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Liftings of vector fields to 1-forms on the

r-jet prolongation of the cotangent bundle

W.M. Mikulski

Abstract. For natural numbers r and n ≥ 2 all natural operators T|Mfn
 T ∗(JrT ∗)

transforming vector fields from n-manifolds M into 1-forms on JrT ∗M = {jr
x(ω) | ω ∈

Ω1(M), x ∈ M} are classified. A similar problem with fibered manifolds instead of
manifolds is discussed.

Keywords: natural bundle, natural operator

Classification: 58A20

0. Introduction

Let n and r be natural numbers.

In [4], we studied how a vector field X on an n-dimensional manifold M can
induce a 1-form A(X) on the r-cotangent bundle T r∗M = Jr(M, R)0 of M . This
problem is reflected in the concept of natural operators A : T|Mfn

 T ∗T r∗. We

proved that for n ≥ 2 the set of all natural operators A : T|Mfn
 T ∗T r∗ is a free

2r-dimensional C∞(Rr)-module, and we constructed explicitly the basis of this
module. In particular, we reobtain a result from [1] saying that every canonical
1-form on T ∗M is a constant multiple of the well-known Liouville 1-form λ.

In the present paper we study a similar problem with the r-jet prolongation
JrT ∗M = {jr

xω | ω ∈ Ω1(M), x ∈ M} of the cotangent bundle T ∗M instead
of T r∗M . We investigate how a vector field X on an n-manifold M can induce
a 1-form A(X) on JrT ∗M . This problem is reflected in the concept of natural
operators A : T|Mfn

 T ∗(JrT ∗) in the sense of Kolář, Michor and Slovák [2].

We prove that for n ≥ 2 the set of all natural operators A : T|Mfn
 T ∗(JrT ∗)

is a free (3r + 2)-dimensional C∞(Rr+1)-module, and we construct explicitly the
basis of this module.

A similar problem with fibered manifolds instead of manifolds is discussed.

Analyzing constant natural operators A : T|Mfn
 T ∗(JrT ∗) we reobtain a

result from [3] saying that every canonical 1-form on JrT ∗M is a constant multiple
of λr = (πr

0)
∗λ, where πr

0 : JrT ∗M → T ∗M is the jet projection and λ is the
Liouville 1-form on T ∗M .



566 W.M.Mikulski

Some natural operators transforming functions, vector fields, forms on some
natural bundles F are used practically in all papers in which problem of prolon-
gation of geometric structures is considered. That is why such natural operators
have been studied, see [2].

From now on x1, . . . , xn denote the usual coordinates on R
n, and ∂i =

∂
∂xi for

i = 1, . . . , n are the canonical vector fields on R
n.

All manifolds and maps are assumed to be of class C∞.

1. The r-jet prolongation of the cotangent bundle

For every n-dimensional manifold M we have the vector bundle JrT ∗M =
{jr

xω | ω ∈ Ω1(M), x ∈ M} over M . It is called the r-jet prolongation of the
cotangent bundle T ∗M . Every embedding ϕ :M → N of two n-manifolds induces
a vector bundle map JrT ∗ϕ : JrT ∗M → JrT ∗N , JrT ∗ϕ(jr

xω) = jr
ϕ(x)(ϕ∗ω),

ω ∈ Ω1(M), x ∈ M . The correspondence JrT ∗ :Mfn → VB is a vector natural
bundle over n-manifolds in the sense of [2].

2. Examples of natural operators T|Mfn
 T ∗(JrT ∗)

Example 1. Let X be a vector field on an n-manifoldM . For every q = 0, . . . , r

we have a map
(q)
X : JrT ∗M → R,

(q)
X (jr

xω) := Xqω(X)(x), ω ∈ Ω1(M), x ∈ M ,
where Xq = X ◦ · · · ◦ X (q-times). Then for every q = 0, . . . , r we have a 1-form

d
(q)
X on JrT ∗M . The correspondence

(q)
A : T|Mfn

 T ∗(JrT ∗), X → d
(q)
X , is a

natural operator.

Example 2. Let X be a vector field on an n-manifold M . For every p =

0, . . . , r − 1 we have a 1-form
<p>

X : TJrT ∗M → R on JrT ∗M ,
<p>

X (v) =

< dx(X
pω(X)), T π(v) >, v ∈ (TJrT ∗)xM , x ∈ M , ω ∈ Ω1(M), pT (v) = jr

xω,

pT : TJrT ∗M → JrT ∗M is the tangent bundle projection, π : JrT ∗M → M is

the bundle projection. The correspondence
<p>

A : T|Mfn
 T ∗(JrT ∗), X →

<p>

X ,

is a natural operator.

Example 3. Let X be a vector field on an n-manifold M . For every q =

0, . . . , r we have a 1-form
<<q>>

X : TJrT ∗M → R on JrT ∗M ,
<<q>>

X (v) =

< (LX)
qω, Tπ(v) >, v ∈ (TJrT ∗)xM , x ∈ M , ω ∈ Ω1(M), pT (v) = jr

xω, where
(LX)

q = LX ◦ · · ·◦LX (q-times), LX is the Lie derivative with respect to X . The

correspondence
<<q>>

A : T|Mfn
 T ∗(JrT ∗), X →

<<q>>

X , is a natural operator.
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3. A classification theorem

The set of all natural operators T|Mfn
 T ∗(JrT ∗) is a module over the

algebra C∞(Rr+1). Actually, if f ∈ C∞(Rr+1) and A : T|Mfn
 T ∗(JrT ∗)

is a natural operator, then fA : T|Mfn
 T ∗(JrT ∗) is given by (fA)(X) =

f(
(0)
X , . . . ,

(r)
X )A(X), X ∈ X (M), M ∈ Obj (Mfn).

The main result of this paper is the following classification theorem.

Theorem 1. For natural numbers r and n ≥ 2 the C∞(Rr+1)-module of all
natural operators T|Mfn

 T ∗(JrT ∗) is free and (3r + 2)-dimensional. The

natural operators
(q)
A ,

<p>

A and
<<q>>

A for q = 0, . . . , r and p = 0, . . . , r − 1 form
the basis over C∞(Rr+1) of this module.

The proof of Theorem 1 will occupy Sections 4 and 5.

From now on we consider a natural operator A : T|Mfn
 T ∗(JrT ∗).

4. Some preparations

Since the operators
(0)
A , . . . ,

(r)
A ,

<0>
A , . . . ,

<r−1>
A and

<<0>>
A , . . . ,

<<r>>
A are

C∞(Rr+1)-linearly independent, we prove only that A is a linear combination of
(0)
A , . . . ,

(r)
A ,

<0>
A , . . . ,

<r−1>
A and

<<0>>
A , . . . ,

<<r>>
A with C∞(Rr+1)-coefficients.

The following lemma shows that A is uniquely determined by the restriction
A(∂1)|(TJrT ∗)0R

n.

Lemma 1. If A(∂1)|(TJrT ∗)0R
n = 0, then A = 0.

Proof: The proof is standard. We use the naturality of A and the fact that any
non-vanishing vector field is locally ∂1. �

So, we will study the restriction A(∂1)|(TJrT ∗)0R
n.

Lemma 2. There are maps f0, . . . , fr ∈ C∞(Rr+1) such that

(

A −

r
∑

q=0

fq

(q)
A

)

(∂1)|(V JrT ∗)0R
n = 0,

where V JrT ∗M ⊂ TJrT ∗M denotes the π-vertical subbundle.

Proof: We have (V JrT ∗)0R
n=̃(JrT ∗)0R

n × (JrT ∗)0R
n,

d

dt |t=0
(u+ tw)=̃(u, w), u, w ∈ (JrT ∗)0R

n.
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For q = 0, . . . , r we define fq : R
r+1 → R,

fq(a) = A(∂1)

(

jr
0

( r
∑

l=0

1

l!
al(x

1)ldx1
)

, jr
0

(

1

q!
(x1)qdx1

))

,

where a = (a0, . . . , ar) ∈ R
r+1.

We prove the assertion of the lemma. For simplicity denote

Ã := A −

r
∑

q=0

fq

(q)
A .

Consider ω, η ∈ Ω1(Rn). Define a = (a0, . . . , ar) ∈ R
r+1 by

jr
0((x

1, 0, . . . , 0)∗ω) = jr
0

( r
∑

l=0

1

l!
al(x

1)ldx1
)

.

Define b = (b0, . . . , br) ∈ R
r+1 by

jr
0((x

1, 0, . . . , 0)∗η) = jr
0

( r
∑

l=0

1

l!
bl(x

1)ldx1
)

.

Using the naturality of Ã with respect to the homotheties (x1, tx2, . . . , txn) for
t 6= 0 and putting t → 0 we get

Ã(∂1)(j
r
0ω, jr

0η) = Ã(∂1)(j
r
0((x

1, 0, . . . , 0)∗ω), jr
0((x

1, 0, . . . , 0)∗η)).

Then Ã(∂1)(j
r
0ω, jr

0η) =
∑r

q=0 bqfq(a)−
∑r

q=0 fq(a)bq = 0. �

5. Proof of Theorem 1

Replacing A by A −
∑r

q=0 fq

(q)
A we can assume that

A(∂1)|(V JrT ∗)0R
n = 0.

It remains to show that there exist maps g0, . . . , gr−1, h0, . . . , hr ∈ C∞(Rr+1)
such that

(∗) A =

r−1
∑

p=0

gp

<p>

A +

r
∑

q=0

hq

<<q>>

A .
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For p = 0, . . . , r − 1 define gp : R
r+1 → R,

gp(a) = A(∂1)

(

JrT ∗∂2

(

jr
0

( r
∑

l=0

1

l!
al(x

1)ldx1 +
1

p!
(x1)px2dx1

)))

,

where a = (a0, . . . , ar) ∈ R
r+1. For q = 0, . . . , r define hq : R

r+1 → R,

hq(a) = A(∂1)

(

JrT ∗∂2

(

jr
0

( r
∑

l=0

1

l!
al(x

1)ldx1 +
1

q!
(x1)qdx2

)))

,

where a = (a0, . . . , ar) ∈ R
r+1. We inform that JrT ∗X denotes the complete

lifting (flow operator) of a vector field X ∈ X (M) to JrT ∗M .
We are going to prove (∗). By Lemma 1 and A(∂1)|(V T r∗)0R

n = 0 it is
sufficient to show

A(∂1)(J
rT ∗∂(jr

0ω)) =

( r−1
∑

p=0

gp

<p>

A +

r
∑

q=0

hq

<<q>>

A

)

(∂1)(J
rT ∗∂(jr

0ω))

for any ω ∈ Ω1(Rn) and any linearly independent on ∂1 constant vector field ∂

on R
n.
For simplicity denote

Ã =

r−1
∑

p=0

gp

<p>

A +

r
∑

q=0

hq

<<q>>

A .

Using the naturality of A and Ã with respect to linear isomorphisms R
n → R

n

preserving ∂1 we can assume that ∂ = ∂2.
Consider ω ∈ Ω1(Rn).

Define a = (a0, . . . , ar) ∈ R
r+1 by

aq = ∂
q
1ω(∂1)(0), q = 0, . . . , r.

Define b = (b0, . . . , br−1) ∈ R
r by

bp = ∂2∂
p
1ω(∂1)(0), p = 0, . . . , r − 1.

Define c = (c0, . . . , cr) ∈ R
r+1 by

cq = ∂
q
1ω(∂2)(0), q = 0, . . . , r.
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Using the naturality of A with respect to (x1, tx2, τx3 . . . , τxn) : Rn → R
n for

t, τ 6= 0 we get the homogeneity condition

tA(∂1)(J
rT ∗∂2j

r
0(ω)) = A(∂1)(J

rT ∗∂2(j
r
0(x
1, tx2, τx3, . . . , τxn)∗ω)).

This type of homogeneity gives

A(∂1)(J
rT ∗∂2(j

r
0ω)) =

r−1
∑

p=0

gp(a)bp +

r
∑

q=0

hq(a)cq

because of the homogeneous function theorem [2].
On the other hand

Ã(∂1)(J
rT ∗∂2(j

r
0ω)) =

r−1
∑

p=0

gp(a)bp +

r
∑

q=0

hq(a)cq .

The proof of Theorem 1 is complete. �

6. Corollaries

Using the homogeneous function theorem, we have the following corollary of
Theorem 1.

Corollary 1. Let r and n ≥ 2 be natural numbers. Then for every linear natural
operator A : T|Mfn

 T ∗Jr(T ∗) there exist real numbers α, β, γ, δ such that

A(X) = α
(0)
A (X) + β

<0>
A (X) + γ

<1>
A (X) + δ

(0)
X

<<0>>
A (X)

for any vector field X ∈ X (M).

The operator
<<0>>

A can be considered as the well-known canonical 1-form λr

on JrT ∗, the pull-back (πr
0)

∗λ of the Liouville 1-form λ on T ∗ with respect to
the jet projection πr

0 : J
rT ∗ → T ∗. Considering the values of natural operators

T|Mfn
 T ∗(JrT ∗) at X = 0 we obtain the next corollary of Theorem 1.

Corollary 2 ([3]). For natural numbers r and n ≥ 2 every canonical 1-form on
JrT ∗ is a constant multiple of λr .

Corollary 3 ([5]). For natural numbers r and n ≥ 2 there is no canonical sim-
plectic structure on JrT ∗.

Proof: Using Corollary 2 and the Poincaré lemma it is easy to see that any
canonical closed 2-form on JrT ∗M is a constant multiple of dλr . �
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7. A generalization to fibered manifolds

Given a fibered manifold Y → M we say that a 1-form ω on Y is horizontal if
ω|V Y = 0, where V Y ⊂ TY is the vertical bundle of Y → M . By Ω1hor(Y ) we
denote the space of all horizontal 1-forms on Y .
Let s, r be two natural numbers with s ≥ r. We say that two horizontal 1-forms

ω, η ∈ Ω1hor(Y ) on a fibered manifold p̃ : Y → M determine the same (r, s)-jet

j
r,s
y ω = j

r,s
y η at y ∈ Y if jr

yω = jr
yη and js

y(ω|Yx) = js
y(η|Yx), see [2]. Here Yx is

the fiber of Y over x = p̃(y).
Let m, n, r, s be natural numbers, s ≥ r. For every (m, n)-dimensional fibered

manifold Y → M (dim(M) = m, dim(Y ) = m + n) we have a vector bundle
Jr,sT ∗

horY = {j
r,s
y ω | ω ∈ Ω1hor(Y ), y ∈ Y } over Y . Every fibered embedding ϕ :

Y → Z of two (m, n)-dimensional fibered manifolds induces a vector bundle map
Jr,sT ∗

horϕ : J
r,sT ∗

horY → Jr,sT ∗
horZ, J

r,sT ∗
horϕ(j

r,s
y ω) = j

r,s
ϕ(y)
(ϕ∗ω), ω ∈ Ω1hor(Y ),

y ∈ Y . The correspondence Jr,sT ∗
hor : FMm,n → VB is a vector natural bundle

on the category FMm,n of (m, n)-dimensional fibered manifolds and their fibered
embeddings.

Let m, n, r, s be natural numbers with s ≥ r.

Example 1’. LetX be a projectable vector field on an (m, n)-dimensional fibered
manifold p̃ : Y → M . (We say that a vector field X on Y is projectable if there
exists a p̃-related with X vector field Xo onM .) For every q = 0, . . . , r we have a

map
(q)
X : Jr,sT ∗

horY → R,
(q)
X (j

r,s
y ω) := Xqω(X)(y), ω ∈ Ω1hor(Y ), y ∈ Y , where

Xq = X ◦ · · · ◦X (q-times). Then for every q = 0, . . . , r we have a 1-form d
(q)
X on

Jr,sT ∗
horY . The correspondence

(q)
A : Tproj |FMm,n

 T ∗(Jr,sT ∗
hor), X → d

(q)
X , is

a natural operator.

Example 2’. LetX be a projectable vector field on an (m, n)-dimensional fibered

manifold Y . For every p = 0, . . . , r−1 we have a 1-form
<p>

X : TJr,sT ∗
horY → R on

Jr,sT ∗
horY ,

<p>

X (v) =< dx(X
pω(X)), T π(v) >, where v ∈ (TJr,sT ∗

hor)yY , y ∈ Y ,

ω ∈ Ω1hor(Y ), p
T (v) = j

r,s
y ω, pT : TJr,sT ∗

horY → Jr,sT ∗
horY is the tangent bundle

projection, π : Jr,sT ∗
horY → Y is the bundle projection. The correspondence

<p>

A : Tproj | FMm,n  T ∗(Jr,sT ∗
hor), X →

<p>

X , is a natural operator.

Example 3’. LetX be a projectable vector field on an (m, n)-dimensional fibered

manifold Y . For every q = 0, . . . , r we have a 1-form
<<q>>

X : TJr,sT ∗
horY → R

on Jr,sT ∗
horY ,

<<q>>

X (v) =< (LX)
qω, Tπ(v) >, where v ∈ (TJr,sT ∗

hor)yY , y ∈ Y ,

ω ∈ Ω1hor(Y ), pT (v) = jr
yω, (LX)

q = LX ◦ · · · ◦ LX (q-times), LX is the Lie
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derivative with respect to X . The correspondence
<<q>>

A : Tproj |FMm,n
 

T ∗(Jr,sT ∗
hor), X →

<<q>>

X , is a natural operator.

The set of all natural operators Tproj |FMm,n
 T ∗(Jr,sT ∗

hor) is a module

over the algebra C∞(Rr+1). Actually, if f ∈ C∞(Rr+1) and A : Tproj |FMm,n

 T ∗(Jr,sT ∗
hor) is a natural operator, then fA : Tproj |FMm,n

 T ∗(Jr,sT ∗
hor) is

given by (fA)(X) = f(
(0)
X , . . . ,

(r)
X )A(X), X ∈ Xproj(Y ), Y ∈ Obj (FMm,n).

Theorem 1’. For natural numbers r, s, m and n with m ≥ 2 and s ≥ r the

C∞(Rr+1)-module of all natural operators Tproj |FMm,n
 T ∗(Jr,sT ∗

hor) is free

and (3r + 2)-dimensional. The natural operators
(q)
A ,

<p>

A and
<<q>>

A for q =
0, . . . , r and p = 0, . . . , r − 1 form a basis over C∞(Rr+1) of this module.

The proof of Theorem 1’ is a simple modification of the proof of Theorem 1. It
is left to the reader. We propose to use the fact that every projectable vector field

on Y with non-vanishing underlying vector field is locally ∂
∂x1
in some fibered

manifold coordinates x1, . . . , xm, y1, . . . , y
n on Y .

8. Exercises

Exercise 1. Let s, r, t be natural numbers with s ≥ r ≤ t. We say that two 1-
forms ω, η ∈ Ω1(Y ) on a fibered manifold p̃ : Y → M determine the same (r, s, t)-

jet j
r,s,t
y ω = j

r,s,t
y η at y ∈ Y if jr

yω = jr
yη, jt

yωR = jt
yηR and js

y(ω|Yx) = js
y(η|Yx).

Here Yx is the fiber of Y over x = p̃(y) and ωR : Y → (V Y )∗ is given by the
restriction ωy |VyY for any y ∈ Y . Define a bundle functor Jr,s,tT ∗ : FMm,n →
VB by using (r, s, q)-jets of 1-forms instead of (r, s)-jets. Classify natural operators
A : TprojFMm,n

 T ∗(Jr,s,tT ∗).

Answer: For natural numbers r, s, t, m and n with m ≥ 2 and s ≥ r ≤ t all
natural operators Tproj |FMm,n

 T ∗(Jr,s,tT ∗) form a free, (3r + 2)-dimensional

module over C∞(Rr+1). The (similar as in Examples 1’, 2’ and 3’) natural

operators
(q)
A ,

<p>

A and
<<q>>

A for q = 0, . . . , r and p = 0, . . . , r− 1 form the basis
over C∞(Rr+1) of this module.

Exercise 2. Let s, r, t, u be natural numbers with s ≥ r, u ≥ t, t ≥ r and u ≥ s.
We say that two 1-forms ω, η ∈ Ω1(Y ) on a fibered manifold p̃ : Y → M determine

the same (r, s, t, u)-jet j
r,s,t,u
y ω = j

r,s,t,u
y η at y ∈ Y if jr

yω = jr
yη, jt

yωR = jt
yηR,

js
y(ω|Yx) = js

y(η|Yx) and ju
y (ω

R|Yx) = ju
y (η

R|Yx). (Yx and ωR as in Exercise 1.)

Define a bundle functor Jr,s,t,uT ∗ : FMm,n → VB by using (r, s, q, u)-jets of

1-forms. Classify natural operators A : TprojFMm,n
 T ∗(Jr,s,t,uT ∗).
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Answer: For natural numbers r, s, t, u, m and n with m ≥ 2 and s ≥ r, u ≥ t,
t ≥ r and u ≥ s all natural operators Tproj |FMm,n

 T ∗(Jr,s,t,uT ∗) form a free,

(3r + 2)-dimensional module over C∞(Rr+1). The (similar as in Examples 1’, 2’

and 3’) natural operators
(q)
A ,

<p>

A and
<<q>>

A for q = 0, . . . , r and p = 0, . . . , r−1
form the basis over C∞(Rr+1) of this module.
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