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On the complexity of some σ-ideals of σ-P-porous sets

Luděk Zaj́ıček, Miroslav Zelený

Abstract. Let P be a porosity-like relation on a separable locally compact metric space
E. We show that the σ-ideal of compact σ-P-porous subsets of E (under some general
conditions on P and E) forms aΠ1

1
-complete set in the hyperspace of all compact subsets

of E, in particular it is coanalytic and non-Borel. Our general results are applicable
to most interesting types of porosity. It is shown in the cases of the σ-ideals of σ-
porous sets, σ-〈g〉-porous sets, σ-strongly porous sets, σ-symmetrically porous sets and
σ-strongly symmetrically porous sets. We prove a similar result also for σ-very porous
sets assuming that each singleton of E is very porous set.

Keywords: σ-porous sets, σ-ideal, coanalytic sets, Hausdorff metric

Classification: 54H05, 28A05

1. Introduction

The aim of this paper is to investigate descriptive complexity of σ-ideals of
compact sets which are related to the notion of σ-porosity. As for history and
applications of the notions of porosity and σ-porosity we refer to [Za2].
It is proved in [ZP] that compact σ-porous sets form a Π11-complete set (in

particular, a coanalytic non-Borel set) in the “hyperspace” of all compact sets
(equipped with the Hausdorff metric), if the underlying space is nonempty com-
pact and has no isolated point. This result was firstly proved by G. Debs and
D. Preiss ([DP]), but the proof was not published. The proof of [ZP] is based on
a direct method of construction of non-σ-porous sets. This method is applicable
to a number of problems but it is rather complicated and uses some special prop-
erties of the ordinary (i.e. Denjoy-Dolzhenko) porosity. This method could be
probably adapted also to some other types of porosity, but then it would become
very technical.
In this paper we prove that this theorem is true also for compact σ-〈g〉-porous

sets, σ-strongly porous sets, σ-symmetrically porous sets, σ-strongly symmetri-
cally porous sets and σ-very porous sets. In fact, we prove a general theorem
(Theorem 6.1) which is applicable to most interesting types of porosity.
Moreover, our proof is considerably simpler than that in [ZP]. In the proof

we need no explicit construction of special non-σ-porous sets; we use a non-
constructive existence proof based on a result of descriptive set theory (namely
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Kunen-Martin theorem on analytic well-founded relations on a Polish space, see
Theorem 5.1 below). To be able to use this theorem, we need also a construction
(of “complicated σ-porous sets”), but this construction is much simpler than
constructions of [ZP]. However, note that some new results of the present paper
can be obtained easily using results of [ZP]. Namely, in [ZP] there was proved the
following theorem:

Let E be a compact metric space and A be an analytic subset of the space of
all compact subsets of E. If A contains all countable compact subsets of E, then
there is K ∈ A, which is not σ-porous.

Thus there is no Borel σ-ideal of compact sets of E, which contains all singletons
and is contained in the σ-ideal of σ-porous sets. Therefore non-Borelness of several
considered σ-ideals (e.g. σ-strongly porous sets, σ-symmetrically porous sets, σ-
strongly symmetrically porous sets and σ-very porous sets) can be inferred in
rather general spaces via this theorem. But there are σ-〈g〉-porous sets which are
not σ-porous and therefore we cannot use the above theorem here.
Our non-constructive method (which is a form of the well-known “overspill

method”, cf. [K1, p. 290]) is a simplification of the one used in an unpublished
manuscript [Ze] where it was proved that, in a compact metric space, each non-σ-
porous Suslin set contains a closed non-σ-porous set. (Note that this theorem was
proved in [ZP] by a constructive method in topologically complete metric spaces,
but also for ordinary porosity only.) We are now working on generalization of this
theorem to other interesting types of porosity, using a version of the descriptive
method used here. The “inscribing problem” appears to be much more difficult
than the “complexity problem” treated in the present article, and we still suc-
ceeded only partially. We formulate here some lemmas in generality, which is not
needed (but does not complicate the proofs), since some of them are applicable
to the “inscribing problem” (and possibly to other problems). Note that in both
[ZP] and the present article the general theory of σ-ideals ([KLW]) is essentially
used.
Further note that we use new (more general) versions of the notion of Foran’s

system and corresponding Foran’s lemma. In applications to 〈g〉-porosity, strong
porosity and strong symmetrical porosity it would be sufficient to use the version
of Foran’s lemma from [Za2]. This version is sufficient also for applications to the
ordinary porosity. Indeed, in this case we could use the result of [Za1] which says
that for each 0 < c < 1, a set is σ-porous if and only if it is σ-c-porous. Thus,
investigating σ-porous sets, we can deal with c-porosity only (with fixed c); this
advantage is used e.g. in [Za3] and [ZP]. On the other hand, the new version of
Foran’s lemma is necessary for us in the case of symmetric porosity. This is caused
by the fact (cf. [EH, Example 2]) that there exists a σ-symmetrically porous set
which is σ-c-symmetrically porous for no c > 0.
Let us recall several notions of descriptive set theory used in this paper. Fol-

lowing [K1] a Polish space is a separable completely metrizable topological space.
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We will use the well-known facts that a separable locally compact metric space is
Polish and that a countable product of Polish spaces is Polish. Let X be a metric
space. A set A ⊂ X is called analytic if there is a Polish space Y and a continuous
mapping f : Y → X with f(Y ) = A. A subset C of a Polish space X is called
coanalytic (Π11) if X \C is analytic. A set C ⊂ X is Π11-complete if C is Π

1
1 and

for every Polish space Y and every Π11 set B ⊂ Y there exists a Borel mapping

f : Y → X with B = f−1(C) (cf. [K1, Definition 26.7 and the following remark]
and [K2]). Recall that no Π

1
1-complete set is analytic or Borel.

2. Point-set relations and a new version of Foran’s lemma

The standard method [Za1] of the proof that a concrete (“small”) set is not
σ-porous was formalized in [F]. A very general version of Foran’s lemma [Za2,
Lemma 4.3] works with point-set relations (“abstract porosities”) which have
three basic properties of the notion of porosity. In the present article we found
it useful to work with quite general point-set relations and “abstract porosities”
are called porosity-like relations here.

The basic notion in Foran’s lemma is this of Foran’s system (of closed sets) in
a topologically complete metric space. By a proof which is similar to the proof of
Baire’s theorem it is proved that no member of Foran’s system is σ-porous.

The notion of (a new form of) Foran’s system is quite fundamental for our
proof.

Let (X, ρ) be a metric space. Then the open ball with center x ∈ X and radius
r > 0 is denoted by B(x, r). Let A ⊂ X , A 6= ∅, and ε > 0. Then the symbol
B(A, ε) stands for the set {y ∈ X ; ρ(y, A) < ε}.
We say that R is a point-set relation on X if it is a relation between points

of X and subsets of X . Thus a point-set relation R is a subset of X × 2X . The
symbol R(x, A), where x ∈ X and A ⊂ X , means that (x, A) ∈ R, i.e. R holds
for the pair (x, A).

We consider the following properties of a point-set relation R on X .

(A1) If A ⊂ B ⊂ X , x ∈ X and R(x, B), then R(x, A).

(A2) R(x, A) iff there is r > 0 such that R(x, A ∩ B(x, r)).

(A3) R(x, A) iff R(x, A).

We say that a point-set relation P on X is a porosity-like relation if P satisfies
the “axioms” (A1)–(A3).

Let P be a porosity-like relation on X . We say that A ⊂ X is

• P-porous at x ∈ X if P(x, A),
• P-porous if P(x, A) for every x ∈ A,
• σ-P-porous if A is a countable union of P-porous sets.

The following notions and notation will be useful.
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Notation 2.1. Let (X, ρ) be a metric space and R be a point-set relation on X .

• If A ⊂ X and B ⊂ X , then

R(A, B)
def
⇐⇒∀ a ∈ A : R(a, B).

• Let moreover I be a nonempty index set and Rι, ι ∈ I, be point-set
relations on X . Then the point-set relations (¬R),

⋃

ι∈I Rι,
⋂

ι∈I Rι on

X are defined in the natural way: (¬R)(x, A)
def
⇐⇒¬(R(x, A)),

(
⋃

ι∈I Rι
)

(x, A)
def
⇐⇒∃ ι ∈ I : Rι(x, A) and

(
⋂

ι∈I Rι
)

(x, A)
def
⇐⇒∀ ι ∈ I :

Rι(x, A).
• We say that a point-set relation R1 is stronger than a point-set relation
R2 if R1 ⊂ R2; i.e. R1(x, A) implies R2(x, A).

Now we can formulate and prove a new version of Foran’s lemma.

Definition 2.2. Let X be a metric space. Let O be the system of all open
subsets of X . Let R be a point-set relation on X and F be a nonempty system
of nonempty closed subsets of X . We say that F is a Foran-R-system, if for each
F ∈ F , B ∈ O with F ∩ B 6= ∅ there exist F ⋆ ∈ F and B⋆ ∈ O such that

• F ⋆ ⊂ F ∩ B,
• F ⋆ ∩ B⋆ 6= ∅,
• (¬R)(F ⋆ ∩ B⋆, F ∩ B).

Let T be a set of point-set relations on X . We say that F is a Foran-T -system,
if F is a Foran-T-system for every T ∈ T .

Remark 2.3. We will frequently use in the sequel the obvious fact that if all T ∈ T
satisfy (A1) and B is an arbitrary basis of open sets, then we can equivalently
write B instead of O in the above definition.

Lemma 2.4. Let T be a nonempty countable set of point-set relations on a
complete metric space X . Suppose that

• P =
⋃

T is a porosity-like relation,
• each T ∈ T satisfies (A1) and (A3).

Let F be a Foran-T -system. Then no set of F is σ-P-porous.

The following proof is a slight modification of the proof of [Za2, Lemma 4.3].

Proof: Suppose on the contrary that F ∈ F is σ-P-porous. Then F =
⋃∞

m=1Cm,
where each Cm is P-porous. For every T ∈ T and m ∈ N we put

C(T, m) = {x ∈ Cm; T(x, Cm)}.

We have Cm =
⋃

{C(T, m); T ∈ T } and T(x, C(T, m)) for every x ∈ C(T, m)
since T satisfies (A1). We order the C(T, m)’s into a sequence {An}∞n=1. Clearly
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F =
⋃∞

n=1An. We will define inductively a sequence {Fn}∞n=0 of elements of F
and a sequence of open balls {B(xn, rn)}∞n=0 such that F0 = F , lim rn = 0 and
for every n ∈ N we have

• Fn−1 ∩ B(xn−1, rn−1) ⊇ Fn ∩ B(xn, rn),
• Fn−1 ∩ B(xn−1, rn−1) 6= ∅,

• Fn ∩ B(xn, rn) ∩ An = ∅.

Put F0 = F , choose x0 ∈ F and put r0 = 1. If Fn−1 and B(xn−1, rn−1) are
defined for some n ≥ 1, then we define Fn and B(xn, rn) distinguishing two cases:

a) If An ∩ Fn−1 ∩ B(xn−1, rn−1) is not dense in Fn−1 ∩ B(xn−1, rn−1), then
we put Fn = Fn−1 and choose xn ∈ Fn−1∩B(xn−1, rn−1) and rn ∈ (0, 1/n) such
that

• Fn−1 ∩ B(xn, rn) ∩ An = ∅,
• B(xn, rn) ⊂ B(xn−1, rn−1).

b) Suppose that An ∩Fn−1∩B(xn−1, rn−1) is dense in Fn−1∩B(xn−1, rn−1).
There is some T ∈ T such that T(x, An) for every x ∈ An. Using the definition
of Foran-T -system (for F = Fn−1, B = B(xn−1, rn−1) and T) we find F ⋆ ∈ F
and an open set B⋆ such that

• F ⋆ ⊂ Fn−1 ∩ B(xn−1, rn−1),
• F ⋆ ∩ B⋆ 6= ∅,
• (¬T)(F ⋆ ∩ B⋆, Fn−1 ∩ B(xn−1, rn−1)).

Since Fn−1 ∩ B(xn−1, rn−1) ⊂ An we have (¬T)(F ⋆ ∩ B⋆, An). This implies
(¬T)(F ⋆ ∩B⋆, An) by (A3). Then we see that F ⋆ ∩B⋆ ∩An = ∅, since T(x, An)
for every x ∈ An. We put Fn = F ⋆. Now we choose xn ∈ Fn and rn ∈ (0, 1/n)

such that B(xn, rn) ⊂ B⋆. This finishes the construction of the desired sequences.

Clearly
⋂∞

n=1

(

Fn ∩ B(xn, rn)
)

= {a}, a ∈ F and a /∈
⋃∞

n=1An = F , a con-

tradiction. �

Remark 2.5. (i) In the above proof we proved a little bit more than Lemma 2.4
states. The assumption that P is a porosity-like relation is used only because of
terminological reasons (otherwise the notion of σ-P-porosity would not be well-
defined). If we do not assume that P is a porosity-like relation then the conclusion
of Lemma 2.4 can be formulated as follows: Then no set of F can be written as
a countable union of sets An’s such that P(An, An).

(ii) In the subsequent paper on “inscribing problem” (in contrast to the present
article) we will apply Lemma 2.4 to relations which do not satisfy (A2).

(iii) It is easy to see that the proof of Lemma 2.4 works if we write F ⋆ ∩B⋆ ⊂
F ∩ B instead of F ⋆ ⊂ F ∩ B in Definition 2.2. Moreover, if T satisfies (A2),
then (¬T)(F ⋆ ∩ B⋆, F ∩ B) is equivalent to (¬T)(F ⋆ ∩ B⋆, F ). Thus in the case
when T consists from one porosity-like relation, Lemma 2.4 coincides with [Za2,
Lemma 4.3].
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It will be useful to introduce other properties (A4), (A5), (D1) and (D2)
a point-set relation R on a metric space X can have, and the notion of a stable
relation.
The first property is satisfied by most natural porosity-like relations.

(A4) • R(x, ∅) for every x ∈ X .
• (¬R)(x, X) for every x ∈ X .
• R(x, {x}) for every x ∈ X which is not isolated.

The next property is satisfied by most interesting relations if X is locally com-
pact.

(A5) For every ε > 0 and every nonempty compact K ⊂ X there exists a
countable system S of open sets such that
•

⋃

S ⊂ B(K, ε),
• S is locally finite in X \ K (i.e. for every y ∈ X \ K there is r > 0 such
that B(y, r) intersects at most finitely many elements of S),

• if J ⊂ X intersects each element of S, then (¬R)(K, K ∪ J).

Remark 2.6. It is easy to see that if a point-set relation R1 is stronger then R2
(i.e. R1 ⊂ R2) and R2 satisfies (A5), then R1 satisfies (A5) as well.

The other property is a “descriptive” one.

(D1) For each compact set K ⊂ X , the set {x ∈ K; R(x, K)} is a Gδ set.

To formulate two other properties, denote by Cb(X) the hyperspace of all
nonempty bounded closed subsets of a metric space X equipped with the Haus-
dorff metric and let K∗(X) be the subspace of Cb(X) formed by all nonempty
compact sets.
The second descriptive property reads as follows.

(D2) The set

{(L, K) ∈ K∗(X)×K∗(X); ∃O ⊂ X open : L∩O 6= ∅, (¬R)(L∩O, K∩G)}

is analytic for every G ⊂ X open.

Note that c-porosity in separable complete metric space and c-symmetric poros-
ity in R (in contrast to ordinary porosity and symmetric porosity) have properties
(D1) and (D2) but it is not quite easy to verify it. To formulate a condition
implying (D1) and (D2), the verification of which is almost immediate (see
Lemma 3.7), we need the natural notion of a stable point-set relation. Note that
no interesting porosity-like relation is stable, but they are generated in simple
ways by stable relations.

Definition 2.7. We say that a point-set relationR on a metric space X is stable,
if the set

{(x, F ) ∈ X × Cb(X); R(x, F )}
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is open.

We will need also the natural notion of the kernel of a set with respect to a
porosity-like relation.

Definition 2.8. Let Q be a porosity-like relation on a metric space X . If A ⊂ X ,
then we define

kerQ(A) = A \
⋃

{O; O ⊂ X is open, A ∩ O is σ-Q-porous}.

We will need the following lemma.

Lemma 2.9. Let Q be a porosity-like relation on a metric space X .

(i) If A ⊂ X is closed, then kerQ(A) is closed.
(ii) The set kerQ(A) ∩G is non-σ-Q-porous for every open set G intersecting
kerQ(A).

Proof: The statement (i) is obvious. The assertion (ii) easily follows from the
fact that M ⊂ X is σ-Q-porous iff for each x ∈ M there exists a neighbourhood
Ux of x such thatM ∩Ux is σ-Q-porous. This fact is easy to see if X is separable;
for the non-separable case (which we need not in the present article) see [Za4,
Lemma 3]. �

The following simple but useful lemma can be considered as a partial converse
of Foran’s lemma. Related results were already applied in [Za3] and in [ZP].

Lemma 2.10. Let X be a separable metric space, P be a porosity-like relation
onX and Ξ be a nonempty countable set. Let P =

⋃

ξ∈ΞV
ξ , where each point-set

relation Vξ satisfies (A1), (A3) and (D1). Let F0 ⊂ X be a compact non-σ-

P-porous set. Then there exists a countable Foran-{Vξ; ξ ∈ Ξ}-system F such
that each element of F is compact and is contained in F0.

Proof: Fix a countable open basis B of X . To construct F , we will need the
following assertion.

(*) Let K ∈ K∗(X), kerP(K) = K, ξ ∈ Ξ, B ∈ B and K ∩ B 6= ∅. Then
there exists a set L = L(K, B, ξ) ∈ K∗(X) such that kerP(L) = L, L ⊂ K ∩ B

and (¬Vξ)(L, K ∩ B).

To prove (*), choose x ∈ K ∩B, a neighbourhood U of x with U ⊂ B and put

K1 := K ∩U . Since x ∈ kerP(K), K1 is not σ-P-porous. Since Vξ satisfies (A1)

and (D1), {x ∈ K1; (¬V
ξ)(x, K1)} is an Fσ non-σ-P-porous set. Therefore

there exists a non-σ-P-porous compact set K2 ⊂ K1 such that (¬V
ξ)(K2, K1).

By (A1) we have (¬Vξ)(K2, K ∩B). By Lemma 2.9 we can put L := kerP(K2).
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Now we will define by induction countable systems Fn, n = 0, 1, . . . , of non-
empty compact sets. Put F0 := {kerP(F0)}. Further suppose that n ∈ N and we
have defined Fn−1. Then we put

Fn := {L(F, B, ξ); F ∈ Fn−1, B ∈ B, F ∩ B 6= ∅, ξ ∈ Ξ}.

It is easy to see that

F :=
∞
⋃

n=0

Fn

forms a countable Foran-{Vξ; ξ ∈ Ξ}-system of compact sets, which are contained
in F0. �

3. The hyperspace of compact sets and related lemmas

Let (E, ρ) be a metric space. Recall that Cb(E) denotes the space of all
nonempty bounded closed subsets of E with the Hausdorff metric

h(F, C) = sup{max{ρ(x, F ), ρ(y, C)}; x ∈ C, y ∈ F}

and K∗(E) is its subspace of all nonempty compact subsets of E.
It will be useful to work with the metric space K(E) of all compact subsets

of E. The space K(E) is also equipped with Hausdorff metric; the empty set is
considered as an isolated point of K(E). (To have a fixed metric on K(E), we
choose a ∈ E and the distance of ∅ and a nonempty compact subset K ⊂ E define
as h(∅, K) := dist(a, K) + diam(K) + 1.)

Remark 3.1. It is well-known (cf. [M]) that the topology on K(E) can be charac-
terized by the fact that the sets

{K ∈ K(E); K ∩ O 6= ∅}, {K ∈ K(E); K ⊂ O},

where O ⊂ E is open, form an open subbasis of K(E).
Also the following facts are well-known.

Lemma 3.2. Let E be a metric space.

(i) If E is compact (complete, separable, locally compact), then K(E) has
the same property.

(ii) If K1 ⊂ K2 ⊂ . . . , K =
⋃∞

i=1Ki and K ∈ K(E), Ki ∈ K(E), then
Ki → K in K(E).

(iii) The set {(F, x) ∈ K(E) × E; x ∈ F} is closed in K(E)× E.
(iv) The set {(L, K) ∈ K(E)×K(E);L ⊂ K} is closed in K(E)×K(E).
(v) If G ⊂ E is a Gδ set, then {K ∈ K(E);K ⊂ G} is a Gδ set in K(E).

We will need also the following facts; we omit their easy and straightforward
proofs.
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Lemma 3.3. (i) Let E be a compact metric space. Let K ∈ K(E) and S be a
system of open sets, which is locally finite in E \K. Suppose that for every S ∈ S
a set KS ∈ K(E) with KS ⊂ S is given. Then K ∪

⋃

{KS ; S ∈ S} ∈ K(E).
(ii) Let E be a metric space. Let K ∈ K(E). Then there exists a system S of

open subsets of E such that S is locally finite in E \ K and for every x ∈ K and
r > 0 there exists S ∈ S with S ⊂ B(x, r).

Lemma 3.4. Let E be a separable metric space and O ⊂ E be open. Then the
mapping FO : K(E)→ K(E) defined by FO(K) := K ∩ O is Borel measurable.

Proof: Fix O ⊂ E open. The space K(E) is separable by Lemma 3.2(i). Thus

it is sufficient to show that F−1
O (V ) is Borel for every V from some fixed subbasis

of K(E). This implies that it is sufficient to prove that the sets

X = {K ∈ K(E); K ∩ O ∩ G 6= ∅}, Y = {K ∈ K(E); K ∩ O ⊂ G}

are Borel for every G open in E. The set X is open since

X = {K ∈ K(E); K ∩ O ∩ G 6= ∅}.

We have also

K(E) \ Y = {K ∈ K(E); K ∩ O ∩ (E \ G) 6= ∅}

=
+∞
⋂

n=1

{K ∈ K(E); K ∩ O ∩ B(E \ G, 1/n) 6= ∅}

and therefore Y is Borel. �

Definition 3.5. Let E be a metric space. A set I ⊂ K(E) is called a σ-ideal of
compact sets if the following conditions hold:

• I is hereditary, i.e. K, L ∈ K(E), K ∈ I, L ⊂ K, then L ∈ I;
• if K, K1, K2, · · · ∈ K(E), Kn ∈ I for all n ∈ N and K =

⋃+∞
n=1Kn, then

K ∈ I.

The theory of σ-ideals of compact sets was developed by Kechris, Louveau
and Woodin in [KLW]. Their results were applied in the theory of trigonometric
series (cf. [DSR], [KL]) and in other fields. We will need the so called dichotomy
theorem.

Theorem 3.6 (Kechris-Louveau-Woodin, [K1, Theorem 33.3]). Let E be a Po-
lish space and I ⊂ K(E) be a Π11 σ-ideal of compact sets. Then I is either

Π11-complete or a Gδ subset of K(E).
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Lemma 3.7. Let E be a separable complete metric space. Let Rk, k ∈ N,

be stable point-set relations on E with (A1) and (A3). Then the relations
V1 :=

⋂∞
k=1Rk and V2 :=

⋂∞
n=1

⋃∞
k=nRk have the properties (A1), (A3),

(D1) and (D2).

Proof: We start with V1. It is easy to see that V1 has (A1) and (A3).

(D1) Fix K ∈ K(E). We have

C := {x ∈ K; V1(x, K)} =
∞
⋂

k=1

{x ∈ K; Rk(x, K)}.

Stability of Rk’s gives that C is Gδ.

(D2) Let B be a countable open basis of E. Fix G ⊂ E open. Denote

A = {(L, K) ∈ K(E)×K(E); ∃O ⊂ E open : L∩O 6= ∅, (¬V1)(L∩O, K ∩G)}.

We have

(L, K) ∈ A ⇔ ∃O1 ∈ B : ∅ 6= L ∩ O1 ⊂
∞
⋃

k=1

{x ∈ E; (¬Rk)(x, K ∩ G)}.

Stability and (A3) of Rk give that the set {x ∈ E; (¬Rk)(x, K ∩ G)} is closed
for every k ∈ N and therefore Baire Category Theorem and (A3) of Rk imply

(L, K) ∈ A ⇔ ∃O2 ∈ B ∃ k ∈ N : ∅ 6= L ∩ O2 ⊂ {x ∈ E; (¬Rk)(x, K ∩ G)}

⇔ ∃O3 ∈ B ∃ k ∈ N : L ∩ O3 6= ∅, L ∩ O3 ⊂ {x ∈ E; (¬Rk)(x, K ∩ G)}.

The set

C(k) := {(K1, K2) ∈ K(E) ×K(E); K1 6⊂ {x ∈ E; (¬Rk)(x, K2)}}

is open by stability of Rk. Therefore Lemma 3.4 and the equivalence

(L, K) ∈ A ⇔ ∃O ∈ B ∃ k ∈ N : L ∩ O 6= ∅, (FO(L), FG(K)) /∈ C(k)

imply that A is Borel and therefore analytic.
To prove the desired properties of V2, it is sufficient to apply just the proved

result to the point-set relations R∗
n :=

⋃∞
k=nRk which are clearly stable and have

properties (A1) and (A3). �
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Notation 3.8. Let E be a metric space and Ξ be a nonempty countable set. Let

Vξ , ξ ∈ Ξ, be point-set relations on E. Let M be the space [K∗(E)]N equipped
with the product topology. Let O be the set of all open subsets of E. We define
a relation ≺∗ between elements of M by

X ≺∗ Z
def
⇐⇒∀ ξ ∈ Ξ∀n ∈ N ∀B ∈ O,Z(n) ∩ B 6= ∅ ∃m ∈ N ∃B⋆ ∈ O :

X (m) ∩ B⋆ 6= ∅, X (m) ⊂ Z(n) ∩ B, (¬Vξ)(X (m) ∩ B⋆,Z(n) ∩ B).

Remark 3.9. The relation ≺∗ depends on the considered relations Vξ , ξ ∈ Ξ.
However, we will use the simple symbol ≺∗ instead of a symbol indicating the
relationship to Vξ ’s since this simplification will lead to no confusion.

Remark 3.10. It is easy to see that if all Vξ satisfy (A1) and B is an arbitrary
basis of open sets, then we can equivalently write B instead of O in Notation 3.8.

Remark 3.11. Let X ∈ M. Then the set {X (n); n ∈ N} forms a Foran-{Vξ; ξ ∈
Ξ}-system if and only if X ≺∗ X .

Lemma 3.12. Let E be a complete metric space and Ξ be a nonempty countable
set. Let P =

⋃

ξ∈ΞV
ξ be a porosity-like relation on E, where each point-set

relation Vξ satisfies (A1) and (A3). Let Fn ∈ M, n ∈ N, and Fn+1 ≺
∗ Fn for

every n ∈ N. Then F1 contains only non-σ-P-porous sets.

Proof: We put U =
⋃∞

n=1Fn and T = {Vξ ; ξ ∈ Ξ}. It is easy to check that
the system U forms a Foran-T -system. The conclusion follows from Lemma 2.4.

�

Lemma 3.13. Let E be a separable complete metric space and Ξ be a nonempty
countable set. Let Vξ , ξ ∈ Ξ, be point-set relations on E satisfying (A1) and
(D2). Then the relation ≺∗ is analytic on M, i.e. the set

{(X ,Z) ∈ M × M; X ≺∗ Z}

is analytic.

Proof: We fix a countable open basis B of E. For ξ ∈ Ξ, B ∈ B we define

A(ξ, B) = {(L, K) ∈ K∗(E)×K∗(E); (K ∩ B = ∅) ∨

((L ⊂ K ∩ B) & (∃B⋆ ∈ B : L ∩ B⋆ 6= ∅, (¬Vξ)(L ∩ B⋆, K ∩ B)))}.

By Remark 3.10 we have

X ≺∗ Z ⇔ ∀ ξ ∈ Ξ∀n ∈ N ∀B ∈ B ∃m ∈ N : (X (m),Z(n)) ∈ A(ξ, B).
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The sets Ξ and B are countable and therefore it is sufficient to prove that A(ξ, B)
is analytic for every ξ ∈ Ξ and B ∈ B. To this end we fix ξ, B and define

A1 = {(L, K) ∈ K∗(E)×K∗(E); K ∩ B = ∅},

A2 = {(L, K) ∈ K∗(E)×K∗(E); L ⊂ K},

A3 = {(L, K) ∈ K∗(E)×K∗(E); L ⊂ B},

A4 = {(L, K) ∈ K∗(E)×K∗(E); ∃B⋆ ∈ B : L∩B⋆ 6= ∅, (¬Vξ)(L∩B⋆, K∩B)}.

We have A(ξ, B) = A1 ∪ (A2 ∩ A3 ∩ A4). The sets A1 and A3 are open and the
set A2 is closed by Lemma 3.2(iv). Since V

ξ satisfies (D2), we have that A4 is
analytic. �

Lemma 3.14. Let E be a separable locally compact metric space and Ξ be a
nonempty countable set. Let P =

⋃

ξ∈ΞV
ξ be a porosity-like relation on E,

where each Vξ satisfies (A1), (A3), (D1) and (D2). Then the σ-ideal I of all
compact σ-P-porous subsets of E forms a Π11 subset of K(E).

Proof: Recall that M = [K∗(E)]N. We define D ⊂ K(E)× M by

(K,X ) ∈ D
def
⇐⇒(X ≺∗ X ) & (∀ k ∈ N : X (k) ⊂ K).

According to Lemmas 3.2(iv) and 3.13 the set D is analytic.
Using Lemma 2.10, Remark 3.11 and Lemma 2.4 we have that K ∈ K(E) is

non-σ-P-porous set if and only if there is X with (K,X ) ∈ D. The space M is
Polish and K(E) \ I is a projection of D. Thus K(E) \ I is analytic and we are
done. �

4. Definition of a rank and the basic construction

Definition 4.1. Let E be a metric space, Ξ be a nonempty countable set and
Vξ , ξ ∈ Ξ, be point-set relations on E. We will define systems Cα, α ≤ ω1, of
nonempty compact subsets of E inductively. We put C0 = K∗(E). The system
Cα, 0 < α ≤ ω1, is defined by

K ∈ Cα
def
⇐⇒(K ∈ K∗(E) & (∀β < α ∀ ξ ∈ Ξ

∀B ⊂ E open, K ∩ B 6= ∅ ∃L ∈ Cβ : L ⊂ K ∩ B, (¬Vξ)(L, K ∩ B))).

Using the previous definition we define a rank function on K∗(E).

Definition 4.2. For any K ∈ K∗(E) set rk(K) = sup{α; K ∈ Cα}.
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Remark 4.3. (1) Clearly Cγ ⊂ Cα for α ≤ γ ≤ ω1.
(2) It is easy to see that rk(K) ≥ α iffK ∈ Cα and thus rk(K) = max{α; K ∈ Cα}.
(3) Working with Cα’s and rk we will have in mind that these objects depend on

Vξ ’s. At each moment it will be clear which Vξ ’s are considered.

The following lemma follows directly from the definition of rk, from the prop-
erty (A1) of Vξ ’s and from Remark 4.3(2).

Lemma 4.4. Let E be a metric space, Ξ be a nonempty countable set, Vξ ,

ξ ∈ Ξ, be point-set relations on E with (A1) and let α < ω1. Then the following
assertions hold.

(i) Let K ⊂ K∗(E), K 6= ∅ and rk(K) ≥ α for each K ∈ K. Then rk
(

⋃

K
)

≥
α.

(ii) Let K ∈ K∗(E), rk(K) ≥ α, H ⊂ E be open and K ∩ H 6= ∅. Then
rk

(

K ∩ H
)

≥ α.

Lemma 4.5. Let α < ω1. Let E be a locally compact metric space, D be a
dense subset of E, Ξ be a nonempty countable set and Vξ , ξ ∈ Ξ, be point-set
relations on E with (A1), (A2) and (A5).
Let H ⊂ E be a nonempty open subset and let G ⊂ K(E) be a Gδ σ-ideal of

compact sets such that {{x};x ∈ D} ⊂ G. Then there exists K ∈ G such that
∅ 6= K ⊂ H and rk(K) ≥ α.

To prove Lemma 4.5 we will need the next lemma.

Lemma 4.6. Let E be a locally compact metric space, D be a dense subset of
E, Ξ be a nonempty countable set and Vξ , ξ ∈ Ξ, be point-set relations on E
with (A1) and (A5). Let α < ω1 and suppose that Lemma 4.5 holds for α. Let
H ⊂ E be a nonempty open set, G ⊂ K(E) be a Gδ σ-ideal of compact sets such
that {{x};x ∈ D} ⊂ G, ε > 0, ξ ∈ Ξ and K ∈ G, ∅ 6= K ⊂ H . Then there exists
a nonempty compact set L ∈ G, K ⊂ L ⊂ H , such that

• rk(L) ≥ α,
• L ⊂ B(K, ε),

• (¬Vξ)(K, L).

Proof: We may and do assume that B(K, ε) ⊂ H and that H is compact. Using

(A5) of Vξ we find a countable system S of open sets such that

(i)
⋃

S ⊂ B(K, ε),
(ii) S is locally finite in E \ K,

(iii) if J ⊂ E intersects each element of S, then (¬Vξ)(K, K ∪ J).

Adding countably many appropriate open sets into S, if necessary, we may
assume that if J intersects each element of S, then K ⊂ J (see Lemma 3.3(ii)).
We find for every S ∈ S a nonempty compact set KS ∈ G such that KS ⊂ S

and rk(KS) ≥ α. We put L = K ∪
⋃

{KS ; S ∈ S}. Lemma 3.3(i) shows
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that L ∈ K∗(E). Then we have L ∈ G and also L =
⋃

{KS ; S ∈ S}. Using
Lemma 4.4(i) we obtain that rk(L) ≥ α.

The second condition is obviously satisfied. Using (iii) we obtain (¬Vξ)(K, L)
and therefore the last condition is also satisfied. �

Proof of Lemma 4.5: Let {ξj}
∞
j=1 be a sequence containing each element of Ξ

infinitely many times. We will proceed by transfinite induction.
If α = 0, it is sufficient to choose x ∈ H ∩ D and put K := {x}. Now

suppose that α > 0 and the assertion holds for every β < α. Let {αj}
∞
j=1 be

a nondecreasing sequence of ordinal numbers such that αj < α, j ∈ N, and
lim(αj + 1) = α. The set K(H) is open in K(E) and therefore we can find a

complete metric h̃ on G ∩K(H) which is (on this set) equivalent to the Hausdorff
metric h.
Now we will construct a sequence {Kj}

∞
j=1 of nonempty compact sets such

that the following conditions are satisfied for every j ∈ N:

• Kj ∈ G ∩ K(H),
• rk(Kj) ≥ αj ,
• Kj ⊂ Kj+1,

• h̃(Kj , Kj+1) < 2−j ,

(v) (¬Vξj )(Kj , Kj+1).

According to the induction hypothesis we find K1 ∈ G with ∅ 6= K1 ⊂ H and
rk(K1) ≥ α1. Now assume that we have defined K1, . . . , Km. We find ε > 0 so

small that h̃(Km, Km ∪ T ) < 2−m whenever T ⊂ B(Km, ε) and T ∈ G ∩ K(H).
Using Lemma 4.6 for α := αm+1, H := H , ε := ε, ξ := ξm and for K := Km we
obtain Km+1 ∈ G ∩ K(H) with the desired properties.

Now we put K =
⋃∞

j=1Kj . Since {Kj}
∞
j=1 forms a Cauchy sequence in (G ∩

K(H), h̃), the sequence {Kj}
∞
j=1 converges to some K⋆ ∈ G ∩ K(H) with respect

to h̃ and consequently also with respect to h. Lemma 3.2(ii) gives K⋆ = K. Thus
we have K ∈ G ∩ K(H).
To verify rk(K) ≥ α, we will prove rk(K) ∈ Cα using Definition 4.1. To this end

consider arbitrary β < α, ξ ∈ Ξ and an open set B ⊂ E intersecting K. We can
clearly find j0 ∈ N such that rk(Kj) ≥ β and Kj ∩B 6= ∅ for each j ≥ j0. Choose

j ≥ j0 such that ξj = ξ. Then find an open set H ⊂ E with H ∩ Kj 6= ∅, H ⊂ B

and put L := H ∩ Kj . Then clearly L ⊂ K ∩ B and (v) implies (¬Vξ)(L, K).

Since Vξ satisfies (A2), we have (¬Vξ)(L, K ∩ B). By Lemma 4.4(ii) we obtain
rk(L) ≥ β, i.e. L ∈ Cβ . Thus we have proved K ∈ Cα which completes the proof.

�

5. Application of a version of the overspill method

Recall that a (binary) relation ≺ on a set X is said to be well-founded, if there
is no sequence {xn}∞n=1 of elements of X with xn+1 ≺ xn for every n ∈ N. For
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a well-founded relation ≺ on X there exists (see [K1, Appendix B]) a unique
function (called the rank function of ≺) which assigns to each x ∈ X an ordinal
number ρ(x,≺) such that

ρ(x,≺) = sup{ρ(y,≺) + 1; y ≺ x}.

The classical Kunen-Martin theorem reads as follows.

Theorem 5.1 ([K1, Theorem 31.1]). Let X be a Polish space and ≺ be a well-
founded analytic relation on X . Then sup{ρ(x,≺); x ∈ X} < ω1.

We will use this deep theorem via the following lemma.

Lemma 5.2. Let E be a separable locally compact metric space and Ξ be a
nonempty countable set. Let P =

⋃

ξ∈ΞV
ξ be a porosity-like relation on E,

where each Vξ satisfies (A1), (A3) and (D2). Let G ⊂ K(E) be an analytic
subset of K(E) with sup{rk(K); K ∈ G} = ω1. Then G contains a non-σ-P-
porous set.

Proof: Without any loss of generality we may assume that G is hereditary.
Indeed, if not then we replace G by its hereditary closure, i.e. by the set her(G) =
{L ∈ K(E); ∃K ∈ G : L ⊂ K}. Since G is analytic, her(G) is also analytic since
her(G) is a projection of the analytic set {(L, K) ∈ K(E)×K(E); L ⊂ K, K ∈ G}.
(However note that in all applications we will work with hereditary systems.)
Using Notation 3.8 put

C = {X ∈ M; ∀n ∈ N : X (n) ∈ G}

and define a relation ≺∗∗ on M by

X ≺∗∗ Z
def
⇐⇒(X ∈ C, Z ∈ C, X ≺∗ Z).

It is easy to see that C is an analytic subset of M. Since ≺∗ is analytic
(Lemma 3.13), we have that ≺∗∗ is also analytic.
Assume for a while that ≺∗∗ is well-founded. Then ρ(X ,≺∗∗) is well defined

for all X ∈ M. To obtain a contradiction, we will need the following claim.

Claim. Let α < ω1. If X ∈ C with X (m) ∈ Cα for every m ∈ N, then
ρ(X ,≺∗∗) ≥ α.

Proof of Claim: We will proceed by transfinite induction. The case α = 0 is
trivial. Now suppose that α > 0, Claim holds for each α̃ < α and X ∈ C satisfies
{X (m); m ∈ N} ⊂ Cα. Fix a countable open basis B of E. Let β < α. By
Definition 4.1, for eachm ∈ N, ξ ∈ Ξ and B ∈ B with X (m)∩B 6= ∅, we can choose
K(m, B, ξ) ∈ Cβ with K(m, B, ξ) ⊂ X (m) ∩ B and (¬Vξ)(K(m, B, ξ),X (m) ∩
B). Since G is hereditary we have K(m, B, ξ) ∈ G. Order all K(m, B, ξ)’s into
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a sequence S. Obviously S ≺∗∗ X . We obtain ρ(S,≺∗∗) ≥ β by induction
hypothesis and therefore ρ(X ,≺∗∗) ≥ β + 1. This implies ρ(X ,≺∗∗) ≥ α. �

According to Claim we see that for K ∈ G with rk(K) ≥ α we have the
inequality ρ({K}∞j=1,≺

∗∗) ≥ α. Consequently sup{ρ(X ,≺∗∗); X ∈ C} =

sup{ρ(X ,≺∗∗); X ∈ M} = ω1. Since M is a Polish space we obtain a con-
tradiction with Theorem 5.1. Thus ≺∗∗ is not well-founded and there exists a
sequence {Xn}∞n=1 of elements of C such that Xn+1 ≺

∗∗ Xn for every n ∈ N. This
implies Xn+1 ≺∗ Xn for every n ∈ N. Therefore Lemma 3.12 implies that each
element K ∈ X1 6= ∅ is non σ-P-porous. Since X1 ⊂ G, the lemma is proved. �

6. Main abstract result

The following abstract theorem is an easy consequence of previous results.

Theorem 6.1. Let E be a nonempty separable locally compact metric space
without isolated points and Ξ be a nonempty countable set. Let P =

⋃

ξ∈ΞV
ξ

be a porosity-like relation on E, where each point-set relation Vξ satisfies (A1),
(A2), (A3), (A4), (A5), (D1) and (D2).
Then the σ-ideal I ⊂ K(E) of all compact σ-P-porous sets is Π11-complete. In

particular, I is coanalytic non-Borel.

Proof: According to Lemma 3.14 we have that I is Π11. According to the

dichotomy theorem (Theorem 3.6) we have that I is either Π11-complete or Gδ.
Assume that I is Gδ to the contradiction. The σ-ideal I contains all singletons
since E has no isolated point and (A4) holds for Vξ ’s. Applying Lemma 4.5 to
G := I, D := E we obtain that sup{rk(K); K ∈ I} = ω1. Lemma 5.2 gives
I \ I 6= ∅, a contradiction. �

In the sequel we will always use the above theorem together with Lemma 3.7,
which gives simple sufficient conditions for (D1) and (D2).

7. Applications to concrete porosities

Now we will apply our abstract Theorem 6.1 to σ-ideals of compact σ-〈g〉-
porous sets, σ-porous sets, σ-strongly porous sets, σ-symmetrically porous sets
and σ-strongly symmetrically porous sets.
First of all we recall definitions of the mentioned porosities.
We denote

G := {g : [0,+∞)→ [0,+∞); g(0) = 0, g(x) > x for every x > 0,

g is nondecreasing and continuous}.

The symbol gα, α ∈ R, stands for the function x 7→ αx, x ∈ [0,+∞].
Let X be a metric space, A ⊂ X , x ∈ X , g ∈ G and c > 0.
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We say that

• A is 〈g〉-porous at x if there exists a sequence of balls {B(xn, rn)}
∞
n=1 such

that x ∈ B(xn, g(rn)), limxn = x, B(xn, rn) ∩ A = ∅,
• A is c-porous at x if A is 〈gα〉-porous at x for α = 1/c,
• A is (ordinary) porous at x if A is d-porous at x for some d > 0,
• A is strongly porous at x if A is d-porous at x for every 0 < d < 1.

The point-set relations which correspond to 〈g〉-porosity, (ordinary) porosity
and strong porosity are denoted by Pg, Por and Pst, respectively.

Let A ⊂ R, x ∈ R and c > 0. We say that

• A is c-symmetrically porous at x, if there exists a sequence {B(xn, rn)}∞n=1
of balls in R such that limxn = x, x ∈ B(xn, rn/c) and (B(xn, rn)∪B(x+
(x − xn), rn)) ∩ A = ∅,

• A is symmetrically porous at x, if it is d-symmetrically porous at x for
some d > 0,

• A is strongly symmetrically porous at x if it is d-symmetrically porous at
x for every 0 < d < 1.

The point-set relations which correspond to symmetrical porosity and strong
symmetrical porosity are denoted by Psy and Pssy, respectively.

It is easy to see that Pg, Por, Pst, Psy and Pssy are porosity-like relations.

Our aim is to prove the following theorems.

Theorem 7.1. Let (E, ρ) be a nonempty separable locally compact metric space
without isolated points. Let Q be Pg (for some g ∈ G) or Por or Pst on E.

Then the σ-ideal I of all compact σ-Q-porous sets is Π11-complete, in particular
coanalytic non-Borel.

Theorem 7.2. The σ-ideal of all compact σ-symmetrically porous (σ-strongly
symmetrically porous, respectively) subsets of R is Π11-complete, in particular
coanalytic non-Borel.

To verify the property (A5) in concrete cases, we need the following lemma.

Lemma 7.3. Let g ∈ G. Let (E, ρ) be a locally compact metric space, K ∈
K∗(E) and let ε > 0. Then there exists a system S of open sets such that

(1)
⋃

S ⊂ B(K, ε),
(2) S is locally finite in E \ K,
(3) if J ⊂ E intersects each element of S, then K ∪ J is 〈g〉-porous at no
point of K.

Proof: We may assume that the set B(K, ε) is compact. Denote

Hn =
{

y ∈ E; ε2−(n+1) ≤ ρ(y, K) < ε2−n
}

, n ∈ N ∪ {0}.
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For each n ∈ N find 0 < δn < ε2−(n+1) so small that g(δn) < ε2−(n+1) and
choose a finite set Cn ⊂ Hn forming a δn/2-net of Hn (i.e. for every x ∈ Hn there
exists c ∈ Cn with ρ(x, c) < δn/2). Put

Sn := {B(c, δn/2); c ∈ Cn}, S :=
∞
⋃

n=1

Sn.

Using the triangle inequality we easily infer that
⋃

Sn ⊂ Hn−1 ∪ Hn ∪ Hn+1 for
every n ∈ N. This implies (1) and also (2). To check (3), suppose to the contrary
that J ⊂ E intersects each element of S but K∪J is 〈g〉-porous at a point z ∈ K.
Then there exists x ∈ B(z, ε/2) and r > 0 such that B(x, r) ∩ (K ∪ J) = ∅ and
z ∈ B(x, g(r)). Obviously there exist n ∈ N, c ∈ Cn and t ∈ J such that x ∈ Hn,
ρ(x, c) < δn/2 and ρ(t, c) < δn/2. Since t /∈ B(x, r), we have r < δn and therefore

g(r) < ε2−(n+1). Since x ∈ Hn, we obtain z /∈ B(x, g(r)), a contradiction. �

Proof of Theorem 7.1: The case Q = Pg.

Define point-set relations Rg
k, k ∈ N, on E by

R
g
k(x, A)

def
⇐⇒∃ y ∈ E ∃ r > 0 : ρ(x, y) < 1/k, ρ(x, y) < g(r), B(y, r) ∩ A = ∅.

Clearly Pg =
⋂∞

n=1

⋃∞
k=nR

g
k. We know that Pg satisfies (A1), (A2) and (A3);

since E has no isolated points we see that it satisfies also (A4). The condition
(A5) holds for Pg by Lemma 7.3. It is also clear that R

g
k satisfies (A1) and

(A3).
Since g is assumed to be continuous it is easy to observe that the condi-

tion B(y, r) ∩ A = ∅ in the definition of Rg
k can be replaced by the condition

ρ(B(y, r), A) > 0. Fixing y, r and k we have that the set

{(x, F ) ∈ E × Cb(E); ρ(x, y) < 1/k, ρ(x, y) < g(r), ρ(B(y, r), F ) > 0}

is open in the space E ×Cb(E). This and the above observation imply that R
g
k is

stable.
Lemma 3.7 shows that Pg satisfies (D1) and (D2). Consequently Theorem 6.1

applied to Ξ = {ξ} and P = Vξ = Pg gives Π
1
1-completeness of I.

The case Q = Por. Put Ξ = N \ {1} and Vξ := Pgξ
for ξ ∈ Ξ. The relation

Vξ satisfies (A1)–(A5), (D1) and (D2) according to the previous case. Clearly

Por =
⋃

ξ∈Ξ

Vξ .

Consequently Theorem 6.1 implies the desired result.
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The case Q = Pst.
We define point-set relations Rk on E by

Rk(x, A)⇔ ∃ y ∈ E ∃ r > 0 : ρ(x, y) < 1/k, ρ(x, y) < (1+1/k)r, B(y, r)∩A = ∅.

Clearly

Pst =
∞
⋂

k=1

Rk.

Since Rk = R
g
k for g = g(1+1/k), Rk’s are stable and satisfy (A1) and (A3).

Therefore Lemma 3.7 implies that Pst satisfies (D1) and (D2). The relation
Pst clearly satisfies (A1)–(A4). Since Pg2 satisfies (A5), the stronger relation
Pst satisfies (A5) as well (cf. Remark 2.6). Consequently Theorem 6.1 applied

to Ξ = {ξ} and P = Vξ = Pst gives Π
1
1-completeness of I. �

Proof of Theorem 7.2: The case Q = Psy. For α > 1 and k ∈ N, define
point-set relations Rα

k on R by

Rα
k (x, A)

def
⇐⇒∃ y ∈ R ∃ r > 0 : |x − y| < 1/k, |x− y| < αr,

((y − r, y + r) ∪ (2x − y − r, 2x − y + r)) ∩ A = ∅.

Put Ξ = N \ {1} and

Vξ :=
∞
⋂

n=1

∞
⋃

k=n

Rξ
k

for ξ ∈ Ξ. Clearly

Psy =
⋃

ξ∈Ξ

Vξ .

Each Rξ
k clearly satisfies (A1) and (A3). It is easy to prove that the relations

Rξ
k’s are stable (the proof is almost identical to the proof of the stability of

relations Rg
k above). Therefore Lemma 3.7 implies that each relation V

ξ satisfies

(D1) and (D2). Each relationVξ clearly satisfies (A1)–(A4). SincePgξ
satisfies

(A5), the stronger relation Vξ satisfies (A5) as well. Consequently Theorem 6.1
gives Π11-completeness of I.

The case Q = Pssy. For k ∈ N, put

R∗
k := R

α
k ,

where α := 1 + 1/k. It is easy to see that

Pssy =

∞
⋂

k=1

Rk.
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The relations R∗
k are stable and satisfy (A1) and (A3) according to the previous

case. Therefore Lemma 3.7 implies that Pssy satisfies (D1) and (D2). The
relation Pssy clearly satisfies (A1)–(A4). Since Psy satisfies (A5), the stronger
relationPssy satisfies (A5) as well. Consequently Theorem 6.1 applied to Ξ = {ξ}

and P = Vξ = Psy gives Π
1
1-completeness of I. �

8. The case of σ-ideals generated by closed sets

In this section we investigate the complexity of other σ-ideals which are related
to some porosity-like relations. Namely, we deal with σ-very porous sets and with
the σ-ideal of compact sets which can be covered by countably many closed P-
porous sets, where P is a porosity-like relation.
Note that in some articles (e.g. [Zam]) “σ-porous sets” are defined in such a

way that they coincide with the sets which can be covered by countably many of
(ordinary) porous closed sets.

Definition 8.1 ([KLW]). Let E be a metric space and let I ⊂ K(E) be a σ-ideal
of compact sets. We say that H ⊂ I is a basis of I if for every K ∈ I there exist
compact sets Kn ∈ H, n ∈ N, with K ⊂

⋃∞
n=1Kn.

Theorem 8.2 ([KLW]). Let E be a compact metric space and I ⊂ K(E) be
a σ-ideal of compact sets which has a hereditary Π11 basis H ⊂ K(E). Then I

is Π11.

Remark 8.3. The above theorem holds also for each separable complete metric
space E. Indeed, since the considered notions are topological (cf. Remark 3.1)
we may suppose that E is a Gδ subset of a compact metric space X (cf. [K1,
Theorem 4.14]). By Lemma 3.2(v) K(E) is a Gδ subset of K(X) and so H is a
Π11 subset of K(X). Thus I is Π

1
1 in K(X) by the above theorem; therefore I is

Π11 in K(E) as well. (See [K1, 14.4, 14.10].)

Lemma 8.4. Let E be a separable complete metric space and Ξ be a nonempty
countable set. Let P =

⋃

ξ∈ΞV
ξ be a porosity-like relation on E, where each

point-set relation Vξ satisfies (D2). Then the set

H = {K ∈ K(E); K is P-porous}

is Π11.

Proof: Denote

L(ξ) = {(x, K) ∈ E ×K(E); Vξ(x, K)}, ξ ∈ Ξ.

Thus for F ∈ K(E) we have

F ∈ H ⇔ ∀x ∈ E : x /∈ F ∨ ∃ ξ ∈ Ξ : (x, F ) ∈ L(ξ).
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This implies that

F ∈ K(E) \ H ⇔ ∃x ∈ E : x ∈ F & ∀ ξ ∈ Ξ : (x, F ) /∈ L(ξ).

It is sufficient to show that L(ξ) is Π11. Indeed, then the set {(x, K) ∈ E ×
K(E); x ∈ F & ∀ ξ ∈ Ξ : (x, F ) /∈ L(ξ)} is analytic and so K(E) \ H is also
analytic.

Fix ξ ∈ Ξ. We have

(x, F ) /∈ L(ξ)⇔

({x}, F ) ∈ {(L, K) ∈ K(E)×K(E); ∃O open, L ∩ O 6= ∅ : (¬Vξ)(L ∩ O, K)}.

The mapping (x, F ) 7→ ({x}, F ) from E × K(E) to K(E) × K(E) is continuous.
Now using (D2) (for G := E) we obtain that L(ξ) is Π11 and we are done. �

Theorem 8.5. Let E be a nonempty separable locally compact metric space
without isolated points and Ξ be a nonempty countable set. Let P =

⋃

ξ∈ΞV
ξ

be a porosity-like relation on E, where each point-set relation Vξ satisfies (A1),
(A2), (A3), (A4), (A5) and (D2). Then the σ-ideal I of all compact sets which
are countable unions of compact P-porous sets is Π11-complete.

Proof: The σ-ideal I has a Π11 basis (Lemma 8.4) and therefore I is Π
1
1 (The-

orem 8.2 and Remark 8.3).

According to the dichotomy theorem (Theorem 3.6) we obtain that I is either
Π11-complete or Gδ. Assume that I is Gδ to the contradiction. The σ-ideal I
contains all singletons by the condition (A4). Let rk be the rank related to the

relations Vξ , ξ ∈ Ξ. Using Lemma 4.5 we obtain that sup{rk(K); K ∈ I} = ω1.
Lemma 5.2 gives that I contains a non-σ-porous set. This is a contradiction since
each element of I is σ-P-porous. �

Definition 8.6. Let (X, ρ) be a metric space. We say that A ⊂ X is very porous
at x ∈ X if there exist c > 0 and r0 > 0 such that for every r ∈ (0, r0) there
exists y ∈ B(x, r) with B(y, cr) ∩ A = ∅. The corresponding point-set relation is
denoted by Pv.

Remark 8.7. It is clear that Pv is a porosity-like relation. It satisfies also (A4) in
all normed linear spaces, but not in general. In fact, there exists a nonempty met-
ric space M without isolated points such that each singleton is not very porous.
Indeed, putM := E{ 1

n+2
}, where E{ 1

n+2
} is the symmetric perfect set with dissec-

tion ratios { 1
n+2} (see [KL, pp. 87–88] for the definition). Then it is not difficult

to see that M is the desired space.



552 L. Zaj́ıček, M. Zelený

Theorem 8.8. Let (E, ρ) be a nonempty separable locally compact metric space
without isolated points. If Pv satisfies (A4) on E, then the σ-ideal I of all
compact σ-Pv-porous sets is Π

1
1-complete in K(E), in particular coanalytic non-

Borel.

To prove the last theorem we will use the following general theorem and Re-
mark 8.10. The definition of the Cantor-Bendixson rank rkH determined by a
given hereditary system of compact sets H can be found in [KL, pp. 197–198].

Theorem 8.9 ([KL, Theorem 6, p. 202]). Let E be a compact metric space, H be
a Borel hereditary subset of K(E) consisting of nowhere dense sets and I ⊂ K(E)
be a σ-ideal with the basisH. If every nonempty open subset of E containsK ∈ I
with rkH(K) > 1, then I is Π11-complete.

Remark 8.10. The above theorem holds also for each separable complete metric
space E. We may suppose that E is a dense Gδ subset of a compact metric
space X (cf. Remark 8.3). Each nonempty open subset O of X intersects E and
therefore there exists K ∈ I such that rkH(K) > 1 and K ⊂ O. Thus I is a
Π11-complete subset of K(X), in particular I 6= K(E). Therefore the set I is a Π11
subset of K(E). Suppose that Y is a Polish space and B ⊂ Y is Π11. Then there

exists a Borel mapping f : Y → K(X) with f−1(I) = B. Choose K0 ∈ K(E) \ I
and define a mapping g : K(X)→ K(E) by

g(K) =

{

ϕ−1(K) if K ∈ K(E);

ϕ−1(K0) if K ∈ K(X) \ K(E).

The mapping g is clearly Borel and we have g◦f : Y → K(E) and (g◦f)−1(I) = B.
This shows that I is a Π11-complete subset of K(E).

Proof of Theorem 8.8: Having in mind the last remark it is sufficient to check
that I satisfies the assumptions of Theorem 8.9.
The symbol Q+ stands for the set of positive rationals. Let D be a countable

dense subset of E. For c > 0 and r0 > 0 we define H(c, r0) ⊂ K(E) by

K ∈ H(c, r0)
def
⇐⇒

∀x ∈ D ∀ r ∈ Q+ ∩ (0, r0)∃ y ∈ D : B(y, cr) ∩ K = ∅ & y ∈ B(x, r).

The set H(r, c0) is obviously a Borel subset of K(E). Thus also the set

H :=
⋃

{H(c, r0); c ∈ Q+, r0 ∈ Q
+}

is Borel.
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Claim. The set H forms a basis of I.

Proof of Claim: It is obvious that H ⊂ I. Now take K ∈ I. We can write
K =

⋃∞
n=1An, where An is Pv-porous. We define

Sn(c, r0) = {x ∈ An; ∀ r ∈ (0, r0)∃ y ∈ B(x, r) : B(y, cr)∩An = ∅}, c, r0 ∈ Q+.

Clearly, An =
⋃

{Sn(c, r0); c ∈ Q+ ∩ (0, 1), r0 ∈ Q+}.

We show that Sn(c, r0) ∈ H(c/2, r0) for c ∈ Q+ ∩ (0, 1) and r0 ∈ Q+. Take

x ∈ D and r ∈ Q+ ∩ (0, r0). If B(x, r/2) ∩ Sn(c, r0) = ∅, then we put y = x.

If B(x, r/2) ∩ Sn(c, r0) 6= ∅, then there exists x̃ ∈ B(x, r/2) ∩ Sn(c, r0) and
y ∈ B(x̃, r/2) with B(y, cr/2)∩An = ∅. Thus B(y, cr/2)∩Sn(c, r0) = ∅ and also

B(y, cr/2) ∩ Sn(c, r0) = ∅. �

Thus H is a hereditary Borel basis of I. It is clear that each H ∈ H is nowhere
dense. If V ⊂ E is a nonempty open set, then proceeding similarly as in the proof
of Lemma 7.3 we find a compact set L ⊂ V such that L is countable and there is
x0 ∈ L, which is not a point of ordinary porosity of L. Since Pv satisfies (A4),
each singleton is Pv-porous and therefore L is a σ-Pv-porous set. For every open
neighbourhood O of x0 we have that L ∩ O is not in H, therefore rkH(L) > 1.
Applying Theorem 8.9 we obtain that I is Π11-complete. �
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[Za3] Zaj́ıček L., Products of non-σ-porous sets and Foran systems, Atti Sem. Mat. Fis. Univ.

Modena 44 (1996), 497–505.
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