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Natural affinors on (Jr,s,q(., R1,1)0)
∗

W lodzimierz M. Mikulski

Abstract. Let r, s, q, m, n ∈ N be such that s ≥ r ≤ q. Let Y be a fibered manifold with
m-dimensional basis and n-dimensional fibers. All natural affinors on (Jr,s,q(Y, R1,1)0)∗

are classified. It is deduced that there is no natural generalized connection on
(Jr,s,q(Y, R1,1)0)∗. Similar problems with (Jr,s(Y, R)0)∗ instead of (Jr,s,q(Y, R1,1)0)∗

are solved.

Keywords: bundle functors, natural transformations, natural affinors

Classification: 58A20, 53A55

0. Let us recall the following definitions (see e.g. [3]).
Let F : FMm,n → FM be a functor from the category FMm,n of all fibered

manifolds with m-dimensional bases and n-dimensional fibers and their local
fibered diffeomorphisms into the category FM of fibered manifolds and fibered
maps. Let B : FM → Mf be the base functor from FM into the categoryMf
of manifolds. Let T : FM → Mf be the total space functor.
A bundle functor over FMm,n is a (covariant) functor F satisfying B ◦ F =

T|FMm,n
and the localization condition: for every inclusion of an open subset

iU : U → Y , FU is the restriction p−1
Y
(U) of pY : FY → Y over U and FiU is

the inclusion p−1Y (U)→ FY .
An affinor D on a manifold M is a tensor type (1, 1), i.e. a linear morphism

D : TM → TM over idM .
A natural affinor on a bundle functor F is a system of affinors D : TFY →

TFY on FY for every FMm,n-object Y satisfying TFf ◦D = D ◦TFf for every

local FMm,n-diffeomorphism f : Y → Y .
A connection on a fibre bundle Z is an affinor Γ : TZ → TZ on Z such that

Γ ◦ Γ = Γ and im(Γ) = V Z, the vertical bundle of Z.
A natural connection on a bundle functor F is a system of connections Γ :

TFY → TFY on FY for every FMm,n-object Y which is (additionally) a natural
affinor on F .
In [5] it was shown how natural affinors Q on some bundle functor FY can

be used to study the torsion τ = [Γ, Q] of connections Γ on FY . That is why,
natural affinors have been classified in many papers, [1], [2], [7]–[11]. For example,
in [2] natural affinors on the r-th order vector tangent bundle (Jr(M,R)0)

∗ over
m-manifolds M ∈ obj(FMm,0) were classified.
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In this paper we fix numbers r, s, q,m, n ∈ N such that s ≥ r ≤ q and consider

the bundle functor F = T
(r,s,q)
|FMm,n

, where T (r,s,q) = (Jr,s,q(.,R1,1)0)
∗ : FM →

FM is the (introduced in [4]) bundle functor associating to every fibered manifold
Y the vector bundle (Jr,s,q(Y,R1,1)0)

∗ over Y . We prove that the set of all natural

affinors on T
(r,s,q)
|FMm,n

is a 3-dimensional vector space over R and we construct

explicitly the basis of this vector space.

We also solve the similar problem with T (r,s) = (Jr,s(.,R)0)
∗ : FM → FM

instead of T (r,s,q).

As an application of the obtained results we deduce that there are no natural

connections on T (r,s,q) and T (r,s).

The above results extend [2].

Throughout this paper r, s, q,m, n ∈ N are numbers with s ≥ r ≤ q.

The usual fiber coordinates on R
m,n, the trivial bundle R

m ×R
n over R

m, are
denoted by x1, . . . , xm, y1, . . . , yn.

All manifolds and maps are assumed to be of class C∞.

1. The concept of classical r-jets can be generalized as follows. Let Y →M and
Z → N be fibered manifolds. We recall that two FM-morphisms f, g : Y → Z
with base maps f, g : M → N determine the same (r, s, q)-jet jr,s,qy f = jr,s,qy g at

y ∈ Yx, x ∈ M , if jryf = jryg, j
s
y(f |Yx) = jsy(g|Yx) and j

q
xf = jqxg . The space

of all (r, s, q)-jets of Y into Z is denoted by Jr,s,q(Y, Z). The composition of
FM-morphisms induces the composition of (r, s, q)-jets ([3, p. 126]).

The space T r,s,q∗Y = Jr,s,q(Y,R1,1)0, 0 ∈ R
2, has an induced structure of a

vector bundle over Y . Every FM-morphism f : Y → Z, f(y) = z, induces a
linear map λ(j

r,s,q
y f) : T

r,s,q∗
z Z → T

r,s,q∗
y Y by means of the jet composition. If

we denote by T (r,s,q)Y the dual vector bundle of T r,s,q∗Y and define T (r,s,q)f :

T (r,s,q)Y → T (r,s,q)Z by using the dual maps to λ(j
r,s,q
y f), we obtain (similarly

as in [3, p. 123]) a vector bundle functor T (r,s,q) on FM, see [4].

2. In this section all natural transformations T (r,s,q) → T (r,s,q) over FMm,n

will be classified. This extends [6].

A natural transformation T (r,s,q) → T (r,s,q) over FMm,n is a system of fibered

maps A : T (r,s,q)Y → T (r,s,q)Y covering the identity idY for every FMm,n-object

Y satisfying T (r,s,q)f ◦A = A ◦ T (r,s,q)f for every local FMm,n-map f : Y → Y .

Example 1. Let Y be an FMm,n-object. For a fibered map γ = (γ
1, γ2) : Y →

R
1,1 we have fibered maps γ〈1〉 = (γ1, 0), γ〈2〉 = (0, γ2), γ〈3〉 = (0, γ1) : Y → R

1,1.

Clearly, j
r,s,q
y γ〈1〉, j

r,s,q
y γ〈2〉, j

r,s,q
y γ〈3〉 depend linearly on j

r,s,q
y γ for y ∈ Y . Define
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fibered maps Pr〈1〉, P r〈2〉, P r〈3〉 : T (r,s,q)Y → T (r,s,q)Y over idY by

〈Pr〈1〉(ω), jr,s,qy γ〉 = 〈ω, jr,s,qy γ〈1〉〉,

〈Pr〈2〉(ω), jr,s,qy γ〉 = 〈ω, jr,s,qy γ〈2〉〉,

〈Pr〈3〉(ω), jr,s,qy γ〉 = 〈ω, jr,s,qy γ〈3〉〉,

ω ∈ T
(r,s,q)
y Y , y ∈ Y , γ = (γ1, γ2) : Y → R

1,1 is fibered, γ(y) = 0. The families

Pr〈1〉, P r〈2〉, P r〈3〉 : T (r,s,q) → T (r,s,q) are natural transformations over FMm,n.

Proposition 1. Every natural transformation A : T (r,s,q) → T (r,s,q) over

FMm,n is a linear combination of Pr
〈1〉, Pr〈2〉 and Pr〈3〉.

Proof: The elements jr,s,q0 (xα, 0) and jr,s,q0 (0, xβyδ) for multiindices α and (β, δ)

from obvious sets form the basis of J
r,s,q
0 (Rm,n,R1,1)0.

By the fibered version of the rank theorem, j
r,s,q
0 (x1, y1) has dense orbit in

Jr,s,q
0 (Rm,n,R1,1)0. Then (by the naturality) A is uniquely determined by the

contractions 〈A(ω), jr,s,q0 (x1, y1)〉 for all ω ∈ T
(r,s,q)
0 R

m,n. So, it suffices to

deduce that 〈A(·), jr,s,q0 (x1, y1)〉 : T
(r,s,q)
0 R

m,n → R is a linear combination of

j
r,s,q
0 (x1, 0), j

r,s,q
0 (0, x1), j

r,s,q
0 (0, y1) : T

(r,s,q)
0 R

m,n → R, i.e. that the vector space
of all A as above has dimension ≤ 3.
By the naturality of A with respect to the homotheties at = t idRm×Rn :

R
m,n → R

m,n for t 6= 0 and the homogeneous function theorem (see [3]), we
deduce that 〈A(·), j

r,s,q
0 (x1, y1)〉 is a linear combination of j

r,s,q
0 (xi, 0), j

r,s,q
0 (0, xi)

and j
r,s,q
0 (0, yj) for i = 1, . . . ,m and j = 1, . . . , n. Next, using the naturality of A

with respect to the fibered maps bt = (x
1, tx2, . . . , txn, y1, ty2, . . . , tyn) : Rm,n →

R
m,n for t 6= 0 we finish the proof. �

3. In this section all linear natural transformations TT (r,s,q) → T (r,s,q) over
FMm,n will be classified.

A natural transformation TT (r,s,q) → T (r,s,q) over FMm,n is a system of

fibered maps B : TT (r,s,q)Y → T (r,s,q)Y covering the identity idY for every

FMm,n-object Y satisfying T
(r,s,q)f ◦B = B ◦TT (r,s,q)f for every local FMm,n-

diffeomorphism f : Y → Y . The linearity of B : TT (r,s,q) → T (r,s,q) means that

the restriction and corestriction Bω : TωT
(r,s,q)Y → TyY of B : TT

(r,s,q)Y →

T (r,s,q)Y is linear for any ω ∈ T
(r,s,q)
y Y , y ∈ Y and Y ∈ obj(FMm,n).

Example 2. Given an FMm,n-object Y let B
〈1〉, B〈2〉 : TT (r,s,q)Y → T (r,s,q)Y

be fibered maps over idY such that

〈B〈1〉(v), jr,s,qy γ〉 = dyγ
1(Tπ(v)),

〈B〈2〉(v), jr,s,qy γ〉 = dyγ
2(Tπ(v)),
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v ∈ (TT (r,s,q))yY , y ∈ Y , γ = (γ1, γ2) : Y → R
1,1 is fibered, γ(y) = 0, where π :

T (r,s,q)Y → Y is the bundle projection, Tπ : TT (r,s,q)Y → TY is its tangent map

and dyγ1 : TyY → R is the differential of γ1 at y. Then B
〈1〉, B〈2〉 : TT (r,s,q) →

T (r,s,q) are linear natural transformations over FMm,n.

Proposition 2. Every linear natural transformation B : TT (r,s,q) → T (r,s,q)

over FMm,n is a linear combination of B
〈1〉 and B〈2〉.

Proof: We use the notations from the proof of Proposition 1. Let (jr,s,q0 (xα, 0))∗,

(jr,s,q0 (0, xβyδ))∗ ∈ T
(r,s,q)
0 R

m,n be the basis dual to the one of Jr,s,q
0 (Rm,n,R1,1)0.

Let

pr1 : R
m × R

n × T
(r,s,q)
0 R

m,n × T
(r,s,q)
0 R

m,n → R
m × R

n,

pr2 : R
m × R

n × T
(r,s,q)
0 R

m,n × T
(r,s,q)
0 R

m,n → T
(r,s,q)
0 R

m,n,

pr3 : R
m × R

n × T
(r,s,q)
0 R

m,n × T
(r,s,q)
0 R

m,n → T
(r,s,q)
0 R

m,n

be the projections.
Similarly as in the proof of Proposition 1, B is uniquely determined by the

contractions 〈B(v), jr,s,q0 (x1, y1)〉 for all v ∈ (TT (r,s,q))0 R
m,n=̃R

m × R
n ×

T
(r,s,q)
0 R

m,n × T
(r,s,q)
0 R

m,n, where =̃ is the standard identification. So, it re-
mains to deduce that

〈B(·), jr,s,q0 (x1, y1)〉 : Rm × R
n × T

(r,s,q)
0 R

m,n × T
(r,s,q)
0 R

m,n → R

is a linear combination of x1 ◦ pr1 and y
1 ◦ pr1.

Using similar arguments as in the proof of Proposition 1 (the naturality of B
with respect to at and bt and the homogeneous function theorem), we deduce
that 〈B(·), j

r,s,q
0 (x1, y1)〉 is a linear combination of x1 ◦pr1, y

1 ◦pr1, j
r,s,q
0 (x1, 0)◦

pr2, j
r,s,q
0 (0, x1) ◦ pr2, j

r,s,q
0 (0, y1) ◦ pr2, j

r,s,q
0 (x1, 0) ◦ pr3, j

r,s,q
0 (0, x1) ◦ pr3 and

jr,s,q0 (0, y1) ◦ pr3. Since B is linear, 〈B(·), j
r,s,q
0 (x1, y1)〉 is a linear combination

of x1 ◦ pr1, y
1 ◦ pr1, j

r,s,q
0 (x1, 0) ◦ pr3, j

r,s,q
0 (0, x1) ◦ pr3 and j

r,s,q
0 (0, y1) ◦ pr3.

Replacing B by B − λ1B
〈1〉 − λ2B

〈2〉 we can assume that 〈B(·), j
r,s,q
0 (x1, y1)〉 is

a linear combination of j
r,s,q
0 (x1, 0) ◦ pr3, j

r,s,q
0 (0, x1) ◦ pr3 and j

r,s,q
0 (0, y1) ◦ pr3.

(Then 〈B(∂C
1 |ω), j

r,s,q
0 (x1, y1)〉 = 0 and 〈B(∂

C
1 |ω), j

r,s,q
0 (x1, y1)〉 = 0 for any ω ∈

T
(r,s,q)
0 R

m,n, where ∂1 =
∂

∂x1
, ∂1 =

∂
∂y1
and ()C is the flow lift of projectable

vector fields to T (r,s,q).) It remains to show

(1) 〈B(0, 0, ω̃), jr,s,q0 (x1, y1)〉 = 0

for ω̃ ∈ {(j
r,s,q
0 (x1, 0))∗, (j

r,s,q
0 (0, x1))∗, (j

r,s,q
0 (0, y1))∗}. We consider 3 cases.
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(I) Assume ω̃ = (jr,s,q0 (x1, 0))∗. For showing (1), we prove

(2)

0 = 〈A((∂1 + (x
1)q∂1)

C
|ω), j

r,s,q
0 (x1, y1)〉

= 〈A(((x1)q∂1)
C
|ω), j

r,s,q
0 (x1, y1)〉

= 〈A(0, ω, ω̃ + . . . ), j
r,s,q
0 (x1, y1)〉

= 〈A(0, 0, ω̃), jr,s,q0 (x1, y1)〉,

where ω = (jr,s,q0 ((x1)q, 0))∗ and the dots is the linear combination of the elements

ω from the dual basis of T
(r,s,q)
0 R

m,n with ω /∈ {(jr,s,q0 (x1, 0))∗, (jr,s,q0 (0, x1))∗,

(j
r,s,q
0 (0, y1))∗}.

The second equality of (2) is clear as 〈B(∂C
1 |ω), j

r,s,q
0 (x1, y1)〉 = 0 and A is

an affinor. The fourth equality of (2) is clear as 〈B(·), jr,s,q0 (x1, y1)〉 is a linear

combination of jr,s,q0 (x1, 0) ◦ pr3, j
r,s,q
0 (0, x1) ◦ pr3 and j

r,s,q
0 (0, y1) ◦ pr3.

We can prove the first equality of (2) as follows. We consider for a moment
∂1 and ∂1 + (x

1)q∂1 as the vector fields on R. They have the same (q − 1)-jets
at 0 ∈ R. Then there exists a diffeomorphism ψ : R → R such that jq0ψ = id

and ψ∗∂1 = ∂1 + (x
1)q∂1 near 0 ∈ R, see Lemma 42.4 in [3] (or [12]). Let

ϕ = ψ × idRm−1 × idRn . Then ϕ : R
m,n → R

m,n is an FMm,n-morphism such

that jr,s,q0 ϕ = id and ϕ∗∂1 = ∂1+(x
1)q∂1 near 0. Clearly, ϕ preserves j

r,s,q
0 (x1, y1)

because of the jet argument. Then, using the naturality of A with respect to ϕ,

from 〈B(∂C
1 |ω), j

r,s,q
0 (x1, y1)〉 = 0 for any ω ∈ T

(r,s,q)
0 R

m,n it follows the first

equality for any ω ∈ T
(r,s,q)
0 R

m,n.

It remains to show the third equality of (2). Let ϕt be the flow of (x
1)q∂1.

Then

〈((x1)q∂1)
C
|ω, j

r,s,q
0 (x1, 0)〉 = 〈

d

dt |t=0
T (r,s,q)(ϕt)(ω), j

r,s,q
0 (x1, 0)〉

= 〈ω, j
r,s,q
0 (

d

dt |t=0
(x1, 0) ◦ ϕt)〉

= 〈ω, j
r,s,q
0 ((x1)q , 0)〉

= 1

because of the definition of ω. Similarly 〈((x1)q∂1)
C
|ω, j

r,s,q
0 (0, x1)〉 = 0 and

〈((x1)q∂1)
C
|ω, j

r,s,q
0 (0, y1)〉 = 0. Then ((x1)q∂1)

C
|ω = (j

r,s,q
0 (x1, 0))∗ + . . . un-

der the isomorphism VωT
(r,s,q)

R
m,n=̃T

(r,s,q)
0 R

m,n, where the dots stand for a

linear combination of the elements ω from the dual basis of T
(r,s,q)
0 R

m,n with

ω /∈ {(jr,s,q0 (x1, 0))∗, (jr,s,q0 (0, x1))∗, (jr,s,q0 (0, y1))∗}. It implies the third equality
of (2).
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(II) Assume ω̃ = (jr,s,q0 (0, x1))∗. For showing (1), we prove (2), where ω =

(j
r,s,q
0 (0, (x1)q))∗ and the dots stand for a linear combination of the elements

ω from the dual basis of T
(r,s,q)
0 R

m,n with ω /∈ {(j
r,s,q
0 (x1, 0))∗, (j

r,s,q
0 (0, x1))∗,

(jr,s,q0 (0, y1))∗}.

The proof of the third equality of (2) is almost the same as in case (I)

(we have 〈((x1)q∂1)
C
|ω, j

r,s,q
0 (x1, 0)〉 = 0, 〈((x1)q∂1)

C
|ω, j

r,s,q
0 (0, x1)〉 = 1 and

〈((x1)q∂1)
C
|ω, j

r,s,q
0 (0, y1)〉 = 0). The proofs of the other equalities of (2) are

the same as in case (I).

(III) Assume ω̃ = (j
r,s,q
0 (0, y1))∗. For showing (1), it suffices to prove

(2)′

0 = 〈A((∂1 + (y
1)s∂1)

C
|ω), j

r,s,q
0 (x1, y1)〉

= 〈A(((y1)s∂1)
C
|ω), j

r,s,q
0 (x1, y1)〉

= 〈A(0, ω, ω̃ + . . . ), j
r,s,q
0 (x1, y1)〉

= 〈A(0, 0, ω̃), jr,s,q0 (x1, y1)〉,

where ω = (j
r,s,q
0 (0, (y1)s))∗ and the dots stand for a linear combination of

the elements ω from the dual basis of T
(r,s,q)
0 R

m,n with ω /∈ {(j
r,s,q
0 (x1, 0))∗,

(jr,s,q0 (0, x1))∗, (jr,s,q0 (0, y1))∗}. The proof of (2)’ is similar to that of (2) in
case (II). We leave the details to the reader. �

4. In this section we classify all natural transformation TT (r,s,q) → T over
FMm,n. (The definition is similar to the one from Section 2.)

Example 3. Given an FMm,n-object Y , let Tπ : TT
(r,s,q)Y → TY be as in

Section 3. Then Tπ : TT (r,s,q) → T is a linear natural transformation over
FMm,n.

Proposition 3. Every linear natural transformation C : TT (r,s,q) → T over
FMm,n is a constant multiple of Tπ.

Proof: Using C, we construct a linear natural transformation C̃ : TT (r,s,q) →

T (r,s,q) over FMm,n as follows. For any Y ∈ obj(FMm,n) we define a fibered

map C̃ : TT (r,s,q)Y → T (r,s,q)Y over idY by

〈C̃(v), jr,s,qy γ〉 = dyγ1(C(v)),

v ∈ (TT (r,s,q))yY , y ∈ Y , γ = (γ1, γ2) : Y → R
1,1 is fibered, γ(y) = 0.
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Now, by Proposition 2, there exist numbers λ1, λ2 ∈ R such that

〈C̃(v), jr,s,qy γ〉 = λ1 · dyγ1(Tπ(v)) + λ2 · dyγ2(Tπ(v))

for any v ∈ (TT (r,s,q))yY , y ∈ Y , Y ∈ obj(FMm,n) and any fibered map γ =

(γ1, γ2) : Y → R
1,1 with γ(y) = 0. Then λ2 = 0 and C = λ1 · Tπ. �

5. In this section we prove the main result of this paper.

Example 4. For every FMm,n-object Y let Id : TT
(r,s,q)Y → TT (r,s,q)Y be the

identity map and let B̃〈1〉, B̃〈2〉 : TT (r,s,q)Y → TT (r,s,q)Y be affinors on T (r,s,q)Y
such that

B̃〈1〉(v) = (ω,B〈1〉(v)) ∈ T (r,s,q)Y ×Y T (r,s,q)Y =̃V T (r,s,q)Y ⊂ TT (r,s,q)Y,

B̃〈2〉(v) = (ω,B〈2〉(v)) ∈ TT (r,s,q)Y, v ∈ TωT
(r,s,q)Y, ω ∈ T (r,s,q)Y,

where B〈1〉, B〈2〉 : TT (r,s,q)Y → T (r,s,q)Y are as in Section 3. Then Id, B̃〈1〉 and

B̃〈2〉 are natural affinors on T
(r,s,q)
|FMm,n

.

Theorem 1. Every natural affinor D on T
(r,s,q)
|FMm,n

is a linear combination of Id,

B̃〈1〉 and B̃〈2〉.

Proof: The family Tπ ◦ D : TT (r,s,q)Y → TY for Y ∈ obj(FMm,n) is a

linear natural transformation TT (r,s,q) → T over FMm,n. Then, by Propo-
sition 3, there exists the real number λ such that Tπ ◦ D = λ · Tπ. Then

D − λ · Id : TT (r,s,q)Y → V T (r,s,q)Y for any FMm,n-object Y . Let pr :

V T (r,s,q)Y =̃T (r,s,q)Y ×Y T
(r,s,q)Y → T (r,s,q)Y be the projection onto second fac-

tor for any Y as above. Then the family pr ◦(D− λ · Id) : TT (r,s,q)Y → T (r,s,q)Y
for any Y as above is a linear natural transformation over FMm,n. Now, by
Proposition 2, there exist the numbers µ1, µ2 ∈ R such that pr ◦(D − λ · Id) =

µ1 · B
〈1〉 + µ2 · B

〈2〉. Then D = λ · Id+µ1 · B̃
〈1〉 + µ2 · B̃

〈2〉. �

6. We have the following corollary of Theorem 1.

Corollary 1. There is no natural generalized connection on T
(r,s,q)
|FMm,n

.

Proof: Suppose that Γ is such a connection. By Theorem 1, there are numbers

λ1, λ2, λ3 ∈ R such that Γ = λ1 · Id+λ2 · B̃
〈1〉 + λ3 · B̃

〈2〉. Let Y be an FMm,n-

object. Since im(Γ) = V T (r,s,q)Y and im(B̃〈1〉) ⊂ V T (r,s,q)Y and im(B̃〈2〉) ⊂

V T (r,s,q)Y , we get λ1 = 0. It is easy to see that V T
(r,s,q)Y ⊂ ker(B̃〈1〉) and

V T (r,s,q)Y ⊂ ker(B̃〈2〉). Then Γ ◦ Γ = 0 6= Γ, a contradiction. �
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7. We can solve similar problems with T (r,s) = (Jr,s(.,R)0)
∗ : FM → FM

instead of T (r,s,q) as follows.

(i) Let Y → M be a fibered manifold and Q be a manifold. Two maps f, g :
Y → Q determine the same (r, s)-jet jr,sy f = jr,sy g at y ∈ Yx, x ∈M , if jryf = j

r
yg,

and jsy(f |Yx) = jsy(g|Yx). The space of all (r, s)-jets of Y into Q is denoted by

Jr,s(Y,Q), see [3, p. 126].
The space T r,s∗Y = Jr,s(Y,R)0 has an induced structure of a vector bundle

over Y . Every FM-morphism h : Z → Y , h(z) = y, induces a linear map

λ(h)y, z : T r,s∗
y Y → T r,s∗

z Z, jr,sy f → jr,sz (f ◦ h). If we denote by T (r,s)Y the dual

vector bundle of T r,s∗Y and define T (r,s)h : T (r,s,q)Z → T (r,s)Y by using the

dual maps to λ(h)y,z , we obtain a vector bundle functor T
(r,s) on FM.

(ii) The family id : T (r,s)Y → T (r,s)Y for any FMm,n-object Y is a natural

transformation T (r,s) → T (r,s) over FMm,n.

Proposition 1′. Every natural transformation A : T (r,s) → T (r,s) over FMm,n

is a constant multiple of the identity natural transformation.

Proof: The proof is quite similar to the proof of Proposition 1. �

(iii) For every FMm,n-object Y let B
〈〉 : TT (r,s)Y → T (r,s)Y be a fibered

map over idY such that 〈B
〈〉(v), j

r,s
y γ〉 = dyγ(Tπ(v)), v ∈ (TT (r,s))yY , y ∈ Y ,

γ : Y → R, γ(y) = 0, where π : T (r,s)Y → Y is the bundle projection and

Tπ : TT (r,s)Y → TY is its tangent map. Then B〈〉 : TT (r,s) → T (r,s) is a linear
natural transformation over FMm,n.

Proposition 2′. Every linear natural transformation B : TT (r,s) → T (r,s) over

FMm,n is a constant multiple of B
〈〉.

Proof: The proof is quite similar to the proof of Proposition 2. �

(iv) Given an FMm,n-object Y let Tπ : TT
(r,s)Y → TY be as in (iii). Then

Tπ : TT (r,s)→ T is a linear natural transformation over FMm,n.

Proposition 3′. Every linear natural transformation C : TT (r,s) → T over
FMm,n is a constant multiple of Tπ.

Proof: The proof is quite similar to the proof of Proposition 3. �

(v) For every FMm,n-object Y , let Id : TT
(r,s)Y → TT (r,s)Y be the identity

map and let B̃〈〉 : TT (r,s)Y → TT (r,s)Y be an affinor on T (r,s)Y such that

B̃〈〉(v) = (ω,B〈〉(v)) ∈ T (r,s)Y ×Y T
(r,s)Y =̃V T (r,s)Y ⊂ TT (r,s)Y , v ∈ TωT

(r,s)Y ,

ω ∈ T (r,s)Y , where B〈〉 : TT (r,s)Y → T (r,s)Y is as in Proposition 1′. Then Id

and B̃〈〉 are natural affinors on T
(r,s)
|FMm,n

.
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Theorem 1′. Every natural affinor D on T
(r,s)
|FMm,n

is a linear combination of Id

and B̃〈〉.

Proof: The proof is quite similar to the proof of Theorem 1. �

(vi) We have the following corollary of Theorem 1′.

Corollary 1′. There is no natural generalized connection on T
(r,s)
|FMm,n

.
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[5] Kolář I., Modugno M., Torsions of connections on some natural bundles, Differential Geom.
Appl. 2 (1992), 1–16.
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