xn〉⊕W is a knice subgroup, by enlarging
W and increasing k if necessary, we may assume that B contains each kai. In
particular, we have, for each i = 1, 2, . . . , n, the equation

kai = ci,1x1 + ci,2x2 + · · ·+ ci,nxn + wi

where ci,j ∈ Z and wi ∈ W with

(†) c1,j + c2,j + · · ·+ cn,j = k for j = 1, 2, . . . , n.

Thus, G satisfies the special hypotheses (Definition 3.5) so that Lemmas 3.6
and 3.7 are available in the present context.
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We shall consider those elements

g = c1x1 + c2x2 + · · ·+ cnxn ∈ 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xn〉

which are of the special form

g = t1(ka1 − w1) + t2(ka2 − w2) + · · ·+ tn(kan − wn)

where t1, t2, . . . , tn ∈ Z are not all zero. In view of (†), we may begin our con-
struction with

g = k(x1 + x2 + · · ·+ xn) = (ka1 − w1) + (ka2 − w2) + · · ·+ (kan − wn)

and thus assume that initially that all the integers c1, c2, . . . , cn and t1, t2, . . . , tn
are nonzero. We associate with each such g the companion element

h = k(t1a1 + t2a2 + · · ·+ tnan)

where clearly h − g ∈ W . Indeed, h = g + w where

w = t1w1 + t2w2 + · · ·+ tnwn.

It is also noteworthy that each ci can be expressed explicitly in terms of the
integers t1, t2, . . . , tn and the ci,j ’s. In fact, as noted in Section 3,

(∗∗) ci = t1c1,i + t2c2,i + · · ·+ tncn,i for i = 1, 2, . . . , n.

We wish to show that it is possible to choose the integers t1, t2, . . . , tn in such
a manner that g is primitive and ‖h‖p = ‖g‖p for all p ∈ ∆. Without loss of
generality, we assume that ∆ 6= ∅. Indeed if ∆ were empty, then g = c1x1 +
c2x2 + · · · + cnxn would be primitive by Lemma 1.5(2) and ‖h‖p = ‖g‖p would
be vacuously satisfied for all p ∈ ∆.
Beginning with g and h as in the previous paragraph, we define

Q(g) = {p ∈ ∆ : ‖h‖p ≈ ‖g‖p ≈ ‖cixi‖p for some i = 1, 2, . . . , n}.

Observe that ifQ(g) = ∆, then g is primitive by Lemma 1.5(2) and that, replacing
h and g by multiples, we also have ‖h‖p = ‖g‖p for all p ∈ ∆.
So suppose that Q(g) is a proper subset of ∆ and select any prime q with

q ∈ ∆ and q /∈ Q(g).

From Lemma 3.6 we have i0, j0 ∈ {1, 2, . . . , n} where

(1) ‖kai0‖q ≈ ‖kai0 − wi0‖q ≈ ‖ci0,j0xj0‖q
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and ci0,j0 6= 0. By Lemma 3.7, ‖g‖ ∼ ‖kai0 − wi0‖ and ‖h‖ ∼ ‖kai0‖. Therefore,
we may choose r < ω such that both

(2) ‖qrg‖q ≥ ‖q(kai0 − wi0)‖q and ‖qrh‖q ≥ ‖qkai0‖q.

Similarly, there is a positive integer s with all its prime factors in the finite set
Q(g) such that

(3) ‖s(kai0 − wi0)‖p ≥ ‖pg‖p and ‖skai0‖p ≥ ‖ph‖p

for all p ∈ Q(g). (In the exceptional case where Q(g) = ∅, we simply set s = 1
and do not require condition (3).)
We now define new elements ḡ and h̄ by taking

ḡ = qrg + s(kai0 − wi0) and h̄ = qrh+ skai0 .

Note that ḡ has the same special form as g. Indeed,

ḡ = c̄1x1 + c̄2x2 + · · ·+ c̄nxn = t̄1(ka1 −w1) + t̄2(ka2 −w2) + · · ·+ t̄n(kan −wn)

where t̄i0 = qrti0 + s, t̄i = qrti for i 6= i0, and

c̄i = t̄1c1,i + t̄2c2,i + · · ·+ t̄ncn,i = qrci + sci0,i for i = 1, 2, . . . , n.

Also, h̄ is the associated companion element for ḡ since

h̄ = k(t̄1a1 + t̄2a2 + · · ·+ t̄nan),

where h̄ = ḡ + w̄ with

w̄ = t̄1w1 + t̄2w2 + · · ·+ t̄nwn = qrw + swi0 ∈ W.

Moreover, because all ci’s and ti’s are nonzero, r can be increased if necessary so
that all of the c̄i’s and t̄i’s are nonzero.
As is the case with g and h, ḡ and h̄ also have the associated finite set

Q(ḡ) = {p ∈ ∆ : ‖ḡ‖p ≈ ‖h̄‖p ≈ ‖c̄ixi‖p for some i = 1, 2, . . . , n}.

We now proceed to show that {q} ∪ Q(g) ⊆ Q(ḡ).
From (1) and (2), it follows that

(4) ‖ḡ‖q = ‖qrg + s(kai0 − wi0)‖q = ‖s(kai0 − wi0)‖q ≈ ‖sci0,j0xj0‖q.
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Similarly,

(5) ‖h̄‖q = ‖qrh+ skai0‖q = ‖skai0‖q ≈ ‖sci0,j0xj0‖q.

From (1), there is an f with ‖qfs(kai0 − wi0)‖q = ‖qfsci0,j0xj0‖q. Also, by the
form of g, ‖cj0xj0‖ ≥ ‖g‖. Thus, from (2)

‖qr(qf cj0xj0)‖q ≥ ‖qr(qf g)‖q ≥ ‖q(qfs(kai0 − wi0))‖q = ‖q(qf sci0,j0xj0)‖q

and so

‖qfs(ci0,j0xj0)‖q = ‖qf (qrcj0 + sci0,j0)xj0‖q = ‖qf c̄j0xj0‖q.

Therefore, ‖c̄j0xj0‖q ≈ ‖sci0,j0xj0‖q, and from (4), ‖ḡ‖q ≈ ‖c̄j0xj0‖q. Likewise,

(5) implies that ‖h̄‖q ≈ ‖c̄j0xj0‖q and we conclude that q ∈ Q(ḡ).
On the other hand, suppose Q(g) 6= ∅ and p ∈ Q(g) with ‖g‖p ≈ ‖clxl‖p.

Then, since p 6= q, it follows from (3) that

(6) ‖ḡ‖p = ‖qrg + s(kai0 − wi0)‖p = ‖qrg‖p ≈ ‖qrclxl‖p

and similarly

(7) ‖h̄‖p = ‖qrh+ skai0‖p = ‖qrh‖p ≈ ‖qrclxl‖p.

Now choose e with ‖peqrg‖p = ‖peqrclxl‖p and note that ‖ci0,lxl‖ ≥ ‖kai0−wi0‖.
Thus, from (3),

‖pe(sci0,lxl)‖p ≥ ‖pes(kai0 − wi0)‖p ≥ ‖pe(pg)‖p = ‖p(peclxl)‖p

and so
‖peqrclxl‖p = ‖pe(qrcl + sci0,l)xl‖p = ‖pec̄lxl‖p.

Therefore, ‖c̄lxl‖p ≈ ‖qrclxl‖p, and from (6) and (7), ‖ḡ‖p ≈ ‖c̄lxl‖p ≈ ‖h̄‖p.
Consequently, p ∈ Q(ḡ) and hence we have shown that

{q} ∪ Q(g) ⊆ Q(ḡ).

Since ∆ is finite, repetitions of the foregoing construction yield g,h and w of
the appropriate forms with h = g + w and Q(g) = ∆. As mentioned previously,
such a g must be primitive. Moreover, ‖g‖p ≈ ‖h‖p for all p ∈ ∆ and replacing g
and h by suitable nonzero multiples, we have proved Proposition 4.2. �

With g primitive as above, 〈g〉 ⊕W is a ∗-valuated coproduct and therefore, if
we had ‖h‖ = ‖g‖, Lemma 1.5(1) would imply that y = h ∈ 〈a1, a2, . . . , an〉 is the
primitive element required to complete the proof of Theorem 4.1. In other words,
we need ‖h‖p = ‖g‖p for those primes p ∈ P \ Λ in order for the h constructed
in Proposition 4.2 to be primitive. Interestingly enough, if the matrix C = [ci,j ]
is nonsingular, then a simple application of Cramer’s Rule shows that h does
satisfy this condition. Unfortunately, C may be singular and we find it necessary
to construct an auxiliary h′ ∈ 〈a1, a2, . . . , an〉 with a positive integer d such that
‖h′‖p = ‖dg‖p for all p ∈ P \ Λ. This is achieved in our next proposition by
an application of the weak version of Cramer’s Rule established in Lemma 3.8, d
arising as a pseudo-determinant for the matrix A = CT .
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Proposition 4.3. Assume the hypotheses of Theorem 4.1 and let

g ∈ 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xn〉

be the primitive element constructed in the proof of Proposition 4.2. Thus,

g = t1(ka1 − w1) + t2(ka2 − w2) + · · ·+ tn(kan − wn)

with t1, t2, . . . , tn ∈ Z all nonzero, and w1, w2, . . . , wn ∈ W . Then, there exist an

h′ ∈ 〈a1, a2, . . . , an〉

and a positive integer d such that h′−dg ∈ W and ‖h′‖p = ‖dg‖p for all p ∈ P \Λ,
with Λ being the set of prime divisors of d.

Proof: As in the proof of the preceding proposition, g = c1x1+c2x2+ · · ·+cnxn

where

(∗∗) ci = t1c1,i + t2c2,i + · · ·+ tncn,i for i = 1, 2, . . . , n.

As mentioned in Section 3, (∗∗) can be reformulated as a matrix equation At = c

where A = [ci,j ]
T , t = [t1 t2 . . . tn]

T and c = [c1 c2 . . . cn]
T . Now take d to be

a pseudo-determinant of A. By Lemma 3.8, dc = At′ where t′ = [t′1 t′2 . . . t′n]
T ∈

Zn and each t′i is an integral linear combination of c1, c2, . . . cn. Consequently,
dci = t′1c1,i + t′2c2,i + · · ·+ t′ncn,i for each i and

dg = t′1(ka1 − w1) + t′2(ka2 − w2) + · · ·+ t′n(kan − wn).

It follows then that h′ = dg + w′ where

h′ = k(t′1a1 + t′2a2 + · · ·+ t′nan) and w′ = t′1w1 + t′2w2 + · · ·+ t′nwn ∈ W.

We claim that h′ ∈ 〈a1, a2, . . . , an〉 is the required element. Indeed let p be
any prime in P \ Λ and select j such that

α = |cj |
Z
p = min{|c1|

Z
p , |c2|

Z
p , . . . , |cn|

Z
p }.

Then, since p ∤ d and ‖x1‖p = ‖x2‖p = · · · = ‖xn‖p, it follows that

‖dg‖p = ‖g‖p = ‖c1x1‖p ∧ ‖c2x2‖p ∧ · · · ∧ ‖cnxn‖p = ‖cjxj‖p = ‖pαxj‖p.

From our choice of α, all of c1, c2, . . . , cn are divisible by pα. Therefore, since
each t′i is an integral linear combination of c1, c2, . . . , cn, it follows that pα also
divides each of the integers t′1, t

′
2, . . . , t

′
n. We then have

‖pαxj‖p = ‖pαxi‖p ≤ ‖pαkxi‖p ≤ ‖pαkai‖p ≤ ‖pαwi‖p ≤ ‖t′iwi‖p

for i = 1, 2, . . . , n. Hence,

‖w′‖p = ‖t′1w1 + t′2w2 + · · ·+ t′nwn‖p ≥ ‖pαxj‖p = ‖dg‖p

and
‖h′‖p = ‖dg + w′‖p = ‖dg‖p ∧ ‖w′‖p = ‖dg‖p.

This completes the proof of Proposition 4.3. �
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Proof of Theorem 4.1. We shall now show that an appropriate linear com-
bination of the elements h and h′ constructed in the proofs of Proposition 4.2
and Proposition 4.3, respectively, yields the desired primitive element y in
〈a1, a2, . . . , an〉. First, if g is the primitive element constructed in Proposition 4.2,
recall that h = g + w and h′ = dg + w′, where d is the positive integer specified
in the proof of Proposition 4.3, and w, w′ ∈ W .
From Lemma 3.7, ‖h‖ ∼ ‖g‖. Note that the proof given there also can be

adapted to show that ‖h′‖ ∼ ‖dg‖; simply replace each ti by t′i, h by h′, g by dg
and w by w′. Since clearly ‖g‖ ∼ ‖dg‖, it follows that ‖h‖ ∼ ‖h′‖. Moreover,
as in the proof of Proposition 4.2, we may assume that ∆ 6= ∅. Thus, since ∆ is
finite, there is a positive integer v with all its prime factors in ∆ and

for all p ∈ ∆, ‖vh′‖p ≥ ‖pdh‖p and p | v.

Set Q = {p ∈ P \ Λ : ‖g‖p = ‖h‖p = ‖h′‖p} and let Q′ denote the complement
of Q in P \ Λ. Note that Q′ is finite by virtue of the fact that ‖g‖ ∼ ‖h‖ ∼ ‖h′‖
and that P is the disjoint union of ∆, Q′ and Q. Now select a positive integer u
with the following properties: if Q′ = ∅ we simply set u = 1; otherwise we select
u such that all its prime factors are in Q′ and

for all p ∈ Q′, ‖duh‖p ≥ ‖pvh′‖p and p | u.

Because u and v are relatively prime, we can select nonzero integers α and β
so that αu+ βv = 1. We now introduce the element

y = dαuh+ βvh′ ∈ 〈a1, a2, . . . , an〉.

Note that

y = dαu(g+w)+βv(dg+w′) = d(αu+βv)g+(dαuw+βvw′) = dg+(dαuw+βvw′).

Therefore, since dg ∈ 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xn〉, dαuw + βvw′ ∈ W , and

〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xn〉 ⊕ W

is a ∗-valuated coproduct, ‖dg‖ ≥ ‖y‖.
We maintain that ‖dg‖ = ‖y‖ and consequently, since dg is primitive, y is

primitive by Lemma 1.5(1). Thus, we need to verify that ‖dg‖p = ‖y‖p for all p
in the disjoint union P = ∆ ∪ Q′ ∪ Q. In order to do this, we consider the three
natural cases.

Case (i) p ∈ ∆. Recall that ‖vh′‖p ≥ ‖pdh‖p for all p ∈ ∆. Moreover, since
p | v, p ∤ αu and we have that ‖βvh′‖p ≥ ‖vh′‖p ≥ ‖pdαuh‖p. Therefore,

‖y‖p = ‖dαuh+ βvh′‖p = ‖dαuh‖p = ‖dh‖p = ‖dg‖p,
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with the latter equality holding by virtue of Proposition 4.2.

Case (ii) Q′ 6= ∅ and p ∈ Q′. Recall that ‖duh‖p ≥ ‖pvh′‖p for all p ∈ Q′.
Since p | u, p ∤ βv and we have that ‖dαuh‖p ≥ ‖duh‖p ≥ ‖pβvh′‖p. Therefore,

‖y‖p = ‖dαuh+ βvh′‖p = ‖βvh′‖p = ‖h′‖p = ‖dg‖p,

with the latter equality holding by Proposition 4.3 since Q′ ⊆ P \ Λ.

Case (iii) p ∈ Q. Since p ∤ d, ‖dg‖p = ‖h‖p = ‖h′‖p for all p ∈ Q. We now
have that ‖y‖p = ‖dαuh+ βvh′‖p ≥ ‖dαuh‖p ∧ ‖βvh′‖p ≥ ‖h‖p ∧ ‖h′‖p = ‖dg‖p.
Also, as observed above, ‖dg‖ ≥ ‖y‖. Therefore, ‖dg‖p = ‖y‖p for all p ∈ Q. �

Assuming now that H is a nontorsion Σ-isotype subgroup of the global k-group
G, observe that hypotheses of Theorem 4.1 are made available by Lemma 3.4.
Moreover, 〈a1, a2, . . . , an〉 ⊆ H . Therefore, the following is an immediate conse-
quence of Theorem 4.1.

Corollary 4.4. Every nontorsion Σ-isotype subgroup of a global k-group con-
tains a primitive element.

Since Σ-isotype subgroups are ∗-isotype by Proposition 2.8, our final theo-
rem may be viewed as a partial converse of Proposition 2.9. (At this point, the
assumption that H is not torsion is unnecessary.)

Theorem 4.5. Suppose H is a Σ-isotype subgroup of a global k-group G. If H
has finite torsion-free rank, then H is a k-group.

Proof: Since a torsion subgroup is obviously a k-group, we assume that H is not
torsion. Suppose that for some integer n ≥ 1 we have constructed a ∗-valuated
coproduct

Nn = 〈y1〉 ⊕ 〈y2〉 ⊕ · · · ⊕ 〈yn〉

where each yi is a primitive element in H . That this can be done is a consequence
of Corollary 4.4. Then, Nn is a knice subgroup of G by Lemma 1.5(3). Moreover,
Nn is contained in H . Thus, H/Nn is Σ-isotype in G/Nn by Theorem 2.5 and the
latter is a k-group by Lemma 1.4(2). If H/Nn is not torsion, we may again apply
Corollary 4.4 to obtain a primitive element y +Nn ∈ H/Nn. By Lemma 1.4(3),

there is a positive integerm and an element yn+1 ∈ my+Nn such that ‖yn+1‖
G =

‖my+Nn‖
G/Nn . Thus, ‖yn+1‖

G = ‖yn+1+Nn‖
G/Nn and yn+1+Nn = my+Nn

is primitive because nonzero multiples of primitive elements are primitive. Now
by Lemma 1.6, yn+1 ∈ H is primitive and

Nn+1 = Nn ⊕ 〈yn+1〉 = 〈y1〉 ⊕ 〈y2〉 ⊕ · · · ⊕ 〈yn〉 ⊕ 〈yn+1〉

is a ∗-valuated coproduct in G, and hence in H . Since H has finite torsion-free
rank, repetitions of this construction eventually yield a ∗-valuated coproduct

Nr = 〈y1〉 ⊕ 〈y2〉 ⊕ · · · ⊕ 〈yr〉
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where each yi ∈ H is primitive and H/Nr is torsion. Therefore, H is a k-group.
�

Observe that the set {y1, y2, . . . , yr} constructed in the proof of Theorem 4.5
is a decomposition basis for H ; that is, each yi has infinite order and Nr =
〈y1〉 ⊕ 〈y2〉 ⊕ · · · ⊕ 〈yr〉 is a valuated coproduct with H/Nr torsion. Therefore,
Theorem 3.2(vi) in [HM4] and Theorem 4.5 immediately yield the following.

Corollary 4.6. Suppose H is a Σ-isotype subgroup of a global k-group. If H is
countable and has finite torsion-free rank, then H is a global Warfield group.
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