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Non-existence of some canonical

constructions on connections

W.M. Mikulski

Abstract. For a vector bundle functor H : Mf → VB with the point property we
prove that H is product preserving if and only if for any m and n there is an FMm,n-
natural operator D transforming connections Γ on (m, n)-dimensional fibered manifolds
p : Y → M into connections D(Γ) on Hp : HY → HM . For a bundle functor E :

FMm,n → FM with some weak conditions we prove non-existence of FMm,n-natural
operatorsD transforming connections Γ on (m, n)-dimensional fibered manifolds Y → M

into connections D(Γ) on EY → M .
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0. Introduction

We recall that a (general) connection on a fibered manifold p : Y → M is a
smooth section Γ : Y → J1Y of the first jet prolongation of Y , which can be also
interpreted as the lifting map (denoted by the same symbol)

Γ : Y ×M TM → TY .

Let H be a bundle functor on the category of smooth manifolds and all smooth
maps and let Γ : Y → J1Y be a connection on the fibered manifold p : Y → M .
It is well known that if H preserves products, then Γ induces a connection HΓ
on Hp : HY → HM . More precisely, there is the canonical flow equivalence
THM = HTM and the lifting map of HΓ is of the form

HΓ : HY ×HM THM → THY .

We recall that the connection HΓ has been constructed by I. Kolář [2] in the case
of higher order velocities functors and then by J. Slovák [6] in the general case.
In the present paper we study the non-existence of natural operators D lifting

connections Γ on p : Y → M into connections D(Γ) on Hp : HY → HM for non-
product preserving vector bundle functors H :Mf → VB with the point property
H(pt) = pt (pt is a one-point manifold). If H is without the point property, then
such D can exist, see [1].
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In Section 1, we prove that a vector bundle functor H :Mf → VB with the
point property is product preserving if and only if for any m and n there is an
FMm,n-natural operator D transforming connections Γ on (m, n)-dimensional
fibered manifolds p : Y → M into connections D(Γ) on Hp : HY → HM .

In particular, if H = T (2) = (J2(., R)0)
∗ is the second order vector tangent

bundle functor, we get negative answer to the question (formulated by I. Kolář)
about the existence of natural operators D transforming connections Γ on fibered

manifolds p : Y → M into connections D(Γ) on T (2)p : T (2)Y → T (2)M .
In next sections, for a bundle functor E : FMm,n → FM with some weak

condition we prove the non-existence of FMm,n-natural operatorsD transforming
connections Γ on (m, n)-dimensional fibered manifolds Y → M into connections
D(Γ) on EY → M . This is a generalization of the result of [3, Proposition 45.9].

Unless otherwise specified, we use the terminology and notation from the
book [3]. All manifolds and maps are assumed to be of class C∞.

1. The case HY → HM

Let H : Mf  VB be a vector bundle functor with the point property. Let
m, n be natural numbers.
Define a natural bundle F :Mfm → FM by

FM = H(M × R
n) and Fϕ = H(ϕ × idRn)

for anMfm-object M and anMfm-morphism ϕ.
If pM : M × R

n → M is the obvious projection, then pM is a surjective sub-
mersion, so is H(pM ) ([3]) and hence GM = kerH(pM ) is a regular submanifold.
Define a natural bundle G :Mfm → FM by

GM = kerH(pM ) and Gϕ = the restriction of H(ϕ × idRn)

for anMfm-object M and anMfm-morphism ϕ.
We have anMfm-natural equivalence of natural bundles GM ×M HM=̃FM

given by
Φ(ω, ω̃) = ω +H(i

y
M )(ω̃),

where ω ∈ H(x,y)(M × R
n) ∩ GxM , ω̃ ∈ HxM , (x, y) ∈ M × R

n, + is the sum

in the vector space H(x,y)(M × R
n) and i

y
M
= (idM , y) : M → M × R

n. The

inverse isomorphism is given by Φ−1(ω) = (ω−H(i
y
M ◦pM )(ω), H(pM )(ω)), where

ω ∈ H(x,y)(M × R
n), (x, y) ∈ M × R

n.

Proposition 1. The natural bundle G is of order 0 if and only if H(Rm+n) =
H(Rm)×H(Rn) modulo a diffeomorphism, i.e. iff H preserves product in dimen-

sion m and n.

Proof: If the equality holds, then G0R
m = H(Rn) and then G is of order 0. If

G is of order 0, then G0(R
m) = H(t idRm × idRn)(G0(R

m)) for all t 6= 0. Putting
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t → 0 we obtainG0(R
m) = H({0}×R

n) = H(Rn). Then dim(H(0,0)(R
m×R

n)) =

dim(H0(R
m)) + dim(H0(R

n)), and Proposition 38.14 in [3] completes the proof.
�

Proposition 2. If G is not of order 0, then there is no FMm,n-natural operator

D transforming connections Γ on (m, n)-dimensional fibered manifolds p : Y → M

into connections D(Γ) on Hp : HY → HM .

Proof: Suppose that we have an FMm,n-natural operator D lifting connections
Γ on p : Y → M into connections D(Γ) : HY ×HM THM → THY on Hp :
HY → HM . Then we can define a natural operator A : TMfm

 TG by

A(X)ω = T pr1(D(ΓM )(ω,HX0x)),

where ω ∈ GxM , x ∈ M , 0x = 0 ∈ HxM , HX is the flow lifting of X to HM ,
pr1 : FM=̃GM ×M HM → GM is the obvious projection and ΓM is the trivial
connection on the trivial bundle pM :M × R

n → M .
Since HX0x depends only on Xx, A is of order 0.
Since D(ΓM ) is a lifting transformation, A(X) covers X . Hence

A(X) = GX + V(X),

where GX is the flow lifting of X to GM and V(X) is a vertical type operator
TMfm

 TG. Clearly, G is of order ord(G) ≥ 1 and not of order ord(G)− 1 and
V is of order ord(G)− 1, see Lemma 1 in [5] (or Appendix of the present paper).
So, A is not of order 0, which is a contradiction. �

Thus we have proved the following general fact.

Theorem 1. A vector bundle functor H : Mf → VB with the point property
is product preserving if and only if for any m and n there is an FMm,n-natural

operator D transforming connections Γ on (m, n)-dimensional fibered manifolds
p : Y → M into connections D(Γ) on Hp : HY → HM .

Any product-preserving vector bundle functor H : Mf → VB is equivalent

to some vector bundle functor T [s] : Mf → VB, T [s]M = TM ⊗ R
s, T [s]f =

Tf ⊗ idRs , see [3]. So, we have the following classification theorem.

Theorem 1’. Up to natural equivalence the T [s] for s = 0, 1, 2, . . . are all
vector bundle functors H : Mf → V B with the point property such that for
any m and n there is an FMm,n-natural operator D transforming connections

Γ on (m, n)-dimensional fibered manifolds p : Y → M into connections D(Γ) on
Hp : HY → HM .

Open problem: Our conjecture is that a bundle functor H :Mf → FM with
the point property is product preserving if and only if for any m and n there is an
FMm,n-natural operator D transforming connections Γ on (m, n)-dimensional
fibered manifolds p : Y → M into connections D(Γ) on Hp : HY → HM .



694 W.M. Mikulski

2. The case EY → M

Theorem 2. Let E : FMm,n → FM be a bundle functor such that the corre-

sponding natural bundle Ẽ :Mfm → FM, ẼM = E(M×R
n), Ẽϕ = E(ϕ×idRn)

is not of order 0. Then there is no FMm,n-natural operator D transforming con-

nections Γ on (m, n)-dimensional fibered manifolds Y → M into connectionsD(Γ)
on EY → M .

Proof: Suppose we have such an FMm,n-natural operator D(Γ). Then we can

define a natural operator A : TMfm
 T Ẽ by

A(X)ω = D(ΓM )(ω, Xx),

where ω ∈ ẼxM , x ∈ M , X is a vector field onM and ΓM is the trivial connection
on the trivial bundle pM :M × R

n → M .
Then A is of order 0 and A(X) covers X .
This is a contradiction by the same arguments as at the end of the proof of

Proposition 2. �

For E = J1 we reobtain Proposition 45.9 from [3] without the order assump-
tion.

Remark 2. The existence of a connection VFΓ on a vertical bundle V F Y → M

canonically depending on a connection Γ on Y → M ([4]) shows that the assump-
tion of Theorem 2 is essential.

3. The case EY → Y

Theorem 3. Let E : FMm,n → FM be a bundle functor such that the corre-

sponding natural bundle Ẽ :Mfm → FM, ẼM = E(M×R
n), Ẽϕ = E(ϕ×idRn)

is not of order 0. Then there is no FMm,n-natural operator D transforming con-

nections Γ on (m, n)-dimensional fibered manifolds Y → M into connectionsD(Γ)
on EY → Y .

Proof: Suppose that such D(Γ) exists. Composing D(Γ) with Γ we obtain a
connection on EY → M canonically dependent on Γ. This contradicts Theorem 2.

�

We remark that in [5] we proved the following theorem.

Theorem 4 ([5]). Let E : FMm,n → FM be a bundle functor such that the

corresponding natural bundle E : Mfn → FM, EN = E(Rm × N), Eϕ =
E(idRm ×ϕ) is not of order 0. Then there is no FMm,n-natural operator D

transforming connections Γ on (m, n)-dimensional fibered manifolds Y → M into

connections D(Γ) on EY → Y .
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4. Appendix

Because Lemma 1 from [5] is essential in the proof of Proposition 2, we cite
this lemma with the proof here for the reader’s convenience.

Lemma 1 ([5]). Let G :Mfn → FM be a natural bundle of order r ≥ 1. Then
any natural operator V : TMfn

 TG of vertical type is of order r − 1.

Proof: ([5]) Let X1, X2 ∈ X (N) be two vector fields with jr−1
x (X1) = jr−1

x (X2),
x ∈ N . Let w ∈ GxN . Because of the regularity of V we can assume that
X1(x) 6= 0. There is an x-preserving local diffeomorphism ϕ : N → N such that
jr
xϕ = id and ϕ∗X1 = X2 near x, see [3]. Then V(X2)(w) = V(ϕ∗X1)(w) =

TGx(ϕ) ◦ V(X1) ◦ Gx(ϕ
−1)(w) = V(X1)(w) since Gx(ϕ) = id as G is of order r

and jr
xϕ = id. �
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[4] Kolář I., Mikulski W.M., Natural lifting of connections to vertical bundles, Suppl. Rend.
Circolo Math. Palermo II 63 (2000), 97–102.

[5] Mikulski W.M., Non-existence of a connection on FY → Y canonically dependent on a

connection on Y → M , Arch. Math. Brno, to appear.
[6] Slovák J., Prolongations of connections and sprays with respect to Weil functors, Suppl.
Rend. Circ. Mat. Palermo, Serie II 14 (1987), 143–155.

Institute of Mathematics, Jagiellonian University, Reymonta 4, Kraków, Poland

E-mail : mikulski@im.uj.edu.pl

(Received March 3, 2003, revised June 18, 2003)


		webmaster@dml.cz
	2012-04-30T22:04:53+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




