Commentationes Mathematicae Universitatis Carolinae

Francesco Leonetti; Francesco Siepe

Integrability for vector-valued minimizes of some variational integrals

Commentationes Mathematicae Universitatis Carolinae, Vol. 42 (2001), No. 3, 469--479

Persistent URL: http://dml.cz/dmlcz/119261

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2001

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Integrability for vector-valued minimizers of some variational integrals

Francesco Leonetti, Francesco Siepe

Abstract. We prove that the higher integrability of the data f, f_{0} improves on the integrability of minimizers u of functionals \mathcal{F}, whose model is

$$
\int_{\Omega}\left[|D u|^{p}+(\operatorname{det}(D u))^{2}-\langle f, D u\rangle+\left\langle f_{0}, u\right\rangle\right] d x
$$

where $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $p \geq 2$.

Keywords: calculus of variations, minimizers, regularity
Classification: 49N60, 35J60

1. Introduction

Let us consider the following elliptic boundary value problem

$$
\begin{cases}\operatorname{div}(a D u)=\operatorname{div}(f) & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $a=\left\{a_{i j}(x)\right\}$ is an elliptic matrix with measurable and bounded entries. In Stampacchia's book [14, Chapter 4] we can find the following regularity result for weak solutions $u \in W_{0}^{1,2}(\Omega)$ of (1.1) with $f \in L^{q}(\Omega)$:

$$
\left\{\begin{array}{lll}
q>n & \Longrightarrow & u \in L^{\infty}(\Omega), \tag{1.2}\\
2<q<n & \Longrightarrow & u \in L^{q^{*}}(\Omega) .
\end{array}\right.
$$

In (1.1) we have the boundary condition $u=0$ and one single elliptic equation $\operatorname{div}(a D u)=\operatorname{div}(f)$. Let us consider the case of a system of N elliptic equations:

$$
\begin{cases}\operatorname{div}(A D u)=\operatorname{div}(f) & \text { in } \Omega \tag{1.3}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ and $A=\left\{A_{i j}^{\alpha \beta}(x)\right\}$ is elliptic with measurable and bounded entries. De Giorgi's counterexample shows that regularity (1.2) does not

[^0]hold true any longer [4], [8, Chapter 2, Section 3]. However, if the matrix $A=$ $\left\{A_{i j}^{\alpha \beta}(x, u)\right\}$ is "diagonal" for large values of u, that is $A_{i j}^{\alpha \beta}(x, u)=a_{i j}^{\alpha}(x, u) \delta^{\alpha \beta}$ for $|u| \geq R$, then (1.2) can be recovered ([13]). Solutions $u \in W_{0}^{1,2}\left(\Omega, \mathbb{R}^{N}\right)$ of (1.3) are minimizers of the functional
\[

$$
\begin{equation*}
I(u)=\int_{\Omega}\langle A D u, D u\rangle d x-\int_{\Omega}\langle f, D u\rangle d x \tag{1.4}
\end{equation*}
$$

\]

provided the matrix $A=\left\{A_{i j}^{\alpha \beta}(x)\right\}$ is symmetric. Viceversa, minimizers $u \in$ $W_{0}^{1,2}\left(\Omega, \mathbb{R}^{N}\right)$ of (1.4) are solutions to the boundary value problem (1.3). In this paper we consider more general functionals

$$
\begin{equation*}
I(u)=\int_{\Omega} G(x, u(x), D u(x)) d x-\int_{\Omega}\langle f, D u\rangle d x \tag{1.5}
\end{equation*}
$$

and we prove that the degree of integrability of f improves on the integrability of u as in (1.2). Because of De Giorgi's counterexample, we have to assume some restrictions on $G(x, u, D u)$. A simple model for our results is

$$
\begin{equation*}
G(x, u, D u)=|D u|^{p}+|\operatorname{det}(D u)|^{2}, \tag{1.6}
\end{equation*}
$$

where $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $p \geq 2$. The higher integrability of minimizers is achieved by using test functions built by means of truncation of only one component u^{γ} of our minimizer $u=\left(u^{1}, \ldots, u^{n}\right)$. The truncation argument has been successfully employed in the scalar case $u: \Omega \rightarrow \mathbb{R}([14],[1],[2],[7])$ and in some special vector valued cases $u: \Omega \rightarrow \mathbb{R}^{N}([13])$. The leading part $|D u|^{p}$ in (1.6) is one of those special cases ([13]); the main feature of our model (1.6) is the presence of $|\operatorname{det}(D u)|^{2}$ and its good behaviour with respect to the truncation argument (see [11], [12], [5], [6]).

2. Statements and preliminary results

In this section we introduce some notations and we state the result which will be proved in the next section.

In the following Ω will always denote a bounded open subset of $\mathbb{R}^{n}(n \geq 2)$ and c a constant that may vary from line to line.

First of all, let us recall the definition of weak L^{p}-spaces, or Marcinkiewicz spaces (see [3, Chapter 1, Section 2], [9, Chapter 2, Section 5] or [10, Chapter 2, Section 18]):
for $p>0$ we will say that $f \in L_{w}^{p}(\Omega)$ if and only if there exists a positive constant $k=k(f)$ such that

$$
\begin{equation*}
|\{x \in \Omega:|f(x)|>t\}| \leq \frac{k}{t^{p}} \tag{2.1}
\end{equation*}
$$

for every $t>0$, where $|E|$ is the n-dimensional Lebesgue measure of $E \subset \mathbb{R}^{n}$. We recall that if $f \in L_{w}^{p}$ for some $p>1$, then $f \in L^{q}$ for every $1 \leq q<p$.

Later we will use the following result (see [3, Chapter 1, Lemma 2.1]).

Lemma 2.1. Let $p>1$. Then $f \in L_{w}^{p}(\Omega)$ if and only if for every measurable set $E \subset \Omega$, the following inequality holds

$$
\int_{E}|f| d x \leq c|E|^{\frac{p-1}{p}}
$$

for some constant $c>0$.
We will also need the following technical result (see [14, Lemma 4.1]).
Lemma 2.2. Let $s_{0}>0$ and let $\psi:\left(s_{0},+\infty\right) \rightarrow[0,+\infty)$ be a decreasing function, such that for every h, k with $h>k>s_{0}$

$$
\psi(h) \leq \frac{c}{(h-k)^{\alpha}}(\psi(k))^{\beta}
$$

where c, α, β are positive constants. Then
(i) if $\beta>1$ we have that $\psi\left(s_{0}+d\right)=0$, where

$$
d^{\alpha}=c 2^{\frac{\alpha \beta}{\beta-1}}\left(\psi\left(s_{0}\right)\right)^{\beta-1}
$$

(ii) if $\beta<1$ we have that

$$
\psi(h) \leq 2^{\frac{\mu}{1-\beta}}\left[c^{\frac{1}{1-\beta}}+\left(2 s_{0}\right)^{\mu} \psi\left(s_{0}\right)\right] h^{-\mu}
$$

where $\mu=\frac{\alpha}{1-\beta}$.
For $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ we write $D u$ for the Jacobian matrix $D_{i}^{\alpha} u, \alpha=1, \ldots, N$, $i=1, \ldots, n$, with N rows and n columns. We set $n \wedge N=\min \{n, N\}$ and consider the functional

$$
\begin{align*}
& \mathcal{F}(u)=\int_{\Omega} L(x, u(x), D u(x)) d x+\sum_{s=1}^{n \wedge N} \int_{\Omega} g_{s}\left(\left|M_{s} D u(x)\right|\right) d x \tag{2.2}\\
&-\int_{\Omega} \sum_{i=1}^{n} \sum_{\alpha=1}^{N} f_{i}^{\alpha}(x) D_{i} u^{\alpha}(x) d x+\int_{\Omega} \sum_{\alpha=1}^{N} f_{0}^{\alpha}(x) u^{\alpha}(x) d x
\end{align*}
$$

where $M_{s} D u(x)$ is the vector containing all the $s \times s$-minors taken from the $N \times n$ matrix $D u(x)$.
We assume that for every $s=1 \ldots, n \wedge N, g_{s}:[0,+\infty) \rightarrow \mathbb{R}$ is increasing and $g_{s} \geq 0$.

For the leading part L of the functional (2.2) we assume that $L: \Omega \times \mathbb{R}^{N} \times$ $\mathbb{R}^{N \times n} \rightarrow \mathbb{R}$ is measurable with respect to $x \in \Omega$ and continuous with respect to
$(u, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$, with $L \geq 0$. Moreover, there exists $s_{0} \geq 0$ and $p \in(1, n)$ such that

$$
\begin{equation*}
L(x, u, \xi)=\sum_{\alpha=1}^{N}\left(\sum_{i, j=1}^{n} a_{i j}^{\alpha}(x) \xi_{i}^{\alpha} \xi_{j}^{\alpha}\right)^{\frac{p}{2}} \quad \text { if } \quad|u| \geq s_{0} \tag{2.3}
\end{equation*}
$$

where the functions $a_{i j}^{\alpha}$ belong to $L^{\infty}(\Omega)$ and satisfy the following ellipticity condition

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i j}^{\alpha}(x) \eta_{i} \eta_{j} \geq \nu|\eta|^{2} \tag{2.4}
\end{equation*}
$$

for every $\eta \in \mathbb{R}^{n}$, for any $\alpha=1, \ldots, N$ and for some $\nu>0$.
Finally, for the linear part of (2.2) we will assume that

$$
\begin{align*}
f & \in L^{p^{\prime}}\left(\Omega, \mathbb{R}^{N \times n}\right) \tag{2.5}\\
f_{0} & \in L^{\left(p^{*}\right)^{\prime}}\left(\Omega, \mathbb{R}^{N}\right) \tag{2.6}
\end{align*}
$$

where $r^{\prime}=\frac{r}{r-1}$ and $p^{*}=\frac{n p}{n-p}$.
Let us remark that assumptions (2.5)-(2.6) guarantee that $\langle f, D v\rangle \in L^{1}(\Omega)$ and $\left\langle f_{0}, v\right\rangle \in L^{1}(\Omega)$, for every $v \in W_{0}^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$.

A minimizer of functional (2.2) is a function $u: \Omega \rightarrow \mathbb{R}^{N}$ such that $u \in$ $W_{0}^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$, with $x \rightarrow L(x, u(x), D u(x)) \in L^{1}(\Omega)$ and $g_{s}\left(\left|M_{s} D u\right|\right) \in L^{1}(\Omega)$ $\forall s=1, \ldots, n \wedge N$ and

$$
\begin{equation*}
\mathcal{F}(u) \leq \mathcal{F}(v) \quad \forall v \in W_{0}^{1, p}\left(\Omega, \mathbb{R}^{N}\right) \tag{2.7}
\end{equation*}
$$

Let us write the components of f and f_{0} in the way

$$
f(x)=\left(f^{1}(x), \ldots, f^{N}(x)\right) \quad \text { with } \quad f^{\alpha}(x) \in \mathbb{R}^{n}
$$

and

$$
f_{0}(x)=\left(f_{0}^{1}(x), \ldots, f_{0}^{N}(x)\right) \quad \text { with } \quad f_{0}^{\alpha}(x) \in \mathbb{R}
$$

Let us assume that there exists an index $\gamma \in\{1, \ldots, N\}$ and an exponent $q>$ $p^{\prime}=\frac{p}{p-1}$ such that

$$
\begin{equation*}
f^{\gamma} \in L_{w}^{q}\left(\Omega, \mathbb{R}^{n}\right), \quad f_{0}^{\gamma} \in L_{w}^{q_{*}}(\Omega) \tag{2.8}
\end{equation*}
$$

where $q_{*}=\frac{n q}{n+q}$. The main result of the paper is the following

Theorem 2.3. Let $u=\left(u^{1}, \ldots, u^{N}\right)$ be a minimizer of functional (2.2), under the previous assumptions. Then the component u^{γ} of our minimizer enjoys the following regularity:

$$
\begin{equation*}
q>\frac{n}{p-1} \quad \Longrightarrow \quad u^{\gamma} \in L^{\infty}(\Omega) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
q<\frac{n}{p-1} \quad \Longrightarrow \quad u^{\gamma} \in L_{w}^{m}(\Omega) \tag{ii}
\end{equation*}
$$

where $m=[q(p-1)]^{*}$.
Remark 2.1. The previous theorem still holds true when

$$
\begin{equation*}
L(x, u, \xi)=\left(\sum_{\alpha=1}^{N} \sum_{i, j=1}^{n} a_{i j}^{\alpha}(x) \xi_{i}^{\alpha} \xi_{j}^{\alpha}\right)^{\frac{p}{2}} \quad \text { for }|u| \geq s_{0} \tag{2.9}
\end{equation*}
$$

where $a_{i j}^{\alpha} \in L^{\infty}(\Omega)$ and satisfy (2.4), provided $p \geq 2$.
Example 2.1. For $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, that is $n=N$, let us write $u=$ $\left(u^{1}, \ldots, u^{n}\right)$. A functional model for (2.2) is

$$
\begin{align*}
\mathcal{F}(u)=\int_{\Omega} & \sum_{\alpha=1}^{n}\left|D u^{\alpha}\right|^{p} d x+\int_{\Omega}|\operatorname{det}(D u)|^{2} d x \tag{2.10}\\
& -\int_{\Omega}\langle f, D u\rangle d x+\int_{\Omega}\left\langle f_{0}, u\right\rangle d x
\end{align*}
$$

where $1<p<n$. The structure (2.3) is easily checked.
Example 2.2. For $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, a functional model for (2.9) is

$$
\begin{align*}
\mathcal{F}(u)= & \int_{\Omega}|D u|^{p} d x+\int_{\Omega}|\operatorname{det}(D u)|^{2} d x \tag{2.11}\\
& -\int_{\Omega}\langle f, D u\rangle d x+\int_{\Omega}\left\langle f_{0}, u\right\rangle d x
\end{align*}
$$

where $2 \leq p<n$.

3. Proof of Theorem 2.3

Let $k>s_{0}$ and define $T_{k}: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
T_{k}(s)= \begin{cases}-k & \text { if } s \leq-k \\ s & \text { if }-k<s<k \\ k & \text { if } k \leq s\end{cases}
$$

For γ as in our assumptions we consider $v: \Omega \rightarrow \mathbb{R}^{N}$ defined as follows

$$
v^{\alpha}= \begin{cases}T_{k}\left(u^{\gamma}\right) & \text { if } \alpha=\gamma \tag{3.1}\\ u^{\alpha} & \text { if } \alpha \neq \gamma\end{cases}
$$

Since $u^{\gamma} \in W_{0}^{1, p}(\Omega)$, it follows that $T_{k}\left(u^{\gamma}\right) \in W_{0}^{1, p}(\Omega)$ and

$$
D\left(T_{k}\left(u^{\gamma}\right)\right)=D u^{\gamma} \chi_{\left\{\left|u^{\gamma}\right|<k\right\}},
$$

where χ_{E} is the characteristic function of the set E, that is $\chi_{E}(x)=1$ if x belongs to $E, \chi_{E}(x)=0$ if x does not belong to E. Thus

$$
D v^{\alpha}= \begin{cases}D u^{\gamma} \chi_{\left\{\left|u^{\gamma}\right|<k\right\}} & \text { if } \alpha=\gamma \tag{3.2}\\ D u^{\alpha} & \text { if } \alpha \neq \gamma\end{cases}
$$

Let $\varphi=v-u$; then $\varphi \in W_{0}^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$ and

$$
D \varphi^{\gamma}=D v^{\gamma}-D u^{\gamma}=-D u^{\gamma} \chi_{\left\{\left|u^{\gamma}\right| \geq k\right\}}
$$

Thus, for almost every $x \in\left\{\left|u^{\gamma}\right|<k\right\}$ we have:

$$
\left\{\begin{array}{l}
v(x)=u(x), \tag{3.3}\\
D v(x)=D u(x), \\
M_{s} D v(x)=M_{s} D u(x) \quad \forall s=1, \ldots, n \wedge N \\
L(x, v(x), D v(x))=L(x, u(x), D u(x)), \\
g_{s}\left(\left|M_{s} D v(x)\right|\right)=g_{s}\left(\left|M_{s} D u(x)\right|\right) \quad \forall s=1, \ldots, n \wedge N
\end{array}\right.
$$

while for a.e. $x \in\left\{\left|u^{\gamma}\right| \geq k\right\}$ it is easy to see that:

$$
\left\{\begin{array}{l}
\left|M_{s} D v(x)\right| \leq\left|M_{s} D u(x)\right| \quad \forall s=1, \ldots, n \wedge N \tag{3.4}\\
0 \leq L(x, v(x), D v(x)) \leq L(x, u(x), D u(x)) \\
0 \leq g_{s}\left(\left|M_{s} D v(x)\right|\right) \leq g_{s}\left(\left|M_{s} D u(x)\right|\right) \quad \forall s=1, \ldots, n \wedge N
\end{array}\right.
$$

Hence $x \rightarrow L(x, v(x), D v(x)) \in L^{1}(\Omega)$ and $g_{s}\left(\left|M_{s} D v\right|\right) \in L^{1}(\Omega)$ for every $s=$ $1, \ldots, n \wedge N$.

We use (2.7) with v as before.

We split Ω into the two subsets $\left\{\left|u^{\gamma}\right| \geq k\right\}$ and $\left\{\left|u^{\gamma}\right|<k\right\}$; recalling (3.3) we easily obtain

$$
\begin{align*}
& \int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} L(x, u, D u) d x+\sum_{s=1}^{n \wedge N} \int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} g_{s}\left(\left|M_{s} D u\right|\right) d x \\
&-\int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} \sum_{\alpha=1}^{N} \sum_{i=1}^{n} f_{i}^{\alpha} D_{i} u^{\alpha} d x+\int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} \sum_{\alpha=1}^{N} f_{0}^{\alpha} u^{\alpha} d x \tag{3.5}\\
& \leq \int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} L(x, v, D v) d x+\sum_{s=1}^{n \wedge N} \int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} g_{s}\left(\left|M_{s} D v\right|\right) d x \\
&-\int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} \sum_{\alpha=1}^{N} \sum_{i=1}^{n} f_{i}^{\alpha} D_{i} v^{\alpha} d x+\int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} \sum_{\alpha=1}^{N} f_{0}^{\alpha} v^{\alpha} d x
\end{align*}
$$

Because of (3.4), for every $s=1, \ldots, n \wedge N$ we have

$$
\int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} g_{s}\left(\left|M_{s} D v\right|\right) d x \leq \int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} g_{s}\left(\left|M_{s} D u\right|\right) d x
$$

thus, the integrals containing $M_{s} D u$ and $M_{s} D v$ can be dropped in (3.5).
Using (3.1) and (3.2) we get

$$
\begin{gather*}
\int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} L(x, u, D u) d x-\int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} \sum_{i=1}^{n} f_{i}^{\gamma} D_{i} u^{\gamma} d x+\int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} f_{0}^{\gamma} u^{\gamma} d x \tag{3.6}\\
\leq \int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} L(x, v, D v) d x+\int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} f_{0}^{\gamma} T_{k}\left(u^{\gamma}\right) d x
\end{gather*}
$$

Furthermore, since $k \geq s_{0}$, in the set $\left\{\left|u^{\gamma}\right| \geq k\right\}$ we get

$$
L(x, u(x), D u(x))
$$

$$
\begin{equation*}
\geq L(x, v(x), D v(x))+\left(\sum_{i, j=1}^{n} a_{i j}^{\gamma}(x) D_{i} u^{\gamma}(x) D_{j} u^{\gamma}(x)\right)^{\frac{p}{2}} \tag{3.7}
\end{equation*}
$$

Indeed, if $L(x, u, \xi)$ has the structure described in (2.3), then (3.7) holds with equality sign, while if $L(x, u, \xi)$ is the one of (2.9), then to obtain (3.7) we use the inequality $\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{p}{2}} \geq x_{1}^{p}+x_{2}^{p}$, which holds true for every $x_{1}, x_{2} \geq 0$, provided $p \geq 2$.
Hence by (3.6) and (3.7) we have

$$
\begin{array}{r}
\int_{\left\{\left|u^{\gamma}\right| \geq k\right\}}\left(\sum_{i, j=1}^{n} a_{i j}^{\gamma} D_{i} u^{\gamma} D_{j} u^{\gamma}\right)^{\frac{p}{2}} d x \tag{3.8}\\
\leq \int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} \sum_{i=1}^{n} f_{i}^{\gamma} D_{i} u^{\gamma} d x+\int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} f_{0}^{\gamma}\left[T_{k}\left(u^{\gamma}\right)-u^{\gamma}\right] d x .
\end{array}
$$

Now we use ellipticity condition (2.4) in (3.8) so that

$$
\begin{equation*}
\nu^{\frac{p}{2}} \int_{\left\{\left|u^{\gamma}\right| \geq k\right\}}\left|D u^{\gamma}\right|^{p} d x \leq \int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} \sum_{i=1}^{n} f_{i}^{\gamma} D_{i} u^{\gamma} d x+\int_{\left\{\left|u^{\gamma}\right| \geq k\right\}} f_{0}^{\gamma} \varphi^{\gamma} d x \tag{3.9}
\end{equation*}
$$

where we recall that $\varphi=v-u$.
We observe that for almost every $x \in\left\{\left|u^{\gamma}\right|=k\right\}$ we have $D u^{\gamma}(x)=0$ and $\varphi^{\gamma}=0$. Then by applying Hölder inequality to the right hand side of (3.9) we have

$$
\begin{align*}
& \nu^{\frac{p}{2}} \int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left|D u^{\gamma}\right|^{p} d x \leq\left(\int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left|D u^{\gamma}\right|^{p} d x\right)^{\frac{1}{p}}\left(\int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left|f^{\gamma}\right|^{p^{\prime}} d x\right)^{\frac{1}{p^{\prime}}} \tag{3.10}\\
+ & \left(\int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left|\varphi^{\gamma}\right|^{p^{*}} d x\right)^{\frac{1}{p^{*}}}\left(\int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left|f_{0}^{\gamma}\right|^{\left(p^{*}\right)^{\prime}} d x\right)^{\frac{1}{\left(p^{*}\right)^{\prime}}} .
\end{align*}
$$

Now we use Sobolev inequality for the function φ^{γ} in Ω and we note that $D \varphi^{\gamma}=$ $-D u^{\gamma}$ in $\left\{\left|u^{\gamma}\right|>k\right\}$, while $D \varphi^{\gamma}=0$ in $\left\{\left|u^{\gamma}\right| \leq k\right\}$, so that by (3.10) we easily get

$$
\begin{align*}
\nu^{\frac{p}{2}}\left(\int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left|D u^{\gamma}\right|^{p} d x\right)^{\frac{1}{p^{\prime}}} & \leq\left(\int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left|f^{\gamma}\right|^{p^{\prime}} d x\right)^{\frac{1}{p^{\prime}}} \tag{3.11}\\
& +c\left(\int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left|f_{0}^{\gamma}\right|^{\left(p^{*}\right)^{\prime}} d x\right)^{\frac{1}{\left(p^{*}\right)^{\prime}}}
\end{align*}
$$

where $c=c(n, p)$. We observe also that, again by Sobolev inequality

$$
\begin{aligned}
\int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left|D u^{\gamma}\right|^{p} d x & =\int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left|D \varphi^{\gamma}\right|^{p} d x=\int_{\Omega}\left|D \varphi^{\gamma}\right|^{p} d x \\
& \geq c\left(\int_{\Omega}\left|\varphi^{\gamma}\right|^{p^{*}} d x\right)^{\frac{p}{p^{*}}}=c\left(\int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left(\left|u^{\gamma}\right|-k\right)^{p^{*}} d x\right)^{\frac{p}{p^{*}}}
\end{aligned}
$$

with $c=c(n, p)$. Then (3.11) leads to

$$
\begin{array}{rl}
\int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left(\left|u^{\gamma}\right|-k\right)^{p^{*}} d & x \leq c\left[\left(\int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left|f^{\gamma}\right|^{p^{\prime}} d x\right)^{\frac{p^{*}}{p}}\right. \tag{3.12}\\
& \left.+\left(\int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left|f_{0}^{\gamma}\right|^{\left(p^{*}\right)^{\prime}} d x\right)^{\frac{p^{*}-1}{p-1}}\right]
\end{array}
$$

where $c=c(n, p, \nu)$.

By the weak integrability assumptions (2.8) and by (2.1), we deduce that

$$
\left|\left\{x \in \Omega:\left|f^{\gamma}\right|^{p^{\prime}}>\sigma\right\}\right|=\left|\left\{x \in \Omega:\left|f^{\gamma}\right|>\sigma^{\frac{1}{p^{\prime}}}\right\}\right| \leq \frac{c_{0}\left(f^{\gamma}\right)}{\sigma^{\frac{q}{p^{\prime}}}}
$$

and

$$
\left|\left\{x \in \Omega:\left|f_{0}^{\gamma}\right|^{\left(p^{*}\right)^{\prime}}>\sigma\right\}\right|=\left|\left\{x \in \Omega:\left|f^{\gamma}\right|>\sigma^{\frac{1}{\left(p^{*}\right)^{\prime}}}\right\}\right| \leq \frac{c_{0}\left(f_{0}^{\gamma}\right)}{\frac{q_{*}}{\sigma^{\left(p^{*}\right)^{\prime}}}}
$$

Then, by applying Lemma 2.1 to f^{γ} and f_{0}^{γ} we obtain that

$$
\begin{equation*}
\left(\int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left|f^{\gamma}\right|^{p^{\prime}} d x\right)^{\frac{p^{*}}{p}} \leq c_{1}\left|\left\{\left|u^{\gamma}\right|>k\right\}\right|^{\frac{p^{*}\left(q-p^{\prime}\right)}{p q}} \tag{3.13}
\end{equation*}
$$

where $c_{1}=c_{1}\left(f^{\gamma}, n, p, q, \Omega\right)$ and

$$
\begin{equation*}
\left(\int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left|f_{0}^{\gamma}\right|^{\left(p^{*}\right)^{\prime}} d x\right)^{\frac{p^{*}-1}{p-1}} \leq c_{2}\left|\left\{\left|u^{\gamma}\right|>k\right\}\right|^{\frac{\left(p^{*}-1\right)\left(q_{*}-\left(p^{*}\right)^{\prime}\right)}{q_{*}(p-1)}} \tag{3.14}
\end{equation*}
$$

where $c_{2}=c_{2}\left(f_{0}^{\gamma}, n, p, q, \Omega\right)$.
It is easy to see that the exponents at the right hand side of (3.13) and (3.14) coincide; we set

$$
\begin{equation*}
\beta=\frac{p^{*}\left(q-p^{\prime}\right)}{p q} \tag{3.15}
\end{equation*}
$$

so that, by (3.12) we obtain

$$
\begin{equation*}
\int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left(\left|u^{\gamma}\right|-k\right)^{p^{*}} d x \leq c\left|\left\{\left|u^{\gamma}\right|>k\right\}\right|^{\beta} \tag{3.16}
\end{equation*}
$$

where $c=c\left(n, p, q, \nu, f^{\gamma}, f_{0}^{\gamma}, \Omega\right)$.
Since for every $h>k$ the inclusion $\left\{\left|u^{\gamma}\right|>h\right\} \subset\left\{\left|u^{\gamma}\right|>k\right\}$ holds true, we have

$$
\int_{\left\{\left|u^{\gamma}\right|>k\right\}}\left(\left|u^{\gamma}\right|-k\right)^{p^{*}} d x \geq \int_{\left\{\left|u^{\gamma}\right|>h\right\}}\left(\left|u^{\gamma}\right|-k\right)^{p^{*}} d x \geq(h-k)^{p^{*}}\left|\left\{\left|u^{\gamma}\right|>h\right\}\right| .
$$

Thus (3.16) becomes

$$
\begin{equation*}
\left|\left\{\left|u^{\gamma}\right|>h\right\}\right| \leq \frac{c}{(h-k)^{p^{*}}}\left|\left\{\left|u^{\gamma}\right|>k\right\}\right|^{\beta} \tag{3.17}
\end{equation*}
$$

where $h>k \geq s_{0} \geq 0$.
We use Lemma 2.2 with $\varphi(h)=\left|\left\{\left|u^{\gamma}\right|>h\right\}\right|$ and $\alpha=p^{*}$ and we see that

$$
\beta>1 \quad \Longleftrightarrow \quad q>\frac{n}{p-1}
$$

so, in this case, (3.17) and (i) of Lemma 2.2 guarantee that there exists a positive constant c such that

$$
\left\|u^{\gamma}\right\|_{L^{\infty}} \leq c
$$

On the other hand

$$
\beta<1 \quad \Longleftrightarrow \quad q<\frac{n}{p-1}
$$

and then, by (ii) of Lemma 2.2 we obtain a positive constant c such that

$$
\left|\left\{\left|u^{\gamma}\right|>h\right\}\right| \leq \frac{c}{h^{\mu}}
$$

where $\mu=\frac{\alpha}{1-\beta}=[q(p-1)]^{*}$. This concludes the proof of Theorem 2.3.

References

[1] Boccardo L., Giachetti D., Alcune osservazioni sulla regolarità delle soluzioni di problemi fortemente non lineari e applicazioni, Ricerche Mat. XXXIV (1985), 309-323.
[2] Boccardo L., Schianchi R., A remark on the L^{s}-regularity of the minima of functionals of the calculus of variations, Rev. Mat. Univ. Complut. Madrid 2 (1989), 113-118.
[3] Campanato S., Sistemi ellittici in forma di divergenza, Quaderni Scuola Norm. Sup. Pisa, 1980.
[4] De Giorgi E., Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital. 4 (1968), 135-137.
[5] D'Ottavio A., Leonetti F., Musciano C., Maximum principle for vector-valued mappings minimizing variational integrals, Atti Sem. Mat. Fis. Univ. Modena, suppl. vol. XLVI (1998), 677-683.
[6] Fusco N., Hutchinson J., Partial regularity and everywhere continuity for a model problem from non-linear elasticity, J. Austral. Math. Soc. (Series A) 57 (1994), 158-169.
[7] Giachetti D., Porzio M.M., Local regularity results for minima of functionals of the calculus of variations, Nonlinear Anal. TMA 39 (2000), 463-482.
[8] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud. 105, Princeton Univ. Press, 1983.
[9] Giusti E., Metodi diretti nel calcolo delle variazioni, U.M.I., 1994.
[10] Kufner A., John O., Fučik S., Function Spaces, Noordhoff International Publishing, Leyden, 1977.
[11] Leonetti F., Maximum principle for vector-valued minimizers of some integral functionals, Boll. Un. Mat. Ital. 7 (1991), 51-56.
[12] Leonetti F., Maximum principle for functionals depending on minors of the jacobian matrix of vector-valued mappings, Australian Nat. Univ., Centre for Math. Anal., Research Report 20, 1990.
[13] Nečas J., Stará J., Principio di massimo per i sistemi ellittici quasi lineari non diagonali, Boll. Un. Mat. Ital. 6 (1972), 1-10.
[14] Stampacchia G., Equations elliptiques du second ordre à coefficientes discontinus, Semin. de Math. Supérieures, Univ. de Montréal 16 (1966).

Dipartimento di Matematica Pura ed Applicata, Università di L'Aquila, 67100 L'Aquila, Italy

E-mail: leonetti@univaq.it

Dipartimento di Matematica e Applicazioni per l'Architettura, Università di Firenze, Piazza Ghiberti 27, 50122 Firenze, Italy

E-mail: siepe@math.unifi.it

[^0]: We acknowledge the support of MURST and GNAFA-CNR.

