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Fractional integro-differentiation

in harmonic mixed norm spaces on a half-space

K.L. Avetisyan

Abstract. In this paper some embedding theorems related to fractional integration and
differentiation in harmonic mixed norm spaces h(p, q, α) on the half-space are established.
We prove that mixed norm is equivalent to a “fractional derivative norm” and that
harmonic conjugation is bounded in h(p, q, α) for the range 0 < p ≤ ∞, 0 < q ≤ ∞.
As an application of the above, we give a characterization of h(p, q, α) by means of an
integral representation with the use of Besov spaces.
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0. Introduction

0.1. Let Rn be the n-dimensional Euclidean space and let x = (x1, . . . , xn) ∈ Rn,

|x|2 = x21+· · ·+x2n, dx = dx1 · · ·dxn. Let R
n+1
+ denote the upper half-space Rn×

(0,∞). A point of this half-space will be represented by (x, y) = (x1, . . . , xn, y),
x ∈ Rn, y > 0. It will be frequently convenient to set x0 = y. If f(x, y) is a

measurable function in R
n+1
+ then we write

Mp(f ; y) = ‖f‖Lp(Rn,dx), y > 0, 0 < p ≤ ∞.

The collection of all harmonic (complex-valued) functions u(x, y) for which

‖u‖hp = sup
y>0

Mp(u; y) < +∞

is the class hp(Rn+1
+ ).

The quasi-normed space L(p, q, α) (0 < p, q ≤ ∞, α > 0) is the set of those

functions f(x, y) measurable in the half-space R
n+1
+ , for which the quasi-norm

‖f‖p,q,α =





(∫ +∞

0
yαq−1M q

p (f ; y) dy

)1/q

, 0 < q < ∞,

ess sup
y>0

yαMp(f ; y), q =∞,



692 K.L.Avetisyan

is finite. Let h(p, q, α) be the subspace of L(p, q, α) consisting of harmonic func-
tions. Harmonic mixed norm spaces h(p, q, α) were investigated by several au-
thors: Taibleson [23], Flett [13]–[15], Bui Huy Qui [4], Ricci and Taibleson [18],
A.E. Djrbashian [5], Ramey and Yi [17]. When p = q < ∞ the spaces h(p, q, α)
are called weighted Bergman spaces, although Bergman ([2], [3]) himself consid-
ered since 1929 only functions whose squares are integrable without weight, i.e.
the Hilbert space h(2, 2, 1/2). Weighted classes h(p, p, α), p ≥ 1, for functions
holomorphic in the unit disk were introduced by M.M. Djrbashian ([8], [9]). How-
ever, many important theorems concerning holomorphic subspaces of h(p, q, α) are
contained in classical works of Hardy and Littlewood. See [12]–[15] for references.

M.M. Djrbashian ([8], [9]) found as well some integral representations for
h(p, p, α). Later Ricci and Taibleson ([18]) obtained a family of integral rep-
resentations for h(p, q, α) on the half-plane (see also [10]). The integral in all the
mentioned representations is taken over whole domain. The present paper estab-
lishes some other integral representations for h(p, q, α) on the half-space, where

the integral is taken over the boundary of R
n+1
+ and Besov functions on Rn are

used (Section 4). Our proofs are essentially based on the techniques of fractional
integro-differentiation in h(p, q, α). The latter subject was raised in Hardy’s and
Littlewood’s works and can be formulated as follows: How does the fractional
integro-differentiation act as a bounded operator in the spaces h(p, q, α)? Flett
([12]–[15]) studied in detail this question especially for functions holomorphic in
the unit disk.

In Section 3 we generalize his results to functions harmonic on the half-space.
The case of small p causes some difficulties because |∇f |p (f harmonic) need
not be subharmonic for p < (n − 1)/n and Mp(f ; y) in general not necessarily

monotonic by y > 0. Applying the Whitney expansion of R
n+1
+ we prove a

Hardy-Littlewood type max-theorem (Theorem 6) for h(p, p, α), 0 < p < ∞,
that allows us to overcome the mentioned difficulties. As an easy consequence
we obtain that harmonic conjugation (Riesz transform) is bounded for all p and
q, 0 < p ≤ ∞, 0 < q ≤ ∞ (Corollary 3), which is a generalization of a result
from [5], [17]. More information about harmonic (pluriharmonic) conjugation on
various domains of Rn and Cn, especially for p ≤ 1, can be found in [15], [19],
[18], [5], [6], [7], [21], [17].

If T is a bounded operator mapping X to Y , i.e. ‖Tf‖Y ≤ C‖f‖X , ∀ f ∈ X ,
then we shall write T : X −→ Y . Main results obtained on fractional differentia-
tion and integration can be presented by the following table ordered by growth β:
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D−β : h(p, q, α) −→ h(p, q, α − β),

D−β : h(p, q, α) −→ hp,

D−β : h(p, q, α) −→ hp0 ,

D−β : h(p, q, α) −→ h(p0, q0),

D−β : h(p, q, α) −→ B,

D−β : h(p, q, α) −→ BMOh,

D−β : h(p, q, α) −→ h∞,

−∞ < β < α, 0 < p, q ≤ ∞,

β = α, 0 < p < ∞, 0 < q ≤ min{2, p},

α < β < α+ n/p, 0 < p < ∞, q ≤ p0,

α < β < α+ n/p, 1 ≤ p < ∞,

0 < q ≤ q0 ≤ ∞, 1 < q0 ≤ ∞,

β = α+ n/p, p =∞, 0 < q ≤ ∞,

β = α+ n/p, 0 < p < ∞, 0 < q ≤ ∞,

β = α+ n/p, 0 < p ≤ ∞, 0 < q ≤ 1.

(Th.7)

(Cor.2)

(Cor.2)

(Th.5)

(Cor.4)

(Th.5)

(Cor.2)

Here p0 =
n

α+n/p−β
, h(p, q) denotes the harmonic Lorentz space, B the harmonic

Bloch space and BMOh the space of harmonic functions in R
n+1
+ having BMO

boundary values on Rn.

0.2. We shall use some natural notations. For functions f(x, y) defined in R
n+1
+ ,

we shall use the Riemann-Liouville integro-differential operator D−α ≡ D−α
y

(Riesz potential) with respect to the variable y:

D−αf(x, y) =
1

Γ(α)

∫ +∞

0
σα−1f(x, y + σ) dσ,

D0f = f, Dαf(x, y) = (−1)mD−(m−α) ∂m

∂ym f(x, y),

where α > 0 and m is the integer deduced from m − 1 < α ≤ m. For details on
this operator see, for example, [4].

In the half-space R
n+1
+ , the Poisson kernel P ≡ P0 and the conjugate Poisson

kernels Pj (1 ≤ j ≤ n) are given by

P (x, y) = Γ

(
n+ 1

2

)
π−(n+1)/2 y

(|x|2 + y2)(n+1)/2
,

Pj(x, y) = Γ

(
n+ 1

2

)
π−(n+1)/2 xj

(|x|2 + y2)(n+1)/2
, 1 ≤ j ≤ n.

Throughout the paper, the letters C(α, β, . . . ), cα etc. will denote positive con-
stants possibly different at different places and depending only on the parameters
α, β, . . . . Any inequality A ≤ B quoted or proved is to be interpreted as meaning
‘if B is finite, then A is finite, and A ≤ B’. For A, B > 0 the notation A ≍ B
denotes the two-sided estimate c1A ≤ B ≤ c2A with some positive constants c1
and c2 independent of the variables involved.
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For any p, 1 ≤ p ≤ ∞, we define the conjugate index p′ = p/(p−1) (we interpret

1/ +∞ = 0 and 1/0 = +∞). Let Z
n+1
+ be the set of all ordered (n + 1)-tuples

of nonnegative integers, and for each λ = (λ1, . . . , λn, λn+1) ∈ Z
n+1
+ (λj ∈ Z+)

let |λ| = λ1 + · · ·+ λn + λn+1 and ∂λ =
(

∂
∂x1

)λ1 · · ·
(

∂
∂xn

)λn
(

∂
∂y

)λn+1 . When a

function f(x, y) is complex-valued we use the Cn+1-norm to calculate |∇f |.

1. Preliminaries. Littlewood-Paley type inequalities

The most of this section extends to R
n+1
+ the results of Flett [12, Theorems 1–

5]. For α > 0 and 0 < q ≤ ∞ we shall consider the Littlewood-Paley type
g-function (cf. [12], [22, Chapter IV])

gq,α(x) ≡ gq,α(f)(x) =





(∫ +∞

0
yαq−1|Dαf(x, y)|q dy

)1/q

, 0 < q < ∞,

ess sup
y>0

yα|Dαf(x, y)|, q =∞.

We gather some auxiliary lemmas and a Littlewood-Paley type theorem. The
proofs are very standard, so we omit the details.

Lemma 1. If α > 0, λ ∈ Z
n+1
+ , n

n+α < p ≤ ∞, then for each j ∈ [0, n], x ∈ Rn

and y > 0

|DαPj(x, y)| ≤ C(α, n)
1

(|x| + y)α+n , |∂λPj(x, y)| ≤ C(λ, n)
1

(|x| + y)|λ|+n
,

Mp(D
αPj ; y) ≤ C(α, n, p)

1

yα+n−n/p
, Mp(∂

λPj ; y) ≤ C(λ, n, p)
1

y|λ|+n−n/p
.

Lemma 2. Let f(x, y) be a harmonic function in R
n+1
+ and 0 < p, q ≤ ∞, α > 0.

Then

|Dαf(x, y)| ≤ C(p, q, α, n)y−α−n/p‖gq,α(f)‖Lp , x ∈ R
n, y > 0.

Lemma 3. Let β > 0 and f(x, y) be a harmonic function in R
n+1
+ such that

Dβf(x, y) vanishes as y → +∞, uniformly for x ∈ Rn. If either 1 ≤ p ≤ q < ∞,
α > 1/p − 1/q, or 1 < p ≤ q < ∞, α = 1/p − 1/q, then

gq,β(f)(x) ≤ C(α, β, p, q) gp,β+α(f)(x), x ∈ R
n.
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Lemma 4. Let f(x, y) be a harmonic function in R
n+1
+ , α > 0, δ > 0 and let

Γδ(x) = {(ξ, η) ∈ R
n+1
+ ; |ξ − x| < δη} be the Lusin cone with the vertex at

x ∈ Rn. If f∗
δ (x) = sup{|f(ξ, η)|; (ξ, η) ∈ Γδ(x)} is the nontangential maximal

function of f , then

(1.1) |Dαf(x, y)| ≤ C(α, δ) y−αf∗
δ (x), x ∈ R

n, y > 0.

Theorem 1. Let α > 0 and 1 < p < ∞.

(i) If 2 ≤ q < ∞ and f(x, y) is the Poisson integral of f(x) ∈ Lp(Rn), then

(1.2) ‖gq,α(f)‖Lp ≤ C(p, q, α, n)‖f‖Lp .

(ii) If 0 < q ≤ 2 and f(x, y) is harmonic in R
n+1
+ , vanishes as y → +∞,

uniformly for x ∈ Rn, and gq,α(f) ∈ Lp, then f(x, y) is the Poisson integral of a
function f(x) ∈ Lp and

(1.3) ‖f‖Lp ≤ C(p, q, α, n)‖gq,α(f)‖Lp .

2. Harmonic mixed norm spaces and projections on them

The following lemma is an n-dimensional extension of [18, Proposition 2.2] and
it can be proved by similar arguments with the use of interpolation theorems ([1],
[16]).

Lemma 5. If 0 < p ≤ p0 ≤ ∞, 0 < q ≤ q0 ≤ ∞, α+ n/p = α0 + n/p0, then the
following inclusion is valid and continuous:

h(p, q, α) ⊂ h(p0, q0, α0).

Moreover, if u(x, y) ∈ h(p, q, α) with q < ∞, then yαMp(u; y) = o(1) as y → +0
and y → +∞.

The inclusion h(p, q, α) ⊂ h(p,∞, α) of this lemma implies a useful property
of spaces h(p, q, α): If uη(x, y) = u(x, y + η), then the quasi-norm ‖uη‖p,q,α

(0 < p, q ≤ ∞, α > 0) is effectively decreasing by η ≥ 0, i.e.

(2.1) ‖uη1‖p,q,α ≤ C(p, q, α, n)‖uη2‖p,q,α, η1 > η2 ≥ 0.

For a function u(x, y) harmonic in R
n+1
+ and satisfying the condition u(x, y) =

O(y−δ), y → +∞, δ > 0, the Riesz transforms of u are defined by

uj(x, y) = (Rju)(x, y) = −

∫ +∞

y

∂u(x, η)

∂xj
dη, 1 ≤ j ≤ n.

The vector function F = (u0, u1, . . . , un), u = u0, is a system of conjugate
harmonic functions, i.e. the functions uj satisfy the generalized Cauchy-Riemann
equations

n∑

j=0

∂uj

∂xj
= 0,

∂uj

∂xk
=

∂uk

∂xj
, 0 ≤ j, k ≤ n.
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Theorem 2. Let α > 0 and u ≡ u0 ∈ h(p, q, α). If either 0 < p, q ≤ ∞,
β > max{α + n/p − n, α}, or p = 1, 0 < q ≤ 1, β ≥ α, then for each j ∈ [0, n],
x ∈ Rn and y > 0

uj(x, y) =
2β

Γ(β)

∫∫

R
n+1
+

u(ξ, η)DβPj(x − ξ, y + η) ηβ−1 dξ dη,(2.2)

uj(x, y) =
2β

Γ(β)

∫∫

R
n+1
+

uj(ξ, η)D
βP (x − ξ, y + η) ηβ−1 dξ dη.(2.3)

Proof: The representation (2.2) with j = 0 is due to Ricci and Taibleson ([18])
for integral β and n = 1 (see also [5]). For j ∈ [1, n] and 0 < p < ∞ the
representation (2.2) follow from a semigroup formula involving conjugate Poisson
kernels:

uj(x, y) =

∫

Rn
u(ξ, y/2)Pj(x − ξ, y/2) dξ.

We postpone the proof of (2.3) until Subsection 3.4. The representation (2.3) will
follow immediately from Corollary 3 of Theorem 7. �

Now consider the operator

Tα,j(f)(x, y) =

∫∫

R
n+1
+

f(ξ, η)DαPj(x− ξ, y+ η) ηα−1 dξ dη, α > 0, 0 ≤ j ≤ n.

The next theorem is a partial converse to Theorem 2.

Theorem 3. If 1 ≤ p, q ≤ ∞, β > α > 0, 0 ≤ j ≤ n, then the operator Tβ,j is a

bounded projection of L(p, q, α) onto h(p, q, α).

Proof: Let f(x, y) ∈ L(p, q, α) and q be finite. By Minkowski’s inequality and
Lemma 1

Mp(Tβ,jf ; y) ≤ C

∫ +∞

0

ηβ−1

(y + η)β
Mp(f ; η) dη.

A further application of Hardy’s inequality (see, e.g., [22]) shows that

‖Tβ,jf‖p,q,α ≤ C‖f‖p,q,α.

Note that the assertion of Theorem 3 with j = 0 is proved in [5] for p = q and
integral β. �

The following question now arises: Does the finiteness of ‖u‖p,q,α imply the
finiteness of ‖uj‖p,q,α? An affirmative answer involving all values p, q ∈ (0,∞] is
given in Corollary 3 of Theorem 7.
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3. Fractional differentiation and integration in h(p, q, α)

3.1. For each measurable function f on Rn, let λf be its distribution function,
i.e. λf (t) = |{x ∈ Rn; |f(x)| > t}|, t > 0, where |E| = mes E is the Lebesgue
measure of the set E ⊂ Rn. The decreasing rearrangement of f is the function
f∗ given by

f∗(s) = inf{t > 0;λf (t) ≤ s}.

The Lorentz space L(p, q) is defined to be the collection of all functions f such
that ‖f‖L(p,q) < +∞, where

(3.1) ‖f‖L(p,q) =






(∫ +∞

0

[
t1/pf∗(t)

]q dt

t

)1/q

, 0 < p, q < ∞,

sup
t>0

t1/pf∗(t), 0 < p ≤ ∞, q =∞.

It is well known that

L(p, q1) ⊂ L(p, p) = Lp ⊂ L(p, q2) ⊂ L(p,∞) ⊂ L1
(

dt

1 + |t|n+1

)

whenever 1 ≤ p ≤ ∞, 0 < q1 ≤ p ≤ q2 ≤ ∞. The harmonic Lorentz space h(p, q),
1 < p ≤ ∞, 1 ≤ q ≤ ∞ (see [14], [4]) is defined to be the collection of all functions

u(x, y) harmonic in R
n+1
+ such that ‖u‖h(p,q) = supy>0 ‖u(x, y)‖L(p,q) is finite.

So that h(p, p) = hp, 1 < p < ∞.

Theorem 4. Let α > 0 and 1 < p ≤ q ≤ ∞. Then

Dα : hp −→ h(p, q, α), 2 ≤ q ≤ ∞,(3.2)

Dα : hp −→ h(p0, q, α+ n/p − n/p0), 1 < p < p0 ≤ ∞.(3.3)

Proof: The relation (3.2) follows from Theorem 1 and a corollary

(3.4)
∥∥∥‖F (ξ, η)‖Lp(dξ)

∥∥∥
Lq(dη)

≤
∥∥∥‖F (ξ, η)‖Lq(dη)

∥∥∥
Lp(dξ)

, 0 < p ≤ q,

of Minkowski’s inequality. Indeed, let u(x, y) be a function of hp (p < ∞). Then

‖Dαu‖p,q,α ≤
∥∥∥‖yαDαu‖Lq(dy/y)

∥∥∥
Lp(dx)

= ‖gq,α(u)‖Lp ≤ C‖u‖hp .

By combining with (3.2) and Lemma 5 one obtains the relation (3.3). �
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3.2 Harmonic BMO and Lorentz spaces. We proceed to the fractional inte-
gration involving BMO and Lorentz spaces. A function u(x, y) harmonic in R

n+1
+

and having BMO boundary values on Rn is said to belong to the class BMOh.

Theorem 5. (i) If 0 < p < ∞, 0 < q ≤ ∞, α > 0, β = α+ n/p, then

(3.5) D−β : h(p, q, α) −→ BMOh.

(ii) If 1 ≤ p < ∞, 0 < q ≤ q0 ≤ ∞, 1 < q0 ≤ ∞, 0 < α < β < α + n
p ,

p0 =
n

α+n/p−β
, then

(3.6) D−β : h(p, q, α) −→ h(p0, q0).

Proof: (i) It is enough to prove (3.5) only for q = ∞, i.e. for the widest (by q)
space h(p,∞, α). Let u(x, y) ∈ h(p,∞, α) be arbitrary. For any y > 0, consider
the following linear functional on the real Hardy space H1(Rn), generated by

ϕ(x, y) = D−βu(x, y):

(3.7) Fϕ(g) =

∫

Rn
ϕ(x, y)g(x) dx,

where g ∈ H10 (R
n) ⊂ H1(Rn) (see [11], [22, Section 7.3]). If v(x, y) is the Poisson

integral of g, then

(3.8) Fϕ(g) =
1

Γ(β)

∫ +∞

0
σβ−1

[∫

Rn
u
(
x,

σ

2

)
v
(
x, y +

σ

2

)
dx

]
dσ.

Assuming 0 < p < 1 and applying Hölder’s inequality for any fixed k0, 1 ≤ k0 <
∞, one can evaluate

|Fϕ(g)| ≤ C

∫ +∞

0
σβ−1Mk0

(
u;

σ

2

)
Mk′

0

(
v; y +

σ

2

)
dσ

≤ C‖u‖k0,∞,α+n/p−n/k0‖v‖k′
0
,1,n/k0 .

By Lemma 5 and the continuous inclusion h1 ⊂ h(k′0, 1, n/k0) of Flett ([14, The-
orem 3]) we get

|Fϕ(g)| ≤ C‖u‖p,∞,α‖v‖h1 ≤ C‖u‖p,∞,α‖g‖H1(Rn).

Since the subclass H10 is dense in H1(Rn), Fϕ induces a bounded linear func-

tional on H1(Rn). Besides, Fefferman’s duality
(
H1(Rn)

)∗
= BMO(Rn) (see

[11]) implies

(3.9) ‖ϕ‖BMO ≤ C sup
{
|Fϕ(g)|; g ∈ H10 , ‖g‖H1 = 1

}
≤ C‖u‖p,∞,α.
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Assuming now 1 ≤ p < ∞ and applying again Hölder’s inequality with indices p
and p′ we obtain from (3.8)

|Fϕ(g)| ≤ C‖u‖p,∞,α‖v‖p′,1,β−α.

Further, the same arguments together with the inclusion h1 ⊂ h(p′, 1, n/p) lead
to (3.9) for 1 ≤ p < ∞.

(ii) The relation (3.6) follows by similar arguments after applying the inclusion

h(p′0, q
′)⊂ h(p′, q′, β−α) (see [14, Theorem 9]) and duality

(
L(p′0, q

′)
)∗
= L(p0, q).

Thus the proof of the theorem is complete. �

3.3 Max-theorem. We shall need the following two auxiliary lemmas. The first
of them is the well-known Whitney expansion.

Lemma A. There exists a collection {∆k}
∞
k=1 of closed cubes ∆k ⊂ R

n+1
+ with

sides parallel to coordinate axes, such that

(i)
⋃∞

k=1∆k = R
n+1
+ and diam ∆k ≍ dist

(
∆k, ∂R

n+1
+

)
.

(ii) The interiors of all ∆k are pairwise disjoint.

(iii) If ∆∗
k is a cube with the same centre as ∆k, but extended 5/4 times, then the

system {∆∗
k}

∞
k=1 forms a finitely multiple covering of R

n+1
+ . More precisely,

each cube ∆∗
k intersects at most 12

n+1 cubes ∆k.

Lemma B. Let ∆k and ∆
∗
k be some cubes from the previous lemma, and let

(ξk, ηk) be the centre of ∆k. If a function u is harmonic in R
n+1
+ , then for any

0 < p < ∞ and α > 0

ηαp−1
k max

(ξ,η)∈∆k

|u(ξ, η)|p ≤
C

|∆∗
k|

∫∫

∆∗
k

ηαp−1|u(ξ, η)|p dξ dη.

For a proof of Lemma A see [22], and of Lemma B see [5]. Observe that

|∆k| ≍ |∆∗
k| ≍ ηn+1

k .
The following key result is an analogue of classical max-theorems of Hardy and

Littlewood and of Lemma 14 from [13].

Theorem 6. Let α > 0, 0 < p < ∞, u(x, y) ∈ h(p, p, α). Then the maximal
function

u∗(x, y) = sup
{
|u(ξ, η)|; |ξ − x|2 + (η − y)2 ≤ y2/4

}
, x ∈ R

n, y > 0

satisfies the inequality

(3.10) ‖u∗‖p,p,α ≤ C(α, p, n)‖u‖p,p,α.
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Proof: For p ≥ 1 the inequality (3.10) is obtained immediately from Lemma 14
of [13]. For smaller p the non-subharmonicity of |∇f |p (f harmonic) leads to
difficulties in estimation. Let 0 < p < 1. We have now by using the representation
(2.2) with j = 0 and β > α+ n/p− n:

‖u∗‖p
p,p,α =

2βp

Γp(β)

∫∫

R
n+1
+

yαp−1 sup
ξ,η

∣∣∣∣∣

∫∫

R
n+1
+

u(t, θ)DβP (ξ − t, η + θ)θβ−1 dt dθ

∣∣∣∣∣

p

dx dy

≤ C

∫∫

R
n+1
+

yαp−1 sup
ξ,η

∞∑

k=1

(∫∫

∆k

|u(t, θ)| |DβP (ξ − t, η + θ)| θβ−1 dt dθ

)p

dx dy.

It is easy to verify that max
(t,θ)∈∆k

|DβP (ξ− t, η+θ)| ≤ C(n, β)|DβP (ξ−ξk, η+ηk)|.

Consequently,
(3.11)
‖u∗‖p

p,p,α

≤ C

∫∫

R
n+1
+

yαp−1 sup
ξ,η

∞∑

k=1

max
∆k

|u(t, θ)|p |DβP (ξ − ξk, η + ηk)|
p η

p(β−1)
k |∆k|

p dx dy

≤ C

∞∑

k=1

|∆k|
pη

p(β−1)
k max

∆k

|u(t, θ)|p
∫∫

R
n+1
+

yαp−1 sup
ξ,η

|DβP (ξ − ξk, η + ηk)|
p dx dy.

Denoting the last integral by J and choosing β large enough we estimate J :

J ≤

+∞∫

0

yαp−1



∫

Rn

sup
|ξ−x|≤y/2
|η−y|≤y/2

|DβP (ξ − ξk, η + ηk)|
p dx


 dy

≤ C

+∞∫

0

yαp−1

[ ∫

|x−ξk|≤y/2

dx

(y/2 + ηk)
p(β+n)

+

+

∫

|x−ξk|>y/2

dx

(|x − ξk|+ ηk)
p(β+n)

]
dy ≤ C

1

η
p(β+n)−n−αp
k

.

Substituting this in (3.11) and applying Lemma B we can continue the estimate
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and get

‖u∗‖p
p,p,α ≤ C

∞∑

k=1

|∆k|
pη

αp+n−pn−p
k max

∆k

|u(ξ, η)|p

≤ C

∞∑

k=1

|∆k|η
αp−1
k max

∆k

|u(ξ, η)|p

≤ C

∞∑

k=1

|∆k|
1

|∆∗
k|

∫∫

∆∗
k

ηαp−1|u(ξ, η)|p dξ dη ≤ C‖u‖p
p,p,α,

and this is the required result. �

Applying Theorem 6 we deduce

Corollary 1. Let u ∈ h(p, p, α) and α > 0.

(i) If 0 < p < ∞ then there exists a function f ∈ L1(Rn) such that

‖f‖L1 ≤ C(α, n, p)‖u‖p
p,p,α ,

|u(x, y)|p ≤ C(α, n, p) y−αpf(x), x ∈ R
n, y > 0.

(ii) If 0 < p ≤ 1 then additionally D−α : h(p, p, α) −→ hp.

Corollary 2. Let 0 < p, q ≤ ∞, 0 < α ≤ β ≤ α+ n/p, p0 =
n

α+n/p−β
. Then:

D−β : h(p, q, α) −→ hp, β = α, 0 < p < ∞, 0 < q ≤ min{2, p},

D−β : h(p, q, α) −→ hp0 , α < β < α+ n/p, 0 < p < ∞, 0 < q ≤ p0,

D−β : h(p, q, α) −→ h∞, β = α+ n/p, 0 < p ≤ ∞, 0 < q ≤ 1.

Proof of Corollary 1: (i) By an inequality of Hardy-Littlewood-Fefferman-

Stein [11], for each point (x, y) ∈ R
n+1
+ we have

|u(x, y)|p ≤
C(p, α, n)

yαp

5y/4∫

3y/4

ηαp−1(u∗(x, η)
)p

dη

≤
C(p, α, n)

yαp f(x),

where f(x) is defined as follows:

f(x) =

+∞∫

0

ηαp−1(u∗(x, η)
)p

dη, x ∈ R
n.
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It is easy to see in view of Theorem 6 that

‖f‖L1 = ‖u∗‖p
p,p,α ≤ C(α, n, p)‖u‖p

p,p,α .

(ii) Suppose p < 1. Then by part (i)

|D−αu(x, y)| ≤ C(α, n, p)
(
f(x)

)(1−p)/p

+∞∫

0

σαp−1|u(x, y + σ)|p dσ.

After integrating and applying Hölder’s inequality with indices 1
p−1 ,

1
p and prop-

erty (2.1), we get

∫

Rn
|D−αu(x, y)|p dx ≤ C(α, n, p)‖f‖

1−p
L1

‖u‖p2
p,p,α

≤ C(α, n, p)‖u‖p
p,p,α .

�

Proof of Corollary 2: It suffices to prove the following assertions:

(a) D−α : h(p, p, α) −→ hp, 0 < p ≤ 2,

(b) D−α : h(p, 2, α) −→ hp, 2 ≤ p < ∞,

(c) D−β : h(p, p0, α) −→ hp0 , α < β < α+ n/p, 0 < p < ∞,

(d) D−α−n/p : h(p, 1, α) −→ h∞, 0 < p ≤ ∞.

Here (a) is contained in Corollary 1 and Theorem 1(ii). To prove (b) we apply
(3.4) and Theorem 1(ii). The assertion (c) for 1 ≤ p < ∞ is the case q0 = p0 in
Theorem 5(ii). For 0 < p < 1 we shall distinguish two cases.

Case 0 < p < 1, p0 ≥ 1. Then the previous case of (c) and Lemma 5 give

‖D−βu‖hp0 ≤ C‖u‖p0,p0,α+n/p−n/p0 ≤ C‖u‖p,p0,α .

Case 0 < p < 1, 0 < p0 < 1. Then by Corollary 1 and Lemma 5

‖D−βu‖hp0 ≤ C‖u‖p0,p0,β ≤ C‖u‖p,p0,α .

The case p =∞ in (d) is obvious. The general case follows from this and Lemma 5.
�

3.4 “Fractional derivative norm” characterization. The following auxiliary
lemma extends to smaller p a result of Flett [13, Theorem 7].
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Lemma 6. Let m be a nonnegative integer, let 0 < p < ∞, and let u(x, y) be a

harmonic function in R
n+1
+ . Then

∫

Rn
|∇mu(x, y)|p dx ≤ C(m, n, p)

1

ymp+1

∫ 3y/2

y/2
Mp

p (u; t) dt, y > 0,

where ∇mu is the gradient of u of order m.

This follows immediately from a corollary

|∇mu(x, y)|p ≤
C(m, n, p)

yn+1+mp

∫∫

|ξ−x|2+(η−y)2<y2/4

|u(ξ, η)|p dξ dη, x ∈ R
n, y > 0

of an inequality of Hardy-Littlewood-Fefferman-Stein ([11]).

Theorem 7. Let 0 < p, q ≤ ∞.

(i) If 0 < β < α, then D−β : h(p, q, α) −→ h(p, q, α − β).

(ii) If α > 0, β > 0, then Dβ : h(p, q, α) −→ h(p, q, α+ β).

(iii) If α > 0, α > β > −∞, q < ∞ and u ∈ h(p, q, α), then yα−βMp(D
−βu; y) =

o(1) as y → +0 and y → +∞.

(iv) If α > 0, α > β > −∞ and u ∈ h(p,∞, α), then the condition yαMp(u; y) =

o(1) as y → +0 (y → +∞) implies yα−βMp(D
−βu; y) = o(1) as y → +0

(y → +∞, respectively).

(v) The assertions (ii), (iii), (iv) for the derivative Dβ (β > 0) hold with ∂λ(λ ∈

Z
n+1
+ ) instead of Dβ , and |λ| instead of β.

Proof: Note that (i)–(iv) are proved by Bui Huy Qui [4, Theorem 3.5] for
1 ≤ p, q ≤ ∞. Corollaries 1, 2 and Lemma 6 enable us to extend the assertions
(i)–(iv) to all p, q ∈ (0,∞]. Here we prove only (ii) and (v) when 0 < q ≤ p < 1.
The relation

(3.12) ∂λ : h(q, q, α) −→ h(q, q, α+ |λ|)

is clear in view of Lemma 6. Besides, the relation

(3.13) ∂λ : h(1, q, α) −→ h(1, q, α+ |λ|)

is also valid. By a version of Riesz-Thorin interpolation theorem for quasi-
normed spaces (see [16]) the relations (3.12) and (3.13) lead to ∂λ : h(p, q, α) −→
h(p, q, α + |λ|) for any p ∈ [q, 1]. For nonintegral β (m − 1 < β < m, m ∈ Z+),
assertion (ii) follows from (i) and above:

‖Dβu‖p,q,α+β = ‖D−(m−β)Dmu‖p,q,α+β ≤ C‖Dmu‖p,q,α+m ≤ C‖u‖p,q,α .

�
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Corollary 3. Let 0 < p, q ≤ ∞, α > 0 and u ≡ u0 ∈ h(p, q, α). Let F =
(u0, u1, . . . , un) be a system of harmonic conjugates. Then:

(i) ‖F‖p,q,α ≤ C‖u‖p,q,α.

(ii) The condition yαMp(u; y) = o(1) as y → +0 (y → +∞) is equivalent to
yαMp(F ; y) = o(1) as y → +0 (y → +∞, respectively).

3.5 Bloch functions. The “fractional derivative norm” characterization and
harmonic conjugation results are easily applicable to Bloch functions. This cor-
responds to the case p = q =∞ in Theorem 7 and Corollary 3.

A function u harmonic on R
n+1
+ is said to be harmonic Bloch (we write

u ∈ B) if

(3.14) ‖u‖B = sup y|∇u(x, y)| < +∞,

where the supremum is taken over all (x, y) ∈ R
n+1
+ . A harmonic Bloch function

u is called harmonic little Bloch if it satisfies the following vanishing condition:

(3.15) y|∇u(x, y)| = o(1) as (x, y)→ ∂∞
R

n+1
+ ,

where ∂∞R
n+1
+ = Rn ∪ {∞} (see [24]). The space of all harmonic little Bloch

functions is denoted by B0. Let B̃ (resp. B̃0) denote the subspace of functions
in B (resp. B0) that vanish at (x0, y0) = (0, 1). The gradient in (3.14) may be
replaced by D1, and Bloch ‖ · ‖B-norm may be characterized by the equivalent
“derivative norm” condition

(3.16) sup
(x,y)

ym|Dmu(x, y)| < +∞, m ∈ Z+, m ≥ 1

as u ranges over B̃ (see [17]). Moreover, as follows from Corollary 3 and the case

p = q = ∞ of Theorem 7, (3.16) is true for fractional derivatives Dβ(β > 0) as
well.

Corollary 4 (see [17]). Suppose that u is in B̃. Then:

(i) For each β > 0,

‖u‖B ≍ ‖Dβu‖∞,∞,β .

(ii) For any j ∈ [1, n],
‖uj‖B ≤ C(n)‖u‖B.

Corollary 5. (i) Suppose that u is in B̃0. Then for each β > 0 the condition

y|∇u(x, y)| = o(1)

is equivalent to yβ |Dβu(x, y)| = o(1) as (x, y)→ ∂∞R
n+1
+ .

(ii) If u ∈ B̃0, then uj ∈ B̃0 for any j ∈ [1, n].
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4. Integral representations in h(p, q, α)

In this section we present some applications of Theorems 4–7. We characterize
h(p, q, α) by means of an integral representation with the use of Besov spaces Λp,q

α

on Rn. Let 1 ≤ p, q ≤ ∞, α > 0 and let f(x) be a measurable function on Rn.
The Besov’s seminorm is defined as follows:

(4.1) ‖f‖Λp,q
α
=





(∫

Rn
|t|−n−αq‖∆k

t f(x)‖
q
Lp(dx)

dt

)1/q

, 1 ≤ q < ∞,

sup
|t|>0

|t|−α‖∆k
t f(x)‖Lp(dx), q =∞,

where ∆1t f(x) = f(x + t) − f(x) and ∆k
t f(x) = ∆1t∆

k−1
t f(x), k is an integer,

k > α. There is an equivalent definition (see [23])

(4.2) ‖f‖Λp,q
α
= ‖Dkv‖p,q,k−α ,

where v = v(x, y) is the Poisson integral of f in R
n+1
+ . Observe that the definition

(4.2) is suitable as well for any q, 0 < q ≤ ∞.
For any real number b let Hb be the linear space [4, p. 254], consisting of all

harmonic functions v(x, y) in R
n+1
+ such that if λ ∈ Z

n+1
+ , ρ > 0 and K is any

compact subset of Rn, then there exists a positive constant C = C(λ, ρ, K) such
that

|∂λv(x, y)| ≤ Cy−b−|λ|, x ∈ K, y ≥ ρ.

We shall also write f(x) ∈ Hb when its harmonic extension to R
n+1
+ belongs

to Hb.
The following result is a slight improvement of Lemma 4.5 from [4].

Lemma C. Let 1 ≤ p, q ≤ ∞, α > 0 and let f(x) be a measurable function

on Rn whose Poisson integral v(x, y) exists, and v(x, y) ∈
⋂

b>0

H(−b). Then (4.1)

and ‖Dγv‖p,q,γ−α are equivalent for each γ > α.

Now we need the following

Lemma 7. (a) Suppose that f is in BMO(Rn). Then f belongs to Lp
(

dt
1+|t|n+1

)

for each p, 0 < p < ∞, and hence to L1
(

dt
1+|t|n+γ

)
and H(−γ) for each γ, 0 <

γ < 1.

(b) Suppose that f is in L(p,∞) for some p, 1 < p < ∞. Then f belongs to

L1
(

dt

1 + |t|n

)
and hence to H0.

Proof: The case p = 1 of the first inclusion in (a) is a well-known result of
Fefferman and Stein [11]. The general case in (a) can be proved by similar methods
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making use of the inequality

1

|B|

∫

B
|f − fB|p dx ≤ Cp‖f‖

p
BMO , for any ball B ⊂ R

n, fB =
1

|B|

∫

B
f dx,

which is a consequence of the John-Nirenberg inequality. The last inclusion in (a)
follows from

|∂λv(x, y)| ≤ C(λ, n)
1

y−γ+|λ|
max

{
1,
1 + |x|

y

}n+γ ∫

Rn

|f(t)|dt

1 + |t|n+γ , λ ∈ Z
n+1
+ ,

where v(x, y) is the Poisson integral of f . The first inclusion in (b) follows from

∫

Rn

|f(t)|dt

1 + |t|n
≤

∫ +∞

0
f∗(s)

(
1

1 + |t|n

)∗

ds

≤ ‖f‖p,∞

∫ +∞

0

ds

s1/p(1 + s/ωn)
,

where it is assumed that g∗(s) is the decreasing rearrangement of g(t) and ωn =
πn/2

Γ(1+n/2)
. �

Now we are ready to formulate and prove the main result of this section.

Theorem 8. Let 1 ≤ p < ∞, 0 < q ≤ ∞ and α > 0 be any numbers. Then:

(i) The space h(p, q, α) coincides with the set of functions u(x, y) representable
in the form

(4.3) u(x, y) =

∫

Rn
DβP (x − t, y)ϕ(t) dt, x ∈ R

n, y > 0,

where β (α < β < α+ n/p) is any number and

(4.4) ϕ(t) ∈ Λp,q
β−α

⋂
L1
(

dt

1 + |t|n

)
.

At the same time,

(4.5) ‖u‖p,q,α ≍ ‖ϕ‖Λp,q
β−α

.

(ii) The function ϕ in (4.3) can be deduced from the following inversion formula

(4.6) ϕ(x) = lim
y→+0

D−βu(x, y), a.e. x ∈ R
n.
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(iii) The space h(p, q, α) coincides with the set of functions u(x, y) representable
in the form (4.3), where β (α < β ≤ α+ n/p) is any number and

ϕ(t) ∈ Λp,q
β−α

⋂



⋂

0<γ<1

L1
(

dt

1 + |t|n+γ

)

 .

At the same time, (4.5) and (4.6) are valid.

Proof: (i) Let u(x, y) ∈ h(p, q, α) be any function and β (α < β < α + n/p) is

any number. Denote ϕ(x, y) = D−βu(x, y) and let ϕ(x) be its boundary values
on R

n. By virtue of Theorem 5 (3.6), the function ϕ(x) belongs to L(p0,∞) with

p0 = n/(α+n/p−β). Hence, by Lemma 7(b) ϕ(x) ∈ L1
(

dx
1+|x|n

)
and so ϕ(x, y)

is representable by its Poisson integral:

ϕ(x, y) =

∫

Rn
P (x − t, y)ϕ(t) dt, x ∈ R

n, y > 0.

Therefore,

u(x, y) = Dβϕ(x, y) =

∫

Rn
DβP (x − t, y)ϕ(t) dt,

where the integral is absolutely convergent. At the same time, by Lemma C

‖ϕ‖Λp,q
β−α

≤ C‖Dβϕ‖p,q,β−(β−α) = C‖u‖p,q,α .

Conversely, suppose u(x, y) is representable in the form (4.3)–(4.4). Let ϕ(x, y)

be the Poisson integral of ϕ(t). Differentiation by means of Dβ yields

Dβϕ(x, y) =

∫

Rn
DβP (x − t, y)ϕ(t) dt = u(x, y).

Since, by Lemma 7 (b) ϕ ∈ H0, in view of Lemma C we have

‖u‖p,q,α = ‖Dβϕ‖p,q,β−(β−α) ≤ C‖ϕ‖Λp,q
β−α

.

(ii) To prove (4.6) it suffices to integrate the representation (4.3) by means of

D−β , then to use the invertibility of D−β and to let y → +0. The assertion (iii)
can be proved in the same way with the use of Lemmas C and 7(a). �

Remark. The connection between Besov spaces and weighted classes A∗
α of

Nevanlinna-Djrbashian ([8], [9]) of functions holomorphic in the unit disk was
established by Shamoyan [20].

Finally, we present a simpler integral formula for the space h(2, 2, α).
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Theorem 9. The space h(2, 2, α) (α > 0) coincides with the set of functions
u(x, y) representable in the form

(4.7) u(x, y) =

∫

Rn
DαP (x − t, y) ϕ(t) dt, x ∈ R

n, y > 0,

where ϕ(t) ∈ L2(Rn).
Here the function ϕ can be deduced by the following inversion formula

ϕ(x) = lim
y→+0

D−αu(x, y), a.e. x ∈ R
n.

Proof: h(2, 2, α) = Dα(h2) (see Corollary 2 and Theorem 4 (3.2)). �

A corresponding formula for functions holomorphic in the unit disk was es-
tablished by M.M. Djrbashian [9, Theorems V–VI].

Remark. In a recent paper [25] of the author some analogues of Theorems 5(i),
8 and Corollary 4 for the unit disk are contained.

Acknowledgment. I am grateful to Professor A.E. Djrbashian for sending me
a copy of the paper [18].
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