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Strong remote points

Sergei Logunov

Abstract. Remote points constructed so far are actually strong remote. But we construct
remote points of another type.
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1. Introduction

Let X∗ = βX \ X be the remainder in the Čech-Stone compactification βX
of a completely regular space X . A point p ∈ X∗ is called a remote point of
X if it is not in the closure of any nowhere dense subset of X . In 1962, Fine
and Gillman [5] introduced remote points and proved that, under CH, the real
line has remote points. Van Douwen [2], and, independently, Chae and Smith
[1], showed that if X is a nonpseudocompact space with countable π-weight, then
X has remote points. Alan Dow [4] showed that a nonpseudocompact space X
with π-weight ω1 has remote points if either X satisfies the ccc-condition, or ωω

has some additional set-theoretical properties. Some counterexamples appeared
[3], [4].

An inspection of the relevant results reveals that the remote points constructed
so far satisfy the following

Definition 1.1 ([7]). A point p ∈ X∗ is called a strong remote point of X iff p
is a remote point of X and

(∗) there is a p-chain σ such that for any family of open sets W ⊂ 2X the

following holds: if W < σ and p ∈ Ex
⋃
W , then there is a subfamily W

′

⊂ W

such that W
′

<fin σ and p ∈ Ex
⋃
W

′

.

A countable discrete family σ of open sets is called a p-chain if p ∈ Ex
⋃

σ.
In [7] one can see that (∗) is, apparently, more useful in research. In the present
paper we show that not every remote point has property (∗).

Theorem 1.2. Every zero-dimensional, nowhere locally compact, separable and

metrizable space has a remote point that is not strongly remote.
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2. Proofs

Let 2X be set of all subsets of X . Then U ∈ 2X is clopen if it is closed and
open simultaneously, we write ExU = βX \ ClβX(X \ U). A subset π of 2X

is called clopen if it consists of clopen sets; cellular if its members are mutually
disjoint and locally finite, if for every x ∈ X there is a neighborhood Ox ⊂ X
meeting at most finitely many members of π. For any σ ⊂ 2X we say that π
refines σ, denoted π < σ, if for every U ∈ π there is a V ∈ σ such that U ⊆ V . If,
in addition, {U ∈ π : U ⊂ V } is finite or empty for every V ∈ σ, then π finitarily
refines σ, π <fin σ. Let S = {µ : µ = (i0, . . . , im) ∈ ωm+1, m ∈ ω} be all finite
sequences of numbers i ∈ ω and we let F denote the set of functions from S to
the family of finite subsets of ω.
From now on the conditions of Theorem 1.2 hold. There is, obviously, a family

{Pm}m∈ω of cellular clopen covers Pm = {Uµ : µ ∈ ωm+1}, where Uµk  Uµ

for each k ∈ ω, such that B =
⋃

m∈ω Pm is a base in X . Let B∗ = {π ⊂ B : π
is a cellular cover of X} and π(f) = {Uµk : Uµ ∈ π and k ∈ ω \ f(µ)} for every
π ∈ B∗ and f ∈ F .
To begin we recall the remarkable construction by van Douwen [2, 4.1]: For

any Uµ ∈ B we index B(Uµ) = {V ∈ B : V ⊂ Uµ} as B(Uµ) = {Vα}α∈ω.
For a nowhere dense set F ⊂ X put α0 = min{α ∈ ω : Vα ∩ F = ∅} and
D(F, Uµ, 0) = {Vα0}. Let for some j ∈ ω, αj ∈ ω and D(F, Uµ, j) ⊂ B(Uµ) have
been constructed. Then for every α ≤ αj , α∗ = min{β ∈ ω : Vβ ⊂ Vα \ F},
D(F, Uµ, j + 1) = D(F, Uµ, j) ∪ {Vα∗ : α ≤ αj} and αj+1 = max{α ∈ ω : Vα ∈
D(F, Uµ, j+1)}. Finally, the family {

⋃
D(F, Uµ, n) : F is a nowhere dense subset

of X} is n-centered for each n ∈ ω [2, 4.1].
Now for any µ, ν ∈ S, Uµ ⊆ Uν iff ν = (i0, . . . , it) is an initial segment of

µ = (i0, . . . , it, . . . , im). We set

D0(F, Uµ, n) =
⋃

{D(F, Uνk, n) : Uµ ⊆ Uν ∈ B and k ∈ ω}.

If Dj(F, Uµ, n) has been defined for some j ∈ ω, then

Dj+1(F, Uµ, n) = Dj(F, Uµ, n) ∪
⋃

{D0(F, V, n) : V ∈ Dj(F, Uµ, n)}.

And, finally,

D(F ) =
⋃

Un∈P0

Dn+1(F, Un, n).

Claim 1. Let Uµ ∈ B. Then Dm(F, Uµ, n) is locally finite in X for any m, n ∈ ω
and nowhere dense F ⊂ X .

Proof: As {Uνk}k∈ω ⊂ Pm+1 for any ν ∈ ωm+1 and Pm+1 is a cellular clopen
cover of X , the family

⋃
k∈ω D(F, Uνk, n) is locally finite in X . It follows by its

definition that D0(F, Uµ, n) is locally finite.
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Let Dj(F, Uµ, n) be locally finite for some j ∈ ω. Then for any x ∈ X , x ∈ Uν

for some Uν ∈ B meeting at most finitely many sets V ∈ Dj(F, Uµ, n). For each
of them, D0(F, V, n) is locally finite as above. For any other V ∈ Dj(F, Uµ, n),
Uν ∩ V = ∅ implies by the definition of the base B that

{W ∈ D0(F, V, n) : Uν ∩ W 6= ∅} ⊂
⋃

{D(F, Uη , n) : Uν ⊆ Uη ∈ B}.

As the last set is finite, the proof is done. �

With insignificant modifications Claim 2 has been proved in [6].

Claim 2. Let Un ∈ P0. Then

n⋂

i=0

(
⋃

πi(fi)) ∩
n⋂

j=0

(
⋃

Dn+1(Fj , Un, n)) 6= ∅

for every πi ∈ B∗, fi ∈ F and nowhere dense sets Fj ⊂ X .

It follows that the point p in Claim 3 does really exist.

Claim 3. Any point p ∈ X∗ such that

p ∈
⋂

{ClβX

⋃
π(f) : π ∈ B∗ and f ∈ F}∩

⋂
{ClβX

⋃
D(F ) : F is a nowhere dense subset of X}

satisfies the conditions of the theorem.

Proof: Being in the intersection of the second family, p is a remote point. For
any p-chain σ we just have to show that σ does not satisfy (∗). Indeed, as X is
strongly zero-dimensional, Op ⊂ Ex

⋃
σ for a clopen neighborhood Op ⊂ βX . For

any x ∈ X define U(x) ∈ B to be the maximal neighborhood with the following
properties: either U(x) ⊂ Op ∩ V for some V ∈ σ, or U(x) ∩ Op = ∅. As the sets
from the cover {U(x) : x ∈ X} are pairwise either disjoint or equal, there is a
cellular subcover π. Let W = {Uµk : Uµ ∈ π, Uµ ⊂ Op and k ∈ ω}. Then W < σ,

p ∈ Ex
⋃
W and for anyW

′

⊂ W , W
′

<fin σ implies W
′

<fin π. Define f ∈ F for

any µ ∈ S as follows: f(µ) = {k : Uµk ∈ W
′

}. Then
⋃

π(f) ∩ (
⋃
W

′

) = ∅ and,

so, p /∈ Ex
⋃
W

′

. �

Our proof is complete.
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