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On the convergence of certain sums

of independent random elements

J.C. Ferrando

Abstract. In this note we investigate the relationship between the convergence of the

sequence {Sn} of sums of independent random elements of the form Sn =
Pn

i=1 εixi

(where εi takes the values ± 1 with the same probability and xi belongs to a real Banach
space X for each i ∈ N) and the existence of certain weakly unconditionally Cauchy
subseries of

P
∞

n=1 xn.

Keywords: independent random elements, copy of c0, Pettis integrable function, perfect
measure space

Classification: 46B15, 46B09

1. Preliminaries

Our notation is standard ([1], [3], [4], [9]). Throughout this note ∆ will denote

the Cantor space {−1, 1}N, Σ the σ-algebra of subsets of ∆ generated by the
n-cylinders of ∆ for each n ∈ N, and ν the Borel probability ⊗∞

i=1νi on Σ, where

νi : 2{−1,1} → [0, 1] is defined by νi(∅) = 0, νi({−1}) = νi({1}) = 1/2 and
νi({−1, 1}) = 1 for each i ∈ N. In what follows X will be a real Banach space
and L0(ν, X) will stand for the (F )-space over R of all [classes of] ν-measurable
X-valued functions equipped with the (F )-norm

‖f‖0 =

∫

∆

‖f (ε)‖

1 + ‖f (ε)‖
dν (ε)

of the convergence in probability. We shall represent by P1(ν, X) the (real)
normed space consisting of all those [classes of] ν-measurable X-valued Pettis
integrable functions f defined on ∆ provided with the semivariation norm

‖f‖P1(ν,X) = sup

{
∫

∆
|x∗f (ω)| dν (ω) : x∗ ∈ X∗, ‖x∗‖ ≤ 1

}

.

As it is well known, P1(ν, X) is not a Banach space whenever X is infinite-
dimensional. In the sequel we shall shorten by wuC the sentence ‘weakly uncon-
ditionally Cauchy’.
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In [5] we have shown that if a series of independent random elements of the
form

∑∞
n=1 fn, with fn(ω) = ωnxn for ω ∈ ∆ and {xn} ⊆ X , converges ν-almost

surely in X , then
∑∞

n=1 xn has a subseries which is unconditionally convergent in
norm. In this note we continue the investigation on the relationship among the
convergence of the functional series

∑∞
n=1 fn under different topologies and the

existence of certain wuC subseries of
∑∞

n=1 xn.

2. On certain weakly unconditionally Cauchy subseries

Lemma 2.1. If there are a closed set A in ∆ with ν(A) > 1/2 and a nonempty
set S ⊆ X∗ such that

∑∞
i=1 x∗fi(ω) converges for ω ∈ A and x∗ ∈ S, then there

exists a subsequence {xni} of {xn} such that
∑∞

i=1 |x
∗xni | < ∞ for each x∗ ∈ S.

Proof: The following fact is contained in the proof of [8, Proposition] (see also
[5, Claim]). We shall denote by Ci1i2...ik or Ci1i2...ik (ε) any rectangle of ∆ with
fixed coordinates i1, i2, . . . , ik, i.e., Ci1i2...ik(ε) = {ω ∈ ∆ : ωij = εj , 1 ≤ j ≤ k}
for some ε ∈ ∆. On the other hand, given a strictly increasing sequence Q = {ni :
i ∈ N} of positive integers, for each ω ∈ ∆ we shall design by ω′ (as in [8]) the
element of ∆ defined by ω′

i = ωi if i ∈ Q and ω′
i = −ωi if i /∈ Q.

Fact. Let A ∈ Σ. If ν(A) > 1/2, there is a strictly increasing sequence {ni} of
positive integers such that A ∩ A′ ∩ Cn1n2...nk

6= ∅ for each Cn1n2...nk
and each

k ∈ N.

By hypothesis there is a closed set A in ∆ with ν(A) > 1/2 such that
∑∞

n=1 ωnx∗xn

converges for ω ∈ A and x∗ ∈ S. According to the preceding fact there exists a
strictly increasing sequence Q = {ni} of positive integers such that, given ε ∈ ∆,
then A ∩ A′ ∩ Cn1n2...nk

(ε) 6= ∅ for each k ∈ N. Since {A ∩ A′ ∩ Cn1n2...nk
(ε) :

k ∈ N} is a decreasing sequence of nonempty closed sets in the compact space
∆, there is a point ζ (which depends of ε) in ∆ which belongs to the intersection
⋂∞

k=1A∩A′∩Cn1n2...nk
(ε). Hence, for each x∗ ∈ S and each pair (r, s) of positive

integers, with s > r, one has
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∣

∣

∣
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.

Since ζ, ζ′ ∈ A and x∗ ∈ S, both series
∑∞

i=1 x∗fi(ζ) and
∑∞

i=1 x∗fi(ζ
′) are

convergent. So, for a given ǫ > 0 there is a k ∈ N such that
∣

∣

∑ns

i=nr+1
x∗fi(ζ)

∣

∣ < ǫ

and
∣

∣

∑ns

i=nr+1
x∗fi(ζ

′)
∣

∣ < ǫ for s > r ≥ k, which implies that
∣

∣

∑s
i=r+1 εix

∗xni

∣

∣

≤ ǫ for s > r ≥ k. Hence the numerical series
∑∞

i=1 εix
∗xni converges. Given

that this is true for each ε ∈ ∆, it follows that
∑∞

i=1 |x
∗xni | < ∞ for each x∗ ∈ S

and we are done. �
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Theorem 2.2. Assume that ‖xn‖ = 1 for each n ∈ N and X has a dual unit ball
with countably many extreme points. If

sup
n∈N

∫

∆
|x∗Sn(ω)| dν(ω) < ∞

for each x∗ ∈ Ext BX∗ , then X contains a copy of c0.

Proof: By hypothesis, for each x∗ ∈ Ext BX∗ there exists Cx∗ > 0 such that

(2.1) sup
n∈N

∫

∆

∣

∣

∣

∣

∣

n
∑

i=1

x∗fi(ω)

∣

∣

∣

∣

∣

dν(ω) < Cx∗ .

Hence, given x∗ ∈ Ext BX∗ , as a consequence of (2.1) and of Khinchine’s inequal-
ities there exists a K > 0 such that

(2.2)

{

n
∑

i=1

σ2 (x∗fi)

}1/2

=

{

n
∑

i=1

(x∗xi)
2

}1/2

≤ K

∫

∆

∣

∣

∣

∣

∣

n
∑

i=1

x∗fi(ω)

∣

∣

∣

∣

∣

dν(ω) < KCx∗

for each n ∈ N. Considering that the sequence {x∗fi} consists of independent
random variables such that

E (x∗fi) =

∫

∆
x∗fi(ω) dν(ω) = 0

for each i ∈ N, according to [7, Section 46, Theorem B] equation (2.2) ensures that
∑∞

i=1 x∗fi(ω) converges almost surely for ω ∈ ∆. Since Ext BX∗ is countable, it
follows that there exists a ν-null set N such that

∑∞
i=1 x∗fi(ω) converges for each

ω ∈ ∆ − N and each x∗ ∈ Ext BX∗ . So, using inner regularity we may choose a
closed set A with A ⊆ ∆ − N and ν(A) > 1/2 such that

∑∞
i=1 x∗fi(ω) converges

for each ω ∈ A and each x∗ ∈ Ext BX∗ . On the basis of Lemma 2.1, this implies
that there exists a subsequence {xni} of {xn} such that

∑∞
i=1 |x

∗xni | < ∞ for
each x∗ ∈ Ext BX∗ . Since

∑∞
n=1 xn diverges, Elton’s theorem guarantees that X

contains a copy of c0. �

Proposition 2.3. If the sums {Sn} are bounded inside of a complete linear
subspace L of P1(ν, X), then

∑∞
n=1 xn has a wuC subseries.

Proof: Since {Sn} is bounded inside of a complete linear subspace L of P1(ν, X)
and given that the canonical inclusion map from P1(ν, X) into L0(ν, X) has closed
graph ([6, Lemma 4]), then Banach-Schauder’s theorem guarantees that {Sn} is
stochastically bounded. So, according to [9, Section 5.2.3, Theorem 2.2] the sums
{Sn} are bounded almost surely, i.e. ν({ω ∈ ∆ : supn∈N

∥

∥

∑n
i=1 fi(ω)

∥

∥ = ∞})
= 0. Hence Kwapień’s theorem [8, Proposition] assures the existence of a wuC
subseries of

∑∞
n=1 xn. �
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Corollary 2.4. Assume that {fn} is a basic sequence in ̂P1(ν, X) equivalent to
the unit vector basis of c0. If [fn] is contained in P1(ν, X), then there exists a
subsequence {fni} such that [fni ] is isomorphic to a complemented copy of c0.

Proof: Since the series
∑∞

i=1 fi is wuC in P1(ν, X), there is K > 0 such that

sup
n∈N

∥

∥

∥

∥

∥

n
∑

i=1

ξifi

∥

∥

∥

∥

∥

P1(ν,X)

< K‖ξ‖∞

for each ξ ∈ ℓ∞. Hence the sums {Sn} are bounded in the complete linear
subspace [fi] of P1(ν, X) and Proposition 2.3 guarantees that

∑∞
n=1 xn has a

wuC subseries. Since ‖xn‖ = ‖fn‖P1(ν,X) for each n ∈ N, then infn∈N ‖xn‖ > 0

and the classic Bessaga-Pe lczyński allows us to conclude that {xn} contains a
subsequence {xni} equivalent to the unit vector basis of c0. Therefore, there
exists a bounded sequence {y∗i } in X∗ such that y∗i xnj = δij for each i, j ∈ N.
Assuming without loss of generality that yi ∈ BX∗ , set gi(ε) = εiy

∗
i for each i ∈ N

and define

〈gi, f〉 =

∫

∆
εiy

∗
i f(ε) dν(ε)

for each f ∈ P1(ν, X). So we have 〈gi, fnj 〉 = δij for each i, j ∈ N. On the other
hand, denoting by Cn the rectangle of ∆ formed by all those ε ∈ ∆ with εn = 1
and noting that ν(E ∩ Cn) → ν(E)/2 for all E ∈ Σ, it follows that

ECn
(ϕ) =

1

ν(Cn)

∫

Cn

ϕdν →

∫

∆
ϕdν = E(ϕ)

for each ν-simple function ϕ : ∆ → R. This implies that ECn
(ϕ) → E(ϕ) for

each ϕ ∈ L1(ν), which leads to
∫

∆ εi ϕ(ε) dν → 0 for each ϕ ∈ L1(ν). Since,
in addition, (∆, Σ, ν) is a perfect measure space, it can be shown as in [2] that
〈gi, f〉 → 0 for each f ∈ P1(ν, X). Consequently the map P : P1(ν, X) → P1(ν, X)
defined by

Pf =

∞
∑

i=1

〈gi, f〉 fni

is a bounded linear projection operator from the barreled space P1(ν, X)
onto [fni ]. �

Proposition 2.5. If there exists a complete linear subspace L in P1(ν, X) such
that {fi} ⊆ L and

∑∞
i=1 fi converges in P1(ν, X) to some separably-valued f ∈ L,

then there exists a subseries of
∑∞

i=1 xi which is unconditionally convergent in X .
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Proof: Given that
∑∞

i=1 fi = f in P1(ν, X) and L is complete, then
∑∞

i=1 fi = f
in L. Then, using the fact that the inclusion map from P1(ν, X) into L0(ν, X) has
closed graph together with the Banach-Schauder theorem, we get that

∑∞
i=1 fi =

f in probability. Since the range of f is separable in norm, then [9, Section 5.2.3,
Theorem 2.1] guarantees that the series

∑∞
i=1 fi(ω) converges in X to f(ω) almost

surely for ω ∈ ∆. Hence [5, Theorem 2.1] establishes the existence of a subseries
of
∑∞

n=1 xn which is unconditionally convergent in X . �

Question. We do not know whether the statement of Theorem 2.2 is true without
the assumption that BX∗ has countable many extreme points.
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