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Homomorphic images of subdirectly irreducible groupoids

David Stanovský

Abstract. A groupoid H is a homomorphic image of a subdirectly irreducible groupoid
G (over its monolith) if and only if H has a smallest ideal.

Keywords: groupoid, subdirect irreducibility

Classification: 20N02, 08A30

Let G denote the class of all homomorphic images of subdirectly irreducible
groupoids. It is easy to see that the additive semigroup of positive integers is
not in G. On the other hand, according to [3, 2.3], every groupoid possessing an
absorbing element is in G. Now, the aim of this very short note is to prove the
following (somewhat surprising) result: a groupoid H is in G if and only if the
intersection of all ideals of H is non-empty. Moreover, if H ∈ G, then there exists
a subdirectly irreducible groupoid G (G is finite if H is so) such that H ≃ G/µ,
where µ is the smallest non-trivial congruence of G.

1. Preliminaries

A groupoid is a non-empty set equipped with binary operation (usually denoted
as multiplication). A non-empty subset I of a groupoid G is said to be an ideal
of G if GI ∪ IG ⊆ I and we denote by Int(G) the intersection of all ideals of G.
The following two lemmas are quite obvious.

1.1 Lemma. Let G be a groupoid. Then Int(G) is either empty or an ideal
of G. If the latter is true, then Int(G) is the smallest ideal of G. Moreover, G
possesses an absorbing element o if and only if Int(G) is a one-element set; then
Int(G) = {o}.

1.2 Lemma. Let ϕ be a projective homomorphism of a groupoid G onto a
groupoid H . If J is an ideal of H , then the inverse image ϕ−1(J) is an ideal of G.
Consequently, ϕ(Int(G)) ⊆ Int(H). In particular, if Int(G) 6= ∅, then Int(H) 6= ∅.

A non-trivial groupoid G having a smallest non-trivial congruence µG is said
to be subdirectly irreducible and µG is then called the monolith of G.

This research was supported by the grant FRVS 1920/2000 and by the institutional grant
MSM 113200007.
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1.3 Lemma. Let G be a subdirectly irreducible groupoid. Then I = Int(G) 6= ∅.
Moreover, if |I| ≥ 2, then µG ⊆ (I × I) ∪ idG.

Proof: If G contains an absorbing element o, then Int(G) = {o}, and hence
we will assume that G has no absorbing element. Now, being I an ideal of G,
we have |I| ≥ 2 and ρI = (I × I) ∪ idG is a non-trivial congruence of G and so
µG ⊆ ρI . Consequently, if (u, v) ∈ µG, u 6= v, then (u, v) ∈ ρI and u, v ∈ I. Thus
u, v ∈ Int(G). �

1.4 Corollary. Let a groupoid H be a homomorphic image of a subdirectly

irreducible groupoid G. Then Int(H) 6= ∅.

1.5 Example. If G = N(+) is the additive semigroup of non-negative integers,
then Int(G) = ∅.

1.6 Lemma. If I, J are ideals of a groupoid G, then IJ ∪ JI ⊆ I ∩ J and I ∩ J
is an ideal of G.

Proof: The result is obvious. �

1.7 Corollary. The intersection of a non-empty finite set of ideals of G is again
an ideal of G. Consequently, if the set of ideals of G is finite, then Int(G) 6= ∅.

1.8 Corollary. If G is a finite groupoid, then Int(G) 6= ∅.

1.9 Example ([1]). Let D designate the set of rational numbers of the form a/2k,
where a, k are integers. For a positive integer n, let Dn be the n-th cartesian
power of D. Define an operation ◦ on Dn by (r1, . . . , rn) ◦ (s1, . . . , sn) = (

1
2 (r1 +

s1), . . . ,
1
2 (rn + sn)). If H is a non-empty open convex subset of Dn, then H(◦)

is a subgroupoid of Dn(◦) and Int(H(◦)) = H .

2. Main result

2.1 Construction. Let n ≥ 3 be an odd number. We define a groupoid Zn(∗)
on the set {0, 1, . . . , n − 1} in the following way:

• 0 ∗ m = 0 for every 0 ≤ m ≤ n − 1;
• k ∗ 0 = 0 for every odd 1 ≤ k ≤ n − 2;
• l ∗ 0 = 1 for every even 2 ≤ l ≤ n − 1;
• 1 ∗ m = m for every 1 ≤ m ≤ n − 1;
• m ∗ m = m for every 2 ≤ m ≤ n − 1;
• k ∗ l = k + 1 for all 2 ≤ k ≤ n − 2, 1 ≤ l ≤ n − 1, k 6= l;
• (n − 1) ∗ l = 0 for every 1 ≤ l ≤ n − 2.

It is easy to check that Zn(∗) is a simple idempotent groupoid and that no right
translation of this groupoid is a permutation. Moreover, 0 is a left absorbing
element and 1 is a left neutral element.
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2.2 Construction. Let n ≥ 4 be an even number. We define a groupoid Zn(∗)
on the set {0, 1, . . . , n − 1} in the following way:

• 0 ∗ m = 0 for every 0 ≤ m ≤ n − 1;
• k ∗ 0 = 1 for every odd 1 ≤ k ≤ n − 1;
• l ∗ 0 = 0 for every even 2 ≤ l ≤ n − 2;
• 1 ∗ m = m for every 1 ≤ m ≤ n − 1;
• m ∗ m = m for every 2 ≤ m ≤ n − 1;
• k ∗ l = k + 1 for all 2 ≤ k ≤ n − 2, 1 ≤ l ≤ n − 1, k 6= l;
• (n − 1) ∗ l = 0 for every 1 ≤ l ≤ n − 1.

Again, Zn(∗) is a simple idempotent groupoid whose no right translation is a
permutation. The element 0 is left absorbing.
The groupoid Z2(∗) on the set {0, 1} is defined in the following way: 1 ∗ 0 =

0, 0 ∗ 0 = 0 ∗ 1 = 1 ∗ 1 = 1.

2.3 Construction. Let κ be an infinite cardinal number. We define a groupoid
Zκ(∗) on the set κ in the following way:

• 0 ∗ α = 0 for every 0 ≤ α < κ;
• (β + k) ∗ 0 = 1 for all limit ordinals β < κ and finite even numbers k ≥ 0,

β + k 6= 0;
• (β + l) ∗ 0 = 0 for all limit ordinals β < κ and finite odd numbers l ≥ 1;
• 1 ∗ α = α for every 1 ≤ α < κ;
• α ∗ α = α for every 2 ≤ α < κ;
• α ∗ β = α+ 1 for all 2 ≤ α < κ and 1 ≤ β < κ.

The groupoid Zκ(∗) is simple and idempotent and none of its right translations is
a permutation. The element 0 is left absorbing and the element 1 is left neutral.

2.4 Theorem. The following conditions are equivalent for a groupoid H :

(i) H is a homomorphic image of a subdirectly irreducible groupoid;
(ii) Int(H) 6= ∅;
(iii) H possesses a smallest ideal;
(iv) H is isomorphic to G/µG for a subdirectly irreducible groupoid G.

Proof: In view of 1.4, it is enough to show that (iii) implies (iv). Hence, let
I = Int(H), K = H r I and κ = max(|I|, |K|).
If κ = 1, then |H | ≤ 2. If |H | = 1, then G can be chosen to be any simple

groupoid. If |H | = 2, then |I| = 1, i.e. I = {o}, where o is an absorbing element
of H = {o, a}. We take G = H ∪ {b}, b /∈ H , and put u ◦ v = uv for all u, v ∈ H ,
a ◦ b = b, o ◦ b = b ◦ o = b ◦ a = b ◦ b = o. Clearly, G(◦) is a subdirectly irreducible
groupoid and H ≃ G/µG.
Now, assume that κ ≥ 2 and K 6= ∅.

2.4.1 Lemma. There exist permutations πa,u ∈ κ! for all a ∈ I, u ∈ K, such
that the following two conditions are satisfied:

(A) πa,u 6= πa,v for all a ∈ I, u, v ∈ K;
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(B) for all a, b ∈ I, a 6= b, and all 0 ≤ α < κ, there exists some u ∈ K with
πa,u(α) 6= πb,u(α).

Proof: (a) Let |I| = κ. Choose w ∈ K, a bijection ξ : I → κ and a quasigroup
Q(⋄) defined on κ. Put πa,w(α) = α ⋄ ξ(a) for all a ∈ I and α < κ. Now it is easy
to find the remaining permutations πa,u, a ∈ I, u ∈ K r {w}.

(b) Let |I| < κ, 4 ≤ κ. Choose a permutation ρ ∈ κ! without fix points,
an injective mapping ξ : I → K and permutations πu ∈ κ!, u ∈ K such that
ρπu 6= πv 6= πu for all u, v ∈ K, u 6= v. Now, define πa,u = πu for all a ∈ I, u ∈ K
such that ξ(a) 6= u and πb,ξ(b) = ρπξ(b) for every b ∈ I.

(c) Let |I| < κ ≤ 3. This case is easy. �

Put G = (I × κ) ∪ K and define an operation ◦ on G in the following way:

• u ◦ v = uv for all u, v ∈ K such that uv ∈ K;
• u ◦ v = (uv, 0) for all u, v ∈ K such that uv ∈ I;
• (a, α) ◦ (b, β) = (ab, α ∗ β) for all a, b ∈ I, 0 ≤ α, β < κ (the operation ∗
on κ is defined in 2.1, 2.2 and 2.3);

• u ◦ (a, α) = (ua, πa,u(α)) for all a ∈ I, u ∈ K, 0 ≤ α < κ;
• (a, α) ◦ u = (au, πa,u(α)) for all a ∈ I, u ∈ K, 0 ≤ α < κ.

For a ∈ I, let Ia = {a} × κ ⊆ I × κ.

2.4.2 Lemma. The groupoid G(◦) is subdirectly irreducible and

µG(◦) =
⋃

a∈I

(Ia × Ia) ∪ idG .

Proof: It is clear that µ =
⋃

a∈I (Ia × Ia)∪ idG is a non-trivial congruence of G
and we have to show that µ ⊆ ν for any non-trivial congruence of G(◦). For this
purpose, put J = {a ∈ I : Ia × Ia ⊆ ν}. If κ = 2, then obviously JI ∪ IJ ⊆ J .
If κ ≥ 3, a ∈ J , b ∈ I and 0 ≤ α < κ, then ((a, 0), (a, α)) ∈ ν, and therefore
((ab, 0), (ab, α)) = ((a, 0) ◦ (b, α), (a, α) ◦ (b, α)) ∈ ν. From this ab ∈ J and, quite
similarly, ba ∈ J . Thus JI ∪ IJ ⊆ J . If a ∈ J , u ∈ K and 0 ≤ α, β < κ,
then ((au, πa,u(α)), (au, πa,u(β))) = ((a, α) ◦ u, (a, β) ◦ u) ∈ ν. Since πa,u is a
permutation, we get au ∈ J . Quite similarly, ua ∈ J , and we conclude that J is
an ideal of G, J = I and µ ⊆ ν, provided that J 6= ∅. Consequently, it remains
to show that J is nonempty. This will be done in next five steps.

(1) Assume that ((a, α), (a, β)) ∈ ν for some a ∈ I and 0 ≤ α < β < κ.
If α = 0 and β = 1, then, using the right translation by (a, γ) for all
0 ≤ γ < κ, we get aa ∈ J .
If α ∗ 0 6= β ∗ 0, then using the right translation by (a, 0), we get
((aa, 0), (aa, 1)) ∈ ν, and hence aa · aa ∈ J .
Finally, if α ∗ 0 = β ∗ 0 and 2 ≤ β, then using the right translation by
(a, α) for α 6= 0 and by (a, 1) for α = 0, we get ((aa, α), (aa, β⊕)) ∈ ν
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(here β⊕ = β + 1 for κ infinite or κ finite and β ≤ κ − 2, and β⊕ = 0 for
κ finite and β = κ − 1). According to the preceding part of the proof, we
have (aa · aa)(aa · aa) ∈ J .

(2) Assume that ((a, α), (b, β)) ∈ ν for some a, b ∈ I, a 6= b, 0 ≤ α < β < κ
and take an arbitrary c ∈ I.

If 2 ≤ α, then, applying the right translations by (c, 1) and (c, α), we get
((ac, α⊕), (bc, β⊕)) ∈ ν and ((bc, β⊕), (ac, α)) ∈ ν. So ((ac, α⊕), (ac, α)) ∈
ν and our result follows from (1).

If α = 1, then, applying the right translations by (c, γ) and (c, 1), where
2 ≤ γ 6= β, we get ((ac, γ), (bc, β⊕)) ∈ ν and ((bc, β⊕), (ac, 1)) ∈ ν. Thus
((ac, γ), (ac, 1)) ∈ ν and (1) applies again.

If α = 0 and 2 ≤ β, then, using the right translations by (c, γ) and (c, β),
where 1 ≤ γ 6= β, we get ((ac, 0), (bc, β⊕)) ∈ ν and ((ac, 0), (bc, β)) ∈ ν.
That is ((bc, β⊕), (bc, β)) ∈ ν and (1) takes place.

If α = 0, β = 1 and 3 ≤ κ, then, because of the right translations by (c, 2)
and (c, 1), we get ((ac, 0), (bc, 2)) ∈ ν and ((ac, 0), (bc, 1)) ∈ ν. It follows
that ((bc, 2), (bc, 1)) ∈ ν and (1) makes the job.

Finally, if α = 0, β = 1 and κ = 2, then, because of the right translations
by (c, 1) and (c, 0), we get ((ac, 1), (bc, 1)) ∈ ν and ((ac, 1), (bc, 0)) ∈ ν. So
((bc, 1), (bc, 0)) ∈ ν and (1) works.

(3) Assume that ((a, α), (b, α)) ∈ ν for some a, b ∈ I, a 6= b and 0 ≤ α < κ.
Then, by (B) (see 2.4.1), there is u ∈ K such that β = πa,u(α) 6= πb,u(α) =
γ. Thus, using the right translation by u, we get ((au, β), (bu, γ)) ∈ ν.
Now, either (1) or (2) can be used.

(4) Assume that ((a, α), u) ∈ ν for some a ∈ I, u ∈ K and 0 ≤ α < κ.

If ba 6= bu for some b ∈ I, then, using the left translation by (b, 0), we get
((ba, 0 ∗ α), (bu, πu,b(0))) and either (2) or (3) can be used.

If κ ≥ 3 and ca = cu for some c ∈ I, then, using the facts that πc,u is
a permutation of κ, but no right translation of Zκ(∗) is a permutation,
we find 0 ≤ β < κ such that β ∗ α 6= πc,u(β) = γ. We apply the left
translation by (c, β) and we get ((ca, β ∗ α), (cu, γ)) ∈ ν. Thus (1) takes
place.

The case κ = 2 is clear.
(5) Assume that (u, v) ∈ ν for some u, v ∈ K, u 6= v, and take arbitrary a ∈ I.
By (A) (see 2.4.1), there is 0 ≤ α < κ such that β = πa,u(α) 6= πa,v(α) =
γ. Now, applying the left translation by (a, α), we get ((au, β), (av, γ)) ∈
ν. Thus at least one of (1) and (2) can be used.

�

2.4.3 Lemma. G(◦)/µG(◦) ≃ H .

Proof: Easy to see. �
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Now, we will discuss the case K = ∅, i.e. H is an ideal-free groupoid and
I = IntH = H . Put G = H×κ and define an operation ◦ on H by (a, α)◦(a, β) =
(aa, β ∗ α) and (a, α) ◦ (b, β) = (ab, α ∗ β) for all a, b ∈ H , a 6= b, 0 ≤ α, β < κ.
For a ∈ H , let Ha = {a} × κ.

2.4.4 Lemma. The groupoid G(◦) is subdirectly irreducible and

µG(◦) =
⋃

a∈H

(Ha × Ha).

Proof: We have to show that µ =
⋃

a∈I(Ha × Ha) ⊆ ν for any non-trivial
congruence ν of G(◦). Proceeding similarly as in the proof of 2.4.2, it is sufficient
to check that Ha × Ha ⊆ ν for at least one a ∈ H . This will be done in the next
three steps.

(1) Assume that ((a, α), (a, β)) ∈ ν for some a ∈ H and 0 ≤ α < β < κ. Now,
using left translations instead of the right ones, we can proceed similarly
as in 2.4.2 (1).

(2) Assume that ((a, α), (b, β)) ∈ ν for some a, b ∈ H , a 6= b, and 0 ≤ α <
β < κ. If κ ≥ 3, then we can proceed similarly as in 2.4.2 (2); we have to
choose a 6= c 6= b. The case κ = 2 is clear.

(3) Assume that ((a, α), (b, α)) ∈ ν for some a, b ∈ H , a 6= b and 0 ≤ α < κ.
There is 0 ≤ β < κ such that α ∗ β 6= β ∗ α, and hence, using the right
translation by (a, β), we get ((aa, β ∗ α), (ba, α ∗ β)) ∈ ν. Now, either (1)
or (2) takes place.

�

2.4.5 Lemma. G(◦)/µG(◦) ≃ H .

Proof: Easy to see. �

The proof of Theorem 2.4 is completed. �

2.5 Corollary. Let H be a finite groupoid, |H | = n and | Int(H)| = m. Then
there exists a finite subdirectly irreducible groupoid G such that G/µG ≃ H .
Moreover, G can be chosen in such a way that

(1) |G| = 2 if n = 1;
(2) |G| = 3 if n = 2;
(3) |G| = m2 + (n − m) if n ≥ 3 and n ≤ 2m;
(4) |G| = (m+ 1)(n − m) if n ≥ 3 and n > 2m.

2.6 Remark. The results can be easily strengthened to all algebras with at least
one at least binary operation. Given algebra H of signature Σ (with all symbols
of finite arity) with operations (oσ : σ ∈ Σ), a non-empty subset I of H is said
to be an ideal of H if for every symbol σ ∈ Σ of arity n ≥ 1 and for every
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x1, . . . , xn ∈ H it holds oσ(x1, . . . , xn) ∈ I whenever xi ∈ I for at least one i. We
denote by Int(H) the intersection of all ideals of H .
Now, Theorem 2.4 and Corollary 2.5 hold also for all algebras with signature

containing at least one symbol of arity at least 2. Obviously the statements 1.1–
1.4 work for such algebras. So it remains to construct the subdirectly irreducible
algebra G with operations (gσ : σ ∈ Σ) satisfying condition 2.4 (iv). It is defined
on the same set (I × κ) ∪ K in the following way (for every symbol σ ∈ Σ):

• gσ(u1, . . . , un) = oσ(u1, . . . , un) = v for all u1, . . . , un ∈ K such that
v ∈ K;

• gσ(u1, . . . , un) = (oσ(u1, . . . , un), 0) for all u1, . . . , un ∈ K not satisfying
previous condition;

• if σ is unary, then gσ((a, α)) = (oσ(a), α) for every a ∈ I, 0 ≤ α < κ;
• if σ is at least binary, then

gσ(u1, . . . , uk, (a, α), uk+1, . . . , un−1) =

= (oσ(u1, . . . , uk, a, uk+1, . . . , un−1), πa,u1(α))

for all a ∈ I, u1, . . . , un−1 ∈ K, 0 ≤ α < κ, k = 0, . . . , n − 1;
• if σ is at least binary, then gσ(x1, . . . , xn) = (oσ(ξx1, . . . , ξxn), α1 ∗ (α2 ⊙
· · ·⊙αk)) for all x1, . . . , xn ∈ G such that xi1 , . . . , xik ∈ I, k ≥ 2, denoting
xij = (aj , αj), j = 1, . . . , k, and ξ : G → H , ξ|K = idK , ξ(a, α) = a for all
a ∈ I, 0 ≤ α < κ, and ⊙ some group operation on κ.

It is easy to see that in the case of groupoids (i.e. Σ contains one binary
operation) this definition gives precisely the same subdirectly irreducible groupoid
as in the proof of Theorem 2.4. In fact, the proof of property 2.4 (iv) in the general
case can be done easily following the proof of this theorem. We omit this proof
because of its technical difficulty and absence of any new ideas.
On the other hand, if the signature of the given algebra contains only unary

operations, this result does not work anymore. Any suitable characterization is
not known yet.

2.7 Remark. Let F denote the class of finite groupoids and H the class of
all groupoids H ∈ F such that H ≃ G/µG for a finite subdirectly irreducible
groupoid G with |G| = |H |+ 1. According to [2, 4.11] and [3, 2.4] (see also [4]),
the following groupoids belong to H:

(1) finite groupoids with zero multiplication,
(2) finite quasigroups,
(3) finite simple groupoids,
(4) finite subdirectly irreducible groupoids H such that the monolith contains
at least one pair (a, b) with aa = a 6= b.

On the other hand, any “reasonable” characterization of H seems to be an open
problem.
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