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Metrics with homogeneous geodesics on flag manifolds

Dmitri Alekseevsky, Andreas Arvanitoyeorgos

Dedicated to Professor Oldřich Kowalski on the occasion of his 65th birthday

Abstract. A geodesic of a homogeneous Riemannian manifold (M = G/K, g) is called
homogeneous if it is an orbit of an one-parameter subgroup of G. In the case when
M = G/H is a naturally reductive space, that is the G-invariant metric g is defined
by some non degenerate biinvariant symmetric bilinear form B, all geodesics of M are
homogeneous. We consider the case when M = G/K is a flag manifold, i.e. an adjoint
orbit of a compact semisimple Lie group G, and we give a simple necessary condition
that M admits a non-naturally reductive invariant metric with homogeneous geodesics.
Using this, we enumerate flag manifolds of a classical Lie group G which may admit a
non-naturally reductive G-invariant metric with homogeneous geodesics.
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1. Introduction

A classical problem of differential geometry is to study geodesics of Riemannian
manifolds (M, g). Of particular interest are geodesics with some special properties,
for example homogeneous geodesics. A geodesic of a Riemannian manifold (M, g)
is called homogeneous if it is an orbit of a one-parameter group of isometries ofM .
Homogeneous geodesics have important applications to mechanics. For exam-

ple, the equation of motion of many systems of classical mechanics reduces to
the geodesic equation in an appropriate Riemannian manifold M . Homogeneous
geodesics of M are called by V.I. Arnold “relative equilibriums”. The description
of such relative equilibria is important for qualitative description of the behaviour
of the corresponding mechanical system with symmetries. There is a big literature
in mechanics devoted to the investigation of relative equilibria.
In differential geometry homogeneous geodesics have been studied by many

authors. In 1965 R. Hermann showed that homogeneous geodesics which are
orbits of a given 1-parameter group of isometries a(t) correspond to the critical
points of the square norm g(X, X) of the Killing vector field X which generates
a(t). B. Kostant [Kost] and E.B. Vinberg [Vin] found a simple condition that the
orbit γ(t) = a(t)o through the point o = eK of an 1-parameter subgroup a(t) =
exp tX ⊂ G of the isometry group G of a homogeneous Riemannian manifold
M = G/K, is a geodesic.
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If all geodesics in a Riemannian manifold (M, g) are homogeneous, then M is
called a g.o. space, and the metric g is called a g.o. metric. The terminology was
introduced by O. Kowalski and L. Vanhecke, who initiated a systematic study of
such spaces. In [Ko-Va] many interesting results had been proved. The class of
g.o. spaces includes the subclass of naturally reductive spaces, i.e. homogeneous
Riemannian manifolds (M, g) whose metric g is induced by a non-degenerate
biinvariant bilinear form B on the Lie algebra g of some transitive group G of
isometries. If B is proportional to the Killing form of g then the metric g is called
standard. In particular, O. Kowalski and L. Vanhecke gave the first example
of a compact g.o. space which is not naturally reductive, and classified all such
g.o. spaces in dimension ≤ 6. The structure of the g.o. spaces was clarified by
C. Gordon [Go]. In fact, she reduced the classification of g.o. spaces M to three
special cases in which (a) M is a nilmanifold (i.e. a nilpotent Lie group with left-
invariant Riemannian metric), (b)M is compact, or (c)M admits a transitive non-
compact semisimple Lie group of isometries. She described g.o. spaces in case (a).
Another approach for description of g.o. spaces was proposed by O. Kowalski,
S.Ž. Nikčević and Z. Vlášek in the works [Ko-Ni] and [Ko-Ni-Vl], as well as by
Z. Dušek in [Du1] and [Du2].
The problem of classification of compact non-naturally reductive g.o. spacesM

remains open. In this paper we study it for the case when M is a flag manifold,
that is a homogeneous manifold G/K which is an adjoint orbit of a compact
semisimple Lie group G. This means that the stabilizer K is the centralizer of
a torus S in G. We associate with a flag manifold M = G/K the so called T-
root system RT ([A-P]), which consists of the restriction of the roots of the Lie

algebra gC = LieGC to the center of the stability subalgebra k = LieK. We
define the notion of the connected components of RT and we prove that if RT is
connected (i.e. it has only one connected component) then the standard metric
on M , defined by a multiple of the Killing form of g, is the only metric with
homogeneous geodesics. For the case of the classical Lie groups, we describe all
flag manifolds M = G/K with non-connected T-root system RT . As a corollary,
we get the following theorem.

Theorem. Let M = G/K be a Riemannian flag manifold of a classical Lie

group G. Assume that M is a g.o. space with respect to a non-standard G-
invariant metric. ThenM must be of the form SO(2ℓ+1)/U(ℓ−m)×SO(2m+1)

for some ℓ ≥ 2, m ≥ 0, (the manifold of all CR structures in R2ℓ+1).

For ℓ = 2, m = 0 one obtains the example SO(5)/U(2) of O. Kowalski–L. Van-
hecke [Ko-Va] of a g.o. space which is in no way naturally reductive.

2. Homogeneous geodesics on a Riemannian homogeneous space

A Riemannian manifold (M, g) is called homogeneous if it admits a transitive
connected Lie group G of isometries. We will identify such a manifold with the
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coset space G/K, where K is the stabilizer of a point o ∈ M . We will assume that

the Lie algebra g of G has an AdG-invariant non-degenerate symmetric bilinear
form B such that k (the Lie algebra of K) is non-degenerate, and we denote by

m = k⊥ the orthogonal complement to k with respect to B. Then g = k ⊕ m is
a reductive decomposition of g, that is [k, m] ⊂ m. We may identify m with the
tangent space ToM = ToG/K. Then the isotropy representation of K is identified

with the restriction AdK|m of the adjoint representation of K on g to m.

The metric g on M induces an AdK -invariant inner product go on m ∼= ToM
(o = eK) which can be written as go(x, y) = B(Ax, y) (x, y ∈ m), where A is an

AdK -invariant B-symmetric operator on m. If B|m is positively defined, then the
operator A is positively defined. Conversely, any such operator A determines an
AdK -invariant scalar product < ·, · >= B(A·, ·) on m, which defines an invariant
Riemannian metric g on M . We will say that A is the operator associated with
the metric g, and that g is generated by the operator A.

Proposition 1. Let (M = G/K, g) be a homogeneous Riemannian manifold
with the metric g generated by an operator A, and let a ∈ k, x ∈ m. Then the

orbit γ(t) = exp t(a + x) · o of the one-parameter subgroup exp t(a+ x) through
the point o = eK is a geodesic of M if and only if one of the following conditions

is fulfilled:

(1) [a+ x, Ax] ∈ k;

(2) 〈[a, x], y〉 = 〈x, [x, y]m〉 for all y ∈ m;

(3) 〈[a+ x, y]m, x〉 = 0 for all y ∈ m.

Here Zm is the m-component of a vector Z ∈ g = k ⊕ m.

Condition (3) was established by B. Kostant [Kost], E.B. Vinberg [Vin], and
O. Kowalski–L. Vanhecke [Ko-Va]. Condition (1) is its reformulation in terms of
the operator A, and obviously is equivalent to condition (2).
An element a+x ∈ g which satisfies one of the equivalent conditions (1), (2), (3)

is called a geodesic vector .
A homogeneous Riemannian manifold (M, g) is called a g.o. space, if all its

geodesics are homogeneous geodesics.

Corollary 2. A homogeneous Riemannian manifold (G/K, g) is a g.o. space if
and only if for every x ∈ m there exists an a(x) ∈ k such that

(1) [a(x) + x, Ax] ∈ k.

Examples of g.o. spaces are the naturally reductive spaces. A Riemannian
manifold (M, g) and its metric g is called naturally reductive (or more precisely
G-naturally reductive) if it admits a transitive Lie group G of isometries such that

the Lie algebra g has a non-degenerate AdG-invariant symmetric bilinear form B
which is positively defined on m = k⊥, and such that the metric g on M = G/K
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is induced by the scalar product B|m. Here k is the stability subalgebra of the

point o = eK ∈ M = G/K. If B is proportional to the Killing form of the Lie
algebra g, then the associated metric is called standard . Note that if G is a simple
compact Lie group, then any G-naturally reductive metric on a homogeneous
space M = G/K is standard.
Since the metric g is generated by the identity endomorphism A = Id, a natu-

rally reductive manifold is a g.o. space and any vector from m is a geodesic vector.
The converse statement is not true even if M = G/K is a homogeneous manifold
of a compact semisimple Lie group G. The first example of a non-standard com-
pact homogeneous Riemannian manifold M = G/K with homogeneous geodesics
was discovered by O. Kowalski and L. Vanhecke [Ko-Va]. They proved that the
manifold SO(5)/U(2) is a g.o. space which is in no way naturally reductive.

3. Riemannian flag manifolds

A homogeneous manifold M = G/K of a compact semisimple Lie group G is
called a flag manifold if it is isomorphic to an adjoint orbit of the group G. This
means that the stabilizer K is the centralizer of a torus in G.
A flag manifoldM = G/K equipped with a G-invariant Riemannian metric g is

called a Riemannian flag manifold . LetM = G/K be a flag manifold. We denote

by g, k the Lie algebras of the groups G, K and by gC, kC their complexifications.
Let hC be a Cartan subalgebra of kC, hence also of gC. Then we have the following
Cartan decompositions

gC = hC ⊕
∑

α∈R

gα, kC = hC ⊕
∑

α∈RK

gα

where R (respectively RK) is the root system of gC (respectively of kC) with

respect to hC. We denote by RM = R \ RK the set of complementary roots .
Then

mC =
∑

α∈RM

gα

and root vectors {Eβ ∈ gα : β ∈ RM} form a basis of mC.

We denote by h = hC ∩ ik the real ad-diagonal subalgebra, and by

t = Z(kC) ∩ h

the intersection of the center Z(kC) with h. Then kC = tC ⊕ k′
C where k′

C is the

semisimple part of kC.
We consider the restriction map

κ : h∗ → t∗, α 7→ α|
t
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and set RT = κ(R) = κ(RM ). The elements of RT are called T -roots .
There exists a 1-1 correspondence between T-roots ξ and irreducible submod-

ules mξ of the ad
k
C

-module mC which is given by

RT ∋ ξ ↔ mξ =
∑

κ(α)=ξ

gα.

We get the following decomposition

mC =
∑

ξ∈RT

mξ

of mC into a sum of non equivalent irreducible adk
C

-submodules.
From now on we will denote by B the negative of the Killing form of the Lie

algebra g which is positively defined. We remark that the complex conjugation
of gC with respect to g interchanges gα and g−α, hence also mξ and m−ξ. This
implies that any G-invariant Riemannian metric g onM = G/K is defined by the
scalar product B(A·, ·) on m, where the operator A is given by

A =
∑

ξ∈R+
T

λξId(mξ+m−ξ).

Here R+T = κ(R+) is the set of all positive T-roots (i.e. the restriction to t of the

system R+ of positive roots of R), and λξ are positive constants. We remark that
λξ are the eigenvalues of the operator A.
The scalar operator A = λId corresponds to the standard metric of the flag

manifold M = G/K.

4. A necessary condition that a flag manifold admits a non-standard

invariant metric with homogeneous geodesics

We give a necessary condition that a Riemannian flag manifold M = G/K
admits a non-standard invariant metric with homogeneous geodesics in terms of
the connectedness of the associated T-root system RT = R|t.

Definition. Two non-proportional T-roots ξ, η are called adjacent if ξ+ η ∈ RT
or ξ − η ∈ RT .

We start from the following statement, which is a corollary of Proposition 1.

Proposition 3. Let (M = G/K, g) be a Riemannian flag manifold which is a
g.o. space, where the invariant metric g is generated by the operator A with
eigenvalues λξ , ξη ∈ R+T . If ξ, η are two adjacent T-roots then λξ = λη.

Proof: By Corollary 2, [a+ x, Ax] ∈ k for all x ∈ m and some a = a(x) ∈ k. We
will assume that ξ + η ∈ RT and choose
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x = xξ + x−ξ + xη + x−η ∈ m ∩ (mξ +m−ξ +mη +m−η)

such that 0 6= [xξ , xη] ∈ mξ+η. Then condition (1) can be written as

[a+ xξ + x−ξ + xη + x−η, λ(xξ + x−ξ) + µ(xη + x−η)] ≡

(µ − λ)([xξ , xη] + [x−ξ , x−η] + [xξ , x−η] + [x−ξ , xη])

mod (mξ + mη +m−ξ +m−η + k),

where λ = λξ , µ = λη . Since the first term belongs to mξ+η and the other terms
belong to other k-modulus, it follows that λ = µ. �

Definition. Two T-roots ξ, η ∈ RT are called connected if there exists a chain
of T-roots

ξ = ξ1, ξ2, . . . , ξs = ±η

such that ξi, ξi+1 are adjacent for i = 1, . . . , s − 1.

We define ξ and −ξ to be connected. If ξ and 2ξ are the only T-roots, these
are not connected.
The connectedness is an equivalence relation. Hence the set RT of T-roots is

decomposed into a disjoint union

RT = R1 ∪ · · · ∪ Rr

of subsets Ri consisting from mutually connected T-roots. We denote by Ri

(i = 1, . . . , r) the connected components of RT , and we say that RT is connected
if r = 1.

Proposition 4. Let (M = G/K, g) be a Riemannian flag manifold. If M is a

g.o. space, then

λξ = λη for ξ, η ∈ Ri, (i = 1, . . . , r).

Hence we obtain the following:

Theorem 5. If the T-root system RT of a flag manifoldM = G/K is connected,
then the standard metric is the only G-invariant metric of M that makes M a

g.o. space.

Recall that any flag manifold M = G/K is simply connected and has the
canonically defined decomposition

M = G/K = G1/K1 × G2/K2 × · · · × Gn/Kn

where G1, . . . , Gn are simple factors of the (connected) Lie group G. This de-
composition is the de Rham decomposition of M equipped with any invariant
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metric g. In particular, (M, g) has homogeneous geodesics if and only if all fac-
tors (Mi = Gi/Ki, gi = g|Mi

) have homogeneous geodesics. This reduces the
problem of the description of invariant metrics with homogeneous geodesics on
a flag manifold M = G/K to the case when the group G is simple. By using
Theorem 6 we solve this problem for the flag manifoldsM = G/K of the classical
simple Lie groups G = SU(n), SO(n) and Sp(n).

5. Flag manifolds of classical groups that are g.o. spaces with respect

to a non-standard invariant metric

By Theorem 5, if a flag manifold M = G/K admits a non standard invariant
metric with homogeneous geodesics then the associated system RT of T-roots
is not connected. We consider the cases when G is one of the classical groups
Aℓ, Bℓ, Cℓ and Dℓ, and describe the flag manifolds G/K with non connected T-
root system RT .

Case of Aℓ.

A flag manifold of the group Aℓ = SU(n), n = ℓ+1 is determined by an integer
vector n̄ = (n1, . . . , ns) such that n1 ≥ n2 ≥ · · · ≥ ns ≥ 1 and n = n1 + · · ·+ ns,
and it has the form

A(n̄) = SU(n)/S(U(n1)× · · · × U(ns)).

We describe the associated T-root system RT as follows (see [A-P], [A]):
Let ǫ = {ǫ1, . . . , ǫn} be the standard basis of R

n. It is more convenient to pass
to dual indexes of the vectors of the basis ǫ, such that
ǫ = {ǫ11, . . . , ǫ

1
n1 , ǫ

2
1, . . . , ǫ

2
n2 , . . . , ǫ

s
1, . . . , ǫ

s
ns
}.

Then we may assume that RK = {ǫai − ǫaj } and RM = {ǫai − ǫbj : a 6= b}. By
deleting the lower indexes, we get the T-root system

RT = {ǫa − ǫb : a, b = 1, . . . , s}

which is the root system of type As−1. Hence, it is connected. We obtain

Proposition 6. The T-root system of the flag manifold A(n̄) = SU(n)/S(U(n1)
×· · ·×U(ns)) is connected, hence A(n̄) is a g.o. space with respect to the standard
metric only.

Case of G = Bℓ, Cℓ or Dℓ.

Now following [A-P] we describe the root systems R, RK , RM = R \ RK for
all flag manifolds of the classical groups Bl = SO(2ℓ+ 1), Cℓ = Sp(ℓ), or Dℓ =
SO(2ℓ). Any such flag manifold is defined by an integer vector ℓ̄ = (ℓ1, . . . , ℓk, m),
such that

ℓ1 ≥ · · · ≥ ℓk ≥ 1, m ≥ 0, k ≥ 0, ℓ = ℓ1 + · · ·+ ℓk +m,
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and it has the form

B(ℓ̄) = SO(2ℓ+ 1)/U(ℓ1)× · · · × U(ℓk)× SO(2m+ 1),

C(ℓ̄) = Sp(ℓ)/U(ℓ1)× · · · × U(ℓk)× Sp(m),

D(ℓ̄) = SO(2ℓ)/U(ℓ1)× · · · × U(ℓk)× SO(2m).

Let ǫ = {ǫai , πj} be an orthonormal basis of Rℓ, where a = 1, . . . , k, j =
1, . . . , m, and for a given a the index i takes the values 1, . . . , ℓa. Then we can
describe the root systems R, RK , associated with the flag manifolds as follows :

R = {±ǫai ± ǫbj , ±ǫai ± πj , ±πi ± πj , ±µǫai , ±µπj},

RK = {±(ǫai − ǫaj ), ±πj ± πk, ±µπj},

where µ = 1 in the case Bℓ, µ = 2 for Cℓ and µ = ∅ for Dℓ.
In the case of Bℓ

R+M = R+ \ R+K = {ǫai + ǫai′ , ǫai ± ǫbj , ǫai ± πj , ǫai : i < i′, a < b}.

The system of positive T-roots is given by

R+T = {(2ǫa), ǫa ± ǫb, ǫa}

where the vector 2ǫa is absent if ℓa = 1. If k = 1 it takes the form R+T = {2ǫ, ǫ}
and it is not connected. In all other cases it is connected. Hence we obtain:

Proposition 7. A flag manifold of the group G = Bℓ with a non-connected RT
has the form M = SO(2ℓ + 1)/U(ℓ − m) × SO(2m + 1). Only these manifolds
may be g.o. spaces with respect to a non-standard SO(2ℓ+ 1)-invariant metric.

Similarly in the cases Cℓ and Dℓ the T-root system is given as follows:

Case Cℓ:

R+M = {2ǫai , ǫai + ǫai′ , ǫai ± ǫbj , ǫai ± πj},

R+T = {2ǫa, ǫa ± π, ǫa ± ǫb}.

Case Dℓ:

R+M = {ǫai + ǫai′ , ǫai ± ǫbj , ǫai ± πj},

R+T = {2ǫa, ǫa ± ǫb, ǫa ± π}.

One can check that RT is always connected. Hence we get the following final
result.

Theorem 8. Let M = G/K be a flag manifold of a classical Lie group G =
Aℓ, Bℓ, Cℓ, or Dℓ. Assume that M is a g.o. space with respect to a non-standard

G-invariant metric. Then G = Bℓ, and M has the form M = SO(2ℓ+ 1)/U(ℓ −
m)× SO(2m+ 1) for some ℓ ≥ 2, m ≥ 0.
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6. Homogeneous geodesics in flag manifolds

In order to further analyze whether the flag manifold SO(2ℓ+ 1)/U(ℓ − m)×
SO(2m+1) is a g.o. space, we will firstly give an equivalent formulation of Corol-
lary 2 for the case of a general flag manifold G/K.

Recall the reductive decomposition of gC as

gC = kC ⊕ mC = hC ⊕
∑

α∈RK

gα ⊕
∑

α∈RM

gα.

Then the real Lie algebra g is given by

g =

n∑

γ=1

iRHγ ⊕
∑

α∈R+

R(Eα − E−α)⊕
∑

α∈R+

iR(Eα + E−α),

where {H1, . . . , Hn;Eα (α ∈ R)} is a Chevalley basis of gC. Then a vector x in
m has the form

x =
∑

α∈R+
M

zαEα −
∑

α∈R+
M

z̄αE−α (zα ∈ C)

and a vector a in k has the form

a =

n∑

γ=1

yγHγ +
∑

φ∈R+
K

wφEφ −
∑

φ∈R+
K

w̄φE−φ (wφ ∈ C, yγ ∈ iR).

Then M is a g.o. space if for all x in m, there exists an a = a(x) ∈ k such that

(2) [a(x), Ax] + [x, Ax] ∈ k.

We obtain the following:

Proposition 9. The flag manifold (M = G/K, g) is a g.o. space if and only if

for each zα, z̄α (α ∈ R+M ) the following linear system of |R
+
M | equations has a

solution in yγ (γ = 1, . . . , n), wφ, w̄φ (φ ∈ R+K):

zδλδ

n∑

γ=1

2(δ, γ)

(γ, γ)
yγ

+
∑

φ∈R−

K
(δ)

wφzδ−φλδ−φNφ,δ−φ −
∑

φ∈R+
K
(δ)

w̄φzδ+φλδ+φN−φ,δ+φ

+
∑

α∈R−

M
(δ)

zαzδ−αλδ−αNα,δ−α −
∑

α∈R+
M
(δ)

z̄αzδ+αλδ+αN−α,δ+α = 0
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for all δ ∈ R+M . Here R±
K(δ) = {φ ∈ R+K : δ ± φ ∈ R+M}, R±

M (δ) = {α ∈

R+M : δ ± α ∈ R+M}, and λδ are the eigenvalues of the operator A that generates
the G-invariant metric g.

Example.

Let M = SO(5)/U(2). A Cartan subalgebra has the form {diag(ǫ1, ǫ2) : ǫi ∈
C}. Then RK = {±(ǫ1− ǫ2)}, RM = {±(ǫ1+ ǫ2),±ǫ1,±ǫ2}, hence R+T = {2ǫ, ǫ}.
An SO(5)-invariant metric, hence the operator A, depends on two parameters
λ1 = λǫ1 = λǫ2 = λǫ and λ2 = λǫ1+ǫ2 = λ2ǫ.
A vector x ∈ m has the form

x = zǫ1+ǫ2Eǫ1+ǫ2 + zǫ1Eǫ1 + zǫ2Eǫ2 − z̄ǫ1+ǫ2E−(ǫ1+ǫ2) − z̄ǫ1E−ǫ1 − z̄ǫ2E−ǫ2 ,

and an a = a(x) ∈ k has the form

a = y1Hǫ1−ǫ2 + y2Hǫ2 + wǫ1−ǫ2Eǫ1−ǫ2 − w̄ǫ1−ǫ2E−(ǫ1−ǫ2).

Then the system of Proposition 9 reduces to the following:

2zǫ1+ǫ2λ1y2 = 0

zǫ1λ2y2 + zǫ2λ2Nǫ1−ǫ2,ǫ2wǫ1−ǫ2 = z̄ǫ2zǫ1+ǫ2λ1N−ǫ2,ǫ1+ǫ2

− zǫ2λ2y1 + 2zǫ2λ2y2 − zǫ1λ2N−(ǫ1−ǫ2),ǫ1w̄ǫ1−ǫ2 = z̄ǫ1zǫ1+ǫ2λ1N−ǫ1,ǫ1+ǫ2

which has a solution for every zǫ1+ǫ2 , zǫ1 , zǫ2 , z̄ǫ1 , z̄ǫ2. Hence SO(5)/U(2) is a g.o.
space with respect to a non-standard SO(5)-invariant metric, which agrees with
the result of O. Kowalski and L. Vanhecke.
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