Commentationes Mathematicae Universitatis Carolinae

Sergei Logunov

Totally non-remote points in $\beta \mathbb{Q}$

Commentationes Mathematicae Universitatis Carolinae, Vol. 44 (2003), No. 1, 183--185

Persistent URL: http://dml.cz/dmlcz/119376

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2003

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Totally non-remote points in $\beta \mathbb{Q}$

Sergei Logunov

Abstract. Totally nonremote points in $\beta \mathbb{Q}$ are constructed. The number of these points is 2^{c}.

Keywords: totally nonremote point, far point, crowded point
Classification: 54D35

1. Introduction

All spaces considered are normal. We follow [2] in our terminology and notations. For a space X we identify a point a of the Čech-Stone remainder $X^{*}=\beta X-X$ with

$$
\left\{A \subseteq X: A \text { closed in } X \text { and } a \in \mathrm{Cl}_{\beta X} A\right\}
$$

We call $a \in X^{*}$
far: if no element of a is discrete;
crowded: if every element of a is dense-in-itself;
remote: if no element of a is nowhere dense; and
totally nonremote: if for every $A \in a$ there is $B \in a$ that is nowhere dense in A.

After the introduction of remote points in [1] and [3], they became one of the most intriguing in the theory of Cech-Stone compactifications. What about the existence of points with antipodial properties? E. van Douwen set the following question:

Does \mathbb{Q} have a crowded totally nonremote point?
and showed, in particular, that CMA (Martin's Axiom for countable posets) implies yes [2]. Every totally nonremote point is, obviously, far.

We prove naively the following
Theorem 1.1. There are totally nonremote points in $\beta \mathbb{Q}$. The number of these points is $2^{\mathfrak{c}}$.

The question above remains open.

2. Proofs

In this paper \mathbb{N} denotes the set of natural numbers, $\mathbb{Q}=\left\{q_{n}: n \in \mathbb{N}\right\}$ is the set of rational numbers. We will use $S=\bigcup_{n=0}^{\infty} \mathbb{N}^{2 n}$ as a set of indexes.

By recursion on $s \in S$ we will choose p_{s} and O_{s} as follows:
Let $O_{\emptyset}=\mathbb{Q}$ and $p_{\emptyset}=q_{1}$.
If O_{s} and p_{s} are found we let $\left\{O_{s, i}: i \in \mathbb{N}\right\}$ be a strictly decreasing local base at p_{s}, consisting of clopen sets and with $O_{s, 1}=O_{s}$. For every $U_{s, i}=O_{s, i}-O_{s, i+1}$ we choose an infinite pairwise disjoint clopen cover $\mathcal{U}_{s, i}=\left\{O_{s, i, j}: j \in \mathbb{N}\right\}$ of $U_{s, i}$. We let $p_{s, i, j} \in O_{s, i, j}$ be the q_{n} with minimal index (in this way we get $\left\{p_{s}: s \in\right.$ $S\}=\mathbb{Q})$. Finally, $\mathcal{O}=\left\{O_{s}: s \in S\right\}$.

We use \mathcal{F} to denote the set of maps f from S to $\operatorname{Exp} \mathcal{O}$ with the properties that $f(s) \subset \bigcup_{i} \mathcal{U}_{s, i}$ and $\left|f(s) \cap \mathcal{U}_{s, i}\right| \leq 1$ for all s and i. For every $f \in \mathcal{F}$ we put $\mathcal{O}(f)=\bigcup\{f(s): s \in S\}$.

We denote \mathcal{D} all closed and discrete subsets of \mathbb{Q}. For every $s \in \mathbb{N}^{2 n}$ and $D \in \mathcal{D}$ we set

$$
i(s, D)=\min \left\{i: O_{s, i} \cap D \subseteq\left\{p_{s}\right\}\right\}=\min \left\{i:(\forall j \geq i)\left(U_{s, j} \cap D=\emptyset\right)\right\}
$$

We say that s is D-good if $s_{2 k+1}<i(s \upharpoonright 2 k, D)$ for all $k<n$, and we put

$$
\mathcal{O}(D)=\left\{U_{s, i(s, D)}: s \in S \text { is } D \text {-good }\right\}
$$

Claim 1. For any $D \in \mathcal{D}, \mathcal{O}(D)$ is locally finite in \mathbb{Q}.
Proof: Let $p_{s} \in \mathbb{Q}$. If the index s is D-good, then the neighborhood $O p_{s}=$ $O_{s, i(s, D)+1}$ does not intersect any member of $\mathcal{O}(D)$. Otherwise, we choose the maximal k such that $t=s \upharpoonright 2 k$ is D-good. If $s_{2 k+1}>i(t, D)$ then $O p_{s}=O_{s}$ meets no member of $\mathcal{O}(D)$ and if $s_{2 k+1}=i(t, D)$ then $U_{t, i(t, D)}$ is the unique member of $\mathcal{O}(D)$ that O_{s} intersects.

Claim 2.

$$
\bigcap_{k=1}^{n}\left(\bigcup \mathcal{O}\left(D_{k}\right)\right)-\bigcup_{j=1}^{n} \bigcup \mathcal{O}\left(f_{j}\right) \neq \emptyset
$$

for any $n \in \mathbb{N}, D_{k} \in \mathcal{D}$ and $f_{j} \in \mathcal{F}$.
Proof: We shall construct an $s \in S$ such that p_{s} belongs to the set in question. To begin, let $s \upharpoonright 0=\emptyset$ and $F_{0}=\{1,2, \ldots, n\}$.

Assume $a \upharpoonright 2 m$ and F_{m} have been found with $F_{m} \neq \emptyset$ and $s \upharpoonright 2 m$ a D_{k}-good sequence for $k \in F_{m}$. Let $s_{2 m+1}=\min \left\{\left(s \upharpoonright 2 m, D_{k}\right): k \in F_{m}\right\}$ and choose $s_{2 m+2}$ so large that $O_{s, s_{2 m+1}, s_{2 m+2}} \in \mathcal{U}_{s, s_{2 m+1}}-\bigcup_{k \leq n} f_{k}(s)$. Let $F_{m+1}=\{k \in$ $\left.F_{m}: i\left(s \upharpoonright 2 m, D_{k}\right)>s_{2 m+1}\right\}$; observe that F_{m+1} is a proper subset of F_{m} and that $s \upharpoonright(2 m+2)$ is D_{k}-good for $k \in F_{m+1}$.

There will be an m with $F_{m}=\emptyset$; then $s=s \upharpoonright 2 m$ is as required.
It follows that the point a in Claim 3 does really exist.

Claim 3. Every point $a \in \mathbb{Q}^{*}$ such that

$$
a \in \bigcap\left\{\mathrm{Cl}_{\beta \mathbb{Q}} \bigcup \mathcal{O}(D): D \in \mathcal{D}\right\}-\bigcup\left\{\mathrm{Cl}_{\beta \mathbb{Q}} \bigcup \mathcal{O}(f): f \in \mathcal{F}\right\}
$$

is totally nonremote.
Proof: Let $A \in a$. If $\mathrm{Cl}_{X} D \in a$ for $D=\{q \in A: q$ is isolated in $A\}$, then $\mathrm{Cl}_{X} D-D \in a$, because a is a far point. Otherwise, if $O a \cap D=\emptyset$ for a clopen neighborhood of a, then $G=O a \cap A$ has no isolated points. Define $f_{G} \in \mathcal{F}$ so that for any $s \in S, \bigcup f_{G}(s)$ meets every nonempty intersection $U_{s, i} \cap G$. Then $G-\bigcup \mathcal{O}\left(f_{G}\right) \in a$ is nowhere dense in A.

Claim 4. The number of totally nonremote points in $\beta \mathbb{Q}$ is $2^{\mathfrak{c}}$.
Proof: For every $Q_{j}=(\sqrt{2} j, \sqrt{2} j+1) \cap \mathbb{Q}$ we fix a totally nonremote point $a_{j} \in Q_{j}^{*}$ and put $A=\left\{a_{j}: j \in \mathbb{N}\right\}$. Then $Y=\mathbb{Q} \cup A$ is normal and $\mathrm{Cl}_{\beta \mathbb{Q}} Y$ is equivalent to βY, because $\mathbb{Q} \subset Y \subset \beta \mathbb{Q}$. Hence $\mathrm{Cl}_{\beta \mathbb{Q}} A \subset \mathbb{Q}^{*}$ has cardinality $2^{\mathfrak{c}}$. Let $a \in \mathrm{Cl}_{\beta \mathbb{Q}} A$ and $B \in a$. For each $a_{j} \in A$ there is $G_{j} \subset Q_{j}$, which belongs to a_{j} and has nowhere dense intersection (possibly empty) with B. Then $G=\bigcup_{j \in \mathbb{N}} G_{j}$ belongs to a and has nowhere dense intersection with B. Our proof is complete.

References

[1] van Douwen E.K., Remote points, Dissertations Math. 188 (1981), 1-45.
[2] van Douwen E.K., Better closed ultrafilters on Q, Topology Appl. 47 (1992), 173-177.
[3] Fine N.J., Gillman L., Remote points in βR, Proc. Amer. Math. Soc. 13 (1962), 29-36.

Department for Algebra and Topology, Udmurt State University, UniversitetSkaya 1, Izhevsk 426034, Russia
E-mail: serlog@uni.udm.ru

