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On p-injectivity, YJ-injectivity

and quasi-Frobeniusean rings

Roger Yue Chi Ming

Dedicated to Professor Carl Faith on his 75-th birthday

Abstract. A new characteristic property of von Neumann regular rings is proposed in
terms of annihilators of elements. An ELT fully idempotent ring is a regular ring whose
simple left (or right) modules are either injective or projective. Artinian rings are char-
acterized in terms of Noetherian rings. Strongly regular rings and rings whose two-sided
ideals are generated by central idempotents are characterized in terms of special an-
nihilators. Quasi-Frobeniusean rings are characterized in terms of p-injectivity. Also,
a commutative YJ-injective ring with maximum condition on annihilators and finitely
generated socle is quasi-Frobeniusean.
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Introduction

Von Neumann regular rings, V -rings, self-injective rings and generalizations
are extensively studied since several years (cf. for example, [1], [3]–[16], [28]–[30]).
This sequel of [21] and [24] contains the following results for a ring A: (1) A is
von Neumann regular iff A is a semi-prime ring such that every finitely generated
one-sided ideal is the annihilator of an element of A (Theorem 1); (2) A is
strongly regular iff for every b ∈ A, Ab + I(AbA) is a complement right ideal
of A (Proposition 3); (3) Left Noetherian rings whose essential right ideals are
idempotent two-sided ideals are left Artinian (Proposition 4); (4) Special two-
sided ideals are used to characterize rings whose two-sided ideals are generated
by central idempotents (Proposition 8), (5) A is quasi-Frobeniusean iff A has a
p-injective left generator and projective p-injective left A-modules are injective
(Theorem 9); (6) If every simple right A-module is flat and every maximal left
ideal of A is either injective or a two-sided ideal of A, then A is either a left self-
injective regular left V -ring or strongly regular; (7) If A is commutative, then
A is quasi-Frobeniusean iff A is a YJ-injective ring with maximum condition on
annihilators and a finitely generated socle (Theorem 11).

Throughout, A denotes an associative ring with identity and A-modules are
unital. Recall that a left A-module M is p-injective (resp f -injective) if, for any
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principal (resp. finitely generated) left ideal I of A, every left A-homomorphism
of I into M extends to A (cf. [4, p. 122], [14, p. 340], [17]). A is called left
p-injective (resp. f -injective) if AA is p-injective (resp. f -injective). Similarly,
p-injectivity and f -injectivity are definited on the right side. (P -injectivity is also
called principal injectivity in the literature). Following C. Faith, A is called a
left V -ring if every simple left A-module is injective. A well-known theorem of
I. Kaplansky asserts that a commutative ring is von Neumann regular iff it is
a V -ring. In general, von Neumann regular rings need not be V -rings and the
converse is not true either. A theorem of M. Ikeda-T. Nakayama asserts that A
is a left p-injective ring iff every principal right ideal of A is a right annihilator.
It is well-known that A is von Neumann regular iff every left (right) A-module is
flat ([4, p. 91]). This remains true if “flat” is replaced by “p-injective” ([17]).
Our first result is motivated by [19, Question 1] and [27, Question 1].

Theorem 1. The following conditions are equivalent:

(1) A is von Neumann regular;
(2) A is a semi-prime ring whose finitely generated one-sided ideals are anni-
hilators of an element of A;

(3) A is a semi-prime ring such that every finitely generated left ideal is the
left annihilator of an element of A and every principal right ideal of A is
the right annihilator of an element of A.

Proof: It is clear that (1) implies (2) while (2) implies (3). Assume (3). Let F
be a finitely generated left ideal of A. Then F = I(u), u ∈ A. Since uA = r(w),
w ∈ A, F = I(uA) = I(r(w)) = I(r(Aw)). But Aw is a left annihilator which
implies that Aw = I(r(Aw)). Therefore F = Aw which shows that every finitely
generated left ideal of A is principal. Since A is semi-prime, A is left semi-
hereditary by [4, Theorem 7.5B] and it follows that every principal left ideal
of A is projective. Since every principal right ideal is a right annihilator, by
Ikeda-Nakayama’s theorem, A is left p-injective. Now A being a left p.p. ring is
equivalent to “every quotient of a p-injective left A-module is p-injective” ([18,
Remark 2]). Since A is left p-injective, every cyclic left A-module is p-injective
which yields that A is von Neumann regular ([17, Lemma 2]). Thus (3) implies (1).

�

In Theorem 1, the term “semi-prime” cannot be omitted (otherwise, any prin-
cipal ideal quasi-Frobeniusean ring would be von Neumann regular !).

Remark 1. If every finitely generated one-sided ideal of A is the annihilator of
an element, then A is a left and right IF-ring whose finitely generated one-sided
ideals are principal (cf. [4, Theorem 6.9]).

Remark 2. The fact that a strongly regular ring is unit-regular follows from a
cancellation theorem of G. Ehrlich (cf. [4, Corollary 6.3C] and [5, Corollary 4.2]).



On p-injectivity, YJ-injectivity and quasi-Frobeniusean rings 35

The proof of [17, Proposition 1] shows in an elementary way that this result
holds. Note that a left and right V -ring whose essential left ideals are two-sided
is a unit-regular ring (whose prime factor rings are Artinian).

We may note the following characterization of principal ideal rings in terms of
p-injectivity.

Remark 3. A is a principal left ideal ring iff every finitely generated left ideal
of A is principal and every p-injective left A-module is injective.

Another result on annihilators.

Proposition 2. If every finitely generated left ideal of A is the left annihilator
of a finite subset of A and every finitely generated right ideal of A is a right
annihilator, then A is left f -injective and right p-injective.

Proof: Since every principal one-sided ideal of A is an annihilator, A is a left
and right p-injective ring by Ikeda-Nakayama’s theorem. Let F, K be finitely
generated left ideals of A. By hypothesis, we have F = I(U), K = I(V ), where
U, V are finitely generated right ideals of A. Then U = r(I(U)), V = r(I(V ))
which imply r(F ) + r(K) = r(I(U)) + r(I(V )) = U + V = r(I(U + V )) =
r(I(U) ∩ I(V )) = r(F ∩ K). By Ikeda-Nakayama’s theorem, A is left f -injective.

�

Question 1. If A is left p-injective such that every finitely generated left ideal
of A is the left annihilator of an element of A, is A left f -injective ?

Remark 4. In Proposition 2, Soc(AA) = Soc(AA).

Proposition 3. The following conditions are equivalent:

(1) A is strongly regular;
(2) for any b ∈ A, Ab + I(AbA) is a complement right ideal of A.

Proof: Assume (1). For any b ∈ A, Ab = Ae, where e is a central idempotent.
Then I(AbA) = I(b) = A(1−e) and Ab+I(AbA) = Ae⊕A(1−e) = A. Therefore
(1) implies (2) evidently.
Assume (2). Suppose that c ∈ A such that (Ac)2 = 0. Then I(AcA) is an

essential right ideal of A. By hypothesis, I(AcA) = Ac+ I(AcA) is a complement
right ideal of A which proves that A = I(AcA), whence c = 0. This proves
that A must be semi-prime. It follows that for any b ∈ A, I = Ab ⊕ I(AbA)
(because Ab ∩ I(Ab) = 0) is a complement right ideal of A. Now there exists a
complement right ideal C of A such that I ⊕ C is an essential right ideal of A.
Then CAb ⊆ C ∩ Ab ⊆ C ∩ I = 0 implies that C ⊆ I(AbA) ⊆ I and hence
C ⊆ C ∩ I = 0. Therefore I is an essential right ideal of A which yields I = A.
Therefore A = Ab ⊕ I(AbA) which proves that A is von Neumann regular. Since
AbA ∩ I(AbA) = 0 (in as much as A is semi-prime), then A = Ab ⊕ I(AbA) ⊆
AbA ⊕ I(AbA) which yields A = AbA ⊕ I(AbA). For any u ∈ AbA, u = v + w,
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v ∈ Ab, w ∈ I(AbA). Then u− v ∈ AbA ∩ I(AbA) = 0 which implies u = v ∈ Ab,
proving that Ab = AbA is generated by a central idempotent (because A is semi-
prime). Thus (2) implies (1).

�

Question 2. If Ab + r(AbA) is a complement left ideal of A for every b ∈ A, is
A regular, biregular ?

We now give a sufficient condition for left Noetherian rings to be left Artinian.

Proposition 4. If A is a left Noetherian ring such that every essential right ideal
of A is an idempotent two-sided ideal, then A is left Artinian.

Proof: Let B be a prime factor ring of A. Then every essential right ideal of
B is an idempotent two-sided ideal of B. For any 0 6= b ∈ B, set T = BbB. Let
K be a complement right subideal of T such that E = bB ⊕ K is an essential
right subideal of T . Since T is an essential right ideal of B (B being prime), E
is an essential right ideal of B which implies that E is an idempotent two-sided
ideal of B. Now b ∈ E = E2 implies that b =

∑n
i=1(bbi + ki)(bci + si), bi, ci ∈ B

and ki, si ∈ K, whence b −
∑n

i=1 bbi(bci + si) =
∑n

i=1 ki(bci + si) ∈ bB ∩ K = 0.
Then b ∈ bBbB which proves that every right ideal of B is idempotent. Since
every essential right ideal of B is two-sided, then B is von Neumann regular by [1,
Theorem 3.1]. Since B is left Noetherian, it is well-known that B must be simple
Artinian. If A is prime, then A is Artinian as just seen. If A is not prime, then
by [3, Lemma 18.34B], A is left Artinian. This establishes the proposition. �

Note that the ring in Proposition 4 needs not be right duo. The proof of
Proposition 4 yields a characterization of Artinian rings.

Theorem 5. The following conditions are equivalent:

(1) A is left Artinian;
(2) A is a left Noetherian ring such that for any prime factor ring B of A,
every essential right ideal of B is an idempotent two-sided ideal of B.

An ideal of A will always mean a two-sided ideal of A. Recall that A is ELT
(resp. ERT) if every essential left (resp. right) ideal of A is an ideal of A. As
usual, A is called fully (resp. (1) fully left; (2) fully right) idempotent if every
ideal (resp. (1) left ideal; (2) right ideal) of A is idempotent.
Note that if A is fully idempotent and every maximal left (with even every

maximal right) ideal of A is an ideal, then A needs not be von Neumann regular
([28, Theorem 1]).

Theorem 6. If A is an ELT fully idempotent ring, then A is a von Neumann
regular ring whose simple right (or left) modules are either projective or injective.

Proof: Let B be a prime factor ring of A. Then B is an ELT fully idempotent
ring. The proof of Proposition 4 shows that B is fully left idempotent. By
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[1, Theorem 3.1], B is von Neumann regular. Looking carefully at the proof
of [1, Theorem 3.1], we see that A is also ERT. Let M be a maximal right
ideal of A. If A/MA is not projective, then MA is essential in AA which implies
that M is an ideal of A and is therefore a maximal left ideal of A. For any
y ∈ M , y ∈ yAyA ⊆ yM which implies that the simple left A-module A/M is
flat ([2, p. 458]). By [21, Lemma 1], A/MA is injective. This proves that every
simple right A-module is either injective or projective. Similarly, every simple left
A-module is either injective or projective. �

Corollary 7. An ELT fully idempotent ring is either regular with non-zero socle
or strongly regular.

The next remark is connected with [6, Corollary 6], [18, Lemma 1] and [26,
Question 1].

Remark 5. If A is an ERT (or ELT) ring whose simple left modules are p-
injective, then A is regular and every simple one-sided A-module is either injective
or projective.

Remark 6. If A is a semi-prime ELT ring containing an injective maximal left
ideal, then A is a left and right self-injective, left and right V -ring of bounded
index. Consequently, A is left and right FPF by a theorem of S. Page [4, Theo-
rem 5.49].

We now consider a particular class of biregular rings which generalizes simple
non-Artinian rings and semi-simple Artinian rings.
We introduce two definitions.

Definitions. Let E, T be ideals of A, E ⊆ T . We say that

(1) T is an essential extension of E (or E is essential in T ) if E ∩ N 6= 0 for
any non-zero ideal N of A contained in T ;

(2) E is a complement ideal of A if E has no proper essential extension in A.

Proposition 8. The following conditions are equivalent for a ring A:

(1) every ideal of A is generated by a central idempotent;
(2) for every ideal T of A, T + (I(T ) ∩ r(T )) is a complement ideal of A.

Proof: Assume (1). Let T be an ideal of A. If I = T + (I(T ) ∩ r(T )), since
T = Ae, where e is a central idempotent, then I(T ) = I(eA) = A(1 − e) =
(1 − e)A = r(T ) and A = Ae ⊕ A(1 − e) = T ⊕ (I(T ) ∩ r(T )). Therefore (1)
implies (2).
Assume (2). Let T be an ideal of A such that T 2 = 0. Then r(T ) is an

essential left ideal of A which implies r(T ) is an essential ideal of A. Similarly,
I(T ) is an essential ideal of A. Therefore r(T ) ∩ I(T ) is an essential ideal of A
which implies that T + I(T ) ∩ r(T ) is an essential ideal of A. By hypothesis,
T +(I(T )∩ r(T )) is a complement ideal of A which yields T +(I(T )∩ r(T )) = A.
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But T 2 = 0 implies that T ⊆ I(T ) ∩ r(T ), whence A = I(T ) ∩ r(T ), yielding
A = I(T ) = r(T ). This implies T = 0 and proves that A must be semi-prime.
Now for any ideal U of A, U∩I(U) = 0 and I(U) = r(U). If I = U+(I(U)∩r(U)),
then I = U+I(U) = U⊕I(U). Suppose that I is not an essential ideal of A: there
exists a non-zero ideal N of A such that I∩N = 0. Now NU ⊆ N∩U ⊆ N∩I = 0
which implies that N ⊆ I(U) = r(U), whence N = N ∩ I(U) ⊆ N ∩ I = 0. This
contradiction proves that I must be essential in A. By hypothesis, I = A which
proves that U is generated by a central idempotent (in as much as A is semi-
prime). Thus (2) implies (1).

�

The following property of p-injectivity seems interesting.

Remark 7. If T is an ideal of A such that AA/T is p-injective, then the factor
ring A/T is left p-injective.

Quasi-Frobeniusean rings are now characterized in terms of p-injectivity.

Theorem 9. The following conditions are equivalent:

(1) A is quasi-Frobeniusean;
(2) A is left pseudo-Frobeniusean and projective p-injective right A-modules
are injective;

(3) there exists a p-injective left generator of A-Mod and projective p-injective
left A-modules are injective.

Proof: (1) implies (2) and (3) by [3, Theorem 24.20].
Assume (2). Since A is left pseudo-Frobeniusean, then every left ideal of A is a

left annihilator which implies that A is right p-injective. For any projective right
A-module P , there exist B, a direct sum of copies of AA, and an epimorphism p
of B onto PA. Then B/ ker p ≈ PA implies that B ≈ ker p ⊕ B/ ker p. Since B
is a direct sum of p-injective right A-modules, then BA is p-injective. Therefore
B/ kerp is a p-injective rightA-module and hence PA is p-injective. By hypothesis,
PA is injective. Then (2) implies (1) by [3, Theorem 24.20].
Assume (3). Let G be a p-injective left generator of A-Mod. For any projective

left A-module F , there exists C, a direct sum of copies of AG, and an epimorphism
q : AC → AF . As before, we obtain a p-injective left A-module F which is injective
by hypothesis. Thus (3) implies (1) by [3, Theorem 24.20]. �

Recall that a left A-module M is YJ-injective if, for any o 6= a ∈ A, there
exists a positive integer n with an 6= 0 such that every left A-homomorphism
of Aan into M extends to A (cf. [15], [24], [30]). A is called left YJ-injective
if AA is YJ-injective. Similarly, YJ-injectivity is defined on the right side. In
[15], it is shown that YJ-injectivity generalizes p-injectivity even for rings (quasi-
injectivity generalizes injectivity but the two concepts coincide for rings). Also
left YJ-injective rings generalize right IF-rings. If A is left YJ-injective, then every
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non-zero-divisor is invertible in A. Consequently, A coincides with Ql
cl(A) and

Qr
cl(A), the classical left and right quotient rings of A. It is well-known that A is

left non-singular iff A has a maximal left quotient ring, noted Ql
max(A), which is a

left self-injective regular ring. If A is a reduced ring, Ql
max(A), is not necessarily

strongly regular. However, if A is reduced and admits a classical left quotient
ring Ql

cl(A), then by [22, Proposition 1.5], Ql
cl(A) is a reduced ring (this is the

case when A is left non-singular, left duo). In that case, if Ql
cl(A) is left or right

YJ-injective, then it is strongly regular. Consequently, a reduced left YJ-injective
ring is strongly regular.
A well-known theorem of Y. Utumi asserts that if A is left and right non-

singular, then Ql
max(A) and Qr

max(A) coincide iff every complement one-sided
ideal of A is an annihilator. (The terms “annihilator” and “complement” should
be permuted in [4, p. 181]).
Left (or right) Johns rings are studied in [4].

Question 3. Is a left Johns, left YJ-injective ring quasi-Frobeniusean?

(We know that a left p-injective left Johns ring is quasi-Frobeniusean).

Now let J , Y , Z denote respectively the Jacobson radical, the right singular
ideal and the left singular ideal of the ring A.

Proposition 10. Let A be a ring whose simple right modules are flat. If every
maximal left ideal of A is either injective or an ideal of A, then either A is a left
self-injective regular left V -ring or A is strongly regular. Consequently, A must
be a regular left V -ring.

Proof: First suppose that every maximal left ideal of A is an ideal of A. For any
maximal left ideal N of A, N is a maximal right ideal of A and by hypothesis,
A/NA is flat. Then AA/N is injective by [21, Lemma 1] which implies that
A is a left V -ring, whence A is strongly regular (cf [17, Proposition 3]). Now
suppose that there exists a maximal left ideal M of A which is not an ideal
of A. Then AM is injective which implies A = M ⊕ U , where U is a minimal
projective left ideal of A. Let V be an arbitrary minimal projective left ideal
of A. Write V = Av, 0 6= v ∈ A. If MV = 0, then MAv = 0 which implies
that MA = M (because MA 6= A). This contradicts the hypothesis that M is
not an ideal of A. Therefore MV 6= 0 and Mw 6= 0 for some 0 6= w ∈ V . Now
Mw = V and we have an epimorphism p :M → V defined by p(m) = mw for all
m ∈ M . Then M/ kerp ≈ V which yields M ≈ ker p ⊕ M/ ker p (in as much as

AV is projective). Since AM is injective, then so is M/ kerp, proving that AV is
injective. In particular, AU is injective which implies that A is left self-injective.
Now for any maximal left ideal L of A, if AL is injective, then AA/L is injective
as just seen. If L is an ideal of A, then A/LA is flat which implies that AA/L is
injective ([21, Lemma 1]). In any case, AA/L is injective, proving that A is a left
V -ring, whence J = 0 (cf. [18, Lemma 1]). Since A is left self-injective, Z = J = 0
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and hence A is von Neumann regular. We conclude that A must be a regular, left
V -ring. �

We now turn to a characterization of commutative quasi-Frobeniusean rings.

Theorem 11. The following conditions are equivalent for a commutative ring A:

(1) A is quasi-Frobeniusean;
(2) A is a YJ-injective ring with maximum condition on annihilators and
Soc(A), the socle of A, is finitely generated.

Proof: It is clear that (1) implies (2).
Assume (2). Since A is a commutative YJ-injective, then A coincides with its

classical quotient ring. Since A satisfies the maximum condition on annihilators,
then A/J is Artinian ([4, Theorem 16.31]) and also Y is nilpotent. Now A being
YJ-injective implies that J = Y ([24, p. 103]), whence A is semi-primary. There-
fore A has an essential socle. Given Soc(A) finitely generated, we then have a
finitely embedded ring A satisfying the maximum condition on annihilators which
yields A Artinian ([4, p. 164]). Since A is YJ-injective, every minimal ideal of A
must be an annihilator. In that case, A is quasi-Frobeniusean by a theorem of
H.H. Storrer. Thus (2) implies (1). �

Remark 8. A right YJ-injective ring whose simple right modules are either
p-injective or projective is fully right idempotent (this is because Y = J = Y ∩J =
0).

Theorem 11 motivates the next question on YJ-injectivity.

Question 4. Is a commutative YJ-injective ring with maximum condition on
annihilators quasi-Frobeniusean?

We add a remark on flatness and p-injectivity.

Remark 9. We know that A is von Neumann regular if every cyclic singular left
A-module is flat (Math. J. Okayama Univ. 20 (1978), 123–129 (Theorem 5)). If
every singular left A-module is injective, A needs not be von Neumann regular
([4, p. 92]). Consequently, this is also the case when every cyclic singular left
A-module is p-injective. However, A is von Neumann regular if A is also left
p-injective. We may also recall the following: If I is a p-injective left ideal of A,
then AA/I is flat.

In 1974, we introduced the concept of p-injective modules to study von Neu-
mann regular rings, V -rings and associated rings ([17]). In 1985, this is general-
ized to YJ-injective modules ([24]). In 1998, Xue Weimin showed that even for
rings, YJ-injectivity effectively generalizes p-injectivity [15]. Finally, Zhang-Wu
[30] proved that if every left A-module is YJ-injective, then A is von Neumann
regular (which answers a question raised in [24]).
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K.R. Goodearl’s volume on von Neumann regular rings [5] has motivated nu-
merous papers in that area during the last twenty years. It is now a classic for
people interested in VNR rings (cf. [4]).
In view of [17, Proposition 1] and our Theorem 1 here, we raise the last question.

Question 5. Is A von Neumann regular if A is a semi-prime ring such that every
principal one-sided ideal is the annihilator of an element of A ?

Note that semi-prime rings whose principal one-sided ideals are annihilators
need not be von Neumann regular (cf. K. Beidar–R. Wisbauer, Comm. Algebra
23 (1995), 841–861 (Example 4.8), which answered in the negative a question
raised in 1981).

In recent years, Xue Weimin and Zhang Jule solved several problems raised in
my papers. Among the still unanswered questions, we recall the following:

U.Q.1. Is A von Neumann regular if A satisfies any one of the following condi-
tions: (a) A is left semi-hereditary and every maximal left ideal of A is p-injective;
(b) A is a left p-injective left V -ring; (c) every principal left ideal of A is a projec-
tive left annihilator; (d) A is left semi-hereditary and every simple left A-module
is flat; (e) A is a semi-prime left self-injective ring whose maximal essential left
ideals are two-sided.

U.Q.2. Is A strongly regular if A is a reduced ring whose principal left ideals are
complement left ideals ?

U.Q.3. Is A fully left idempotent if every simple left A-module is YJ-injective ?
(The answer is “yes” if “YJ-injective” is replaced by “p-injective”).

U.Q.4. Is A Artinian if A is a prime left self-injective ring whose maximal es-
sential left ideals are two-sided ?

U.Q.5. Is A left pseudo-Frobeniusean if A is a left Kasch ring containing an
injective maximal left ideal ?
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