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Characters of finite quasigroups VII:

permutation characters

K.W. Johnson, J.D.H. Smith

Abstract. Each homogeneous space of a quasigroup affords a representation of the Bose-
Mesner algebra of the association scheme given by the action of the multiplication group.
The homogeneous space is said to be faithful if the corresponding representation of the
Bose-Mesner algebra is faithful. In the group case, this definition agrees with the usual
concept of faithfulness for transitive permutation representations. A permutation char-
acter is associated with each quasigroup permutation representation, and specialises
appropriately for groups. However, in the quasigroup case the character of the homoge-
neous space determined by a subquasigroup need not be obtained by induction from the
trivial character on the subquasigroup. The number of orbits in a quasigroup permu-
tation representation is shown to be equal to the multiplicity with which its character
includes the trivial character.
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1. Introduction

Earlier papers of this series ([3]–[8]) extended character theory from finite
groups to finite quasigroups. The theory depends on the association scheme
given by the multiplicity-free action on a finite quasigroup Q of its multiplica-
tion group G. Recently, the concept of a permutation representation has been
extended from groups to quasigroups ([12]–[14]). The aim of the present paper
is to investigate some connections between quasigroup character theory and per-
mutation representations. Each homogeneous space of a quasigroup Q affords a
representation of the Bose-Mesner algebra EndCG CQ of the association scheme
given by the action ofG on Q (Theorem 3.2). The homogeneous space is said to be
faithful if the corresponding representation of the Bose-Mesner algebra is faithful
(Definition 4.1). If Q is a group, this definition agrees with the usual concept of
faithfulness for transitive permutation representations (Proposition 4.2). A per-
mutation character is associated with each homogeneous space (Definition 5.1)
or more general quasigroup permutation representation (Section 6). In the group
case, this character is shown to correspond to the usual definition of the char-
acter of a permutation representation of a group (Proposition 5.2). However,
an example (presented in Section 7) demonstrates that in the quasigroup case,
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the character of the homogeneous space determined by a subquasigroup need not
be obtained by induction from the trivial character on the subquasigroup (using
the quasigroup induction procedure described in [4]). The number of orbits in a
quasigroup permutation representation is shown to be equal to the multiplicity
with which its character includes the trivial or principal character (Theorem 6.1).

2. Quasigroup homogeneous spaces

The construction of a quasigroup homogeneous space for a finite quasigroup
[12], [13] is analogous to the transitive permutation representation of a group Q
(with stabiliser subgroup P ) on the homogeneous space P\Q = {Px | x ∈ Q}.
Let P be a subquasigroup of a finite quasigroup Q. Let L be the relative left
multiplication group of P in Q, the subgroup of the permutation group on the
set Q generated by left multiplications by elements of P . Let P\Q be the set
of orbits of the permutation group L on the set Q. Let AP be the incidence
matrix of the membership relation between the set Q and the set P\Q of subsets
of Q. Thus the entry of AP in the row labelled x and the column labelled yL, for
elements x, y of Q, is 1 if x ∈ yL and 0 otherwise. Let A+P be the pseudoinverse
of the matrix AP [10]. Its entry in the row labelled yL and column labelled x is

|yL|−1 if x ∈ yL and 0 otherwise [12, Theorem 2.1]. Note that A+PAP is just the
|P\Q| × |P\Q| identity matrix.
For each element q of Q, right multiplication in Q by q yields a permutation

of Q. Let RQ(q) be the corresponding permutation matrix. Define a new matrix

(2.1) RP\Q(q) = A
+
PRQ(q)AP .

In the group case, the matrix (2.1) is just the permutation matrix given by the
permutation P\Q→ P\Q;Px 7→ Pxq. In the general quasigroup case, the matrix
(2.1) is stochastic: each row consists of non-negative entries summing to 1. This
algebraic fact may be interpreted probabilistically: in the homogeneous space of
the quasigroup Q, each quasigroup element q yields a Markov chain on the state
space P\Q with transition matrix RP\Q(q) given by (2.1).

3. Representations of the centraliser ring

In this section, it is shown that each homogeneous space over a quasigroup Q
with finite cardinality n affords a representation of the Bose-Mesner algebra of the
association scheme given by the action of the multiplication group G of Q on Q.
Recall that the quasigroup conjugacy classes are defined to be the orbitals of G
on Q, i.e. the orbits C1, . . . , Cs of G on the G-set (Q,G)

2. Let these orbits have
respective cardinalities nn1, . . . , nns and incidence matrices A1, . . . ,As. Thus for
elements x, y of Q, the entry of the n× n matrix Ai in the row indexed by x and
the column indexed by y is 1 if (x, y) ∈ Ci, and 0 otherwise. The Bose-Mesner
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algebra is the linear span of the matricesA1, . . . ,As. For a finite setX , denote the
complex vector space spanned by X as CX , and identify the endomorphism ring
EndC CX of this vector space with the algebra of matrices of the endomorphisms
with respect to the basis X . Now the group algebra CG carries the multiplication
extended from the multiplication of G by linearity and distributivity. The action
Q×G→ Q of G on Q extends to an action CQ× CG→ CQ making CQ a right
CG-module, with corresponding representation

(3.1) λ : CG→ EndC CQ.

By Theorem 3.1 of [3], the Bose-Mesner algebra is the endomorphism ring
EndCG CQ of this module. In Wielandt’s terminology, it is the centraliser ring
V (G,Q) of G on Q.

Proposition 3.1 ([12, Theorem 4.2]). For a subquasigroup P of Q with relative
left multiplication group L in Q, one has

(3.2) APA
+
P = |L|−1

∑

l∈L

λ(l).

In particular, APA
+
P is an element of λ(CG).

Proof: To simplify notation, drop the suffix P from AP and A
+
P . For an el-

ement x of the basis Q of CQ, it must be shown that the endomorphisms on
each side of (3.2) have the same effect on x. Now xAA+ =

∑
y∈Q x(AA+)xy =

x
∑

X∈P\Q

∑
y∈QAxXA

+
Xy = x

∑
y∈xLAx,xLA

+
xL,y =

∑
y∈xL(xL)A

+
xL,y.

On the other hand,

|L|−1
∑

l∈L

xl = |L|−1 · (|L|/|xL|)
∑

y∈xL

y = |xL|−1
∑

y∈xL

y =
∑

y∈xL

(xL)A+xL,y

as well. �

The map defined in (3.3) below is a restriction of the linear map

ρP\Q : EndC CQ→ EndC CP\Q;C 7→ A+PCAP

of [12, (4.1)], [13, (1.2)].

Theorem 3.2. Let P be a subquasigroup of a finite quasigroup Q. Then the
map

(3.3) ρP\Q : EndCG CQ→ EndCP\Q ; B 7→ A+PBAP
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is a homomorphism of C-algebras.

Proof: Consider two elements B1, B2 of the Bose-Mesner algebra. The defini-
tion (3.3) gives

(3.4) ρP\Q(B1)ρP\Q(B2) = A
+
PB1APA

+
PB2AP .

By Proposition 3.1, the central product APA
+
P of the right hand side of (3.4) lies

in λ(CG), and so commutes with elements of the Bose-Mesner algebra such as B2.

Moreover, one has APA
+
PAP = AP as part of the specification of the pseudoin-

verse A+P of AP (cf. (2.2)(a) of [12]). The right hand side of (3.4) thus reduces to
ρP\Q(B1B2), as required to show that (3.3) gives a monoid homomorphism. �

Remark 3.3. Both the domain and the codomain of ρP\Q in (3.3) carry C
∗-

algebra structure, with involution given by conjugate transposition of matrices
with respect to the standard bases Q and P\Q. However, the map ρP\Q is not

necessarily a homomorphism of these C∗-algebra structures. In the example Q
of Section 7 below, the incidence matrix of the conjugacy class C3 is real and

symmetric, but its image under ρ0\Q is the asymmetric real matrix

[
0 2 0
1 0 1
0 2 0

]
.

4. Faithful homogeneous spaces

Definition 4.1. Let P be a subquasigroup of a finite quasigroup Q. The homo-
geneous space P\Q is said to be faithful if the corresponding map ρP\Q of (3.3)
injects.

Proposition 4.2. Let P be a subgroup of a finite group Q. Then the homoge-
neous space P\Q yields a faithful transitive permutation representation of Q if
and only if the homogeneous space is faithful in the quasigroup sense of Defini-

tion 4.1.

Proof: Suppose that P\Q yields a transitive permutation representation which
is not faithful. Let K be a non-identity group conjugacy class of Q contained in
the kernel of the group permutation representation. Define the element

C =
∑

q∈K

RQ(q)

of the Bose-Mesner algebra. (Cf. pp. 430–431 of [11] or the proof of Theorem 3.1
in [3].) Then ρP\Q(C) is a multiple of the identity in EndCP\Q, so that ρP\Q
cannot inject.
On the other hand, if P\Q does yield a faithful transitive permutation rep-

resentation, then the permutation matrices A+PRQ(q)AP of the elements q of Q
afford a faithful linear representation of the complex group algebra of Q. In this
case the map ρP\Q, as the restriction of the linear representation to the centre of
the group algebra, certainly injects. �
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Remark 4.3. As noted in the proof of Proposition 4.2, a homogeneous space
P\Q over a finite group Q is faithful (if and) only if the corresponding Markov
matrices (2.1) of different group elements differ. In the non-associative quasigroup
case, a homogeneous space P\Q may be faithful in the sense of Definition 4.1, and
yet have RP\Q(q1) = RP\Q(q2) for distinct elements q1, q2 of Q. For instance,

in the example Q of Section 7 below, the homogeneous space 0\Q is faithful, but
R0\Q(1) = R0\Q(3) according to (7.3).

5. Characters of homogeneous spaces

Definition 5.1. Let P be a subquasigroup of a quasigroup Q. Then the permu-
tation character (or just character) of the homogeneous space P\Q is the class
function πP\Q : Q×Q→ C taking the value

(5.1) n−1i Tr(A+PAiAP )

on each member of the i-th quasigroup conjugacy class Ci, for 1 ≤ i ≤ s.

In order to verify the consistency of Definition 5.1 with the usual definition
of a permutation character in the group case, recall that each quasigroup class
function θ : Q ×Q → C over a group Q determines a corresponding group class
function θ′ : Q→ C; q 7→ θ(1, q) (cf. p. 45 of [3]).

Proposition 5.2. Let P be a subgroup of a finite group Q. Then π′P\Q is the

permutation character of the transitive permutation representation of Q on P\Q.
Proof: For each element q of Q, the value of the permutation character on q is
the trace of the permutation matrix A+PRQ(q)AP . For each of the ni elements of
the i-th group conjugacy class of Q, these traces do not vary. Thus the value of
the permutation character at an element q of the i-th group conjugacy class Ki

may be written as

(5.2) n−1i

∑

q∈Ki

Tr[A+PRQ(q)AP ].

By pp. 430–431 of [11] or the proof of Theorem 3.1 in [3], the quantity (5.2) agrees
with (5.1). Finally, note that if q lies in the i-th group conjugacy class, then (1, q)
lies in the i-th quasigroup conjugacy class, as required to complete the proof of
the proposition. �

Remark 5.3. In the context of Proposition 5.2, the permutation character of
P\Q is obtained by inducing the principal character on the subgroup P up to the
full group Q. For a subquasigroup P of a non-associative quasigroup Q, however,
it need no longer be true that the permutation character of P\Q is obtained
in this way (using the general quasigroup induction procedure discussed in [4]).
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In the example Q of Section 7 below, for instance, the principal character on
the subquasigroup {0} induces up to the “regular” character π4 on Q, and this
of course differs from the permutation character π3 of the homogeneous space
0\Q. On the other hand, the character π2 of the homogeneous space {0, 2}\Q is
obtained by inducing up the principal character on the subquasigroup {0, 2}.

6. General permutation characters

So far, the discussion has been restricted to the homogeneous spaces of a finite
quasigroup Q. In [14], a definition of a general Q-set or permutation representa-
tion of Q was given. The natural definition lies within the context of coalgebras,
but for present purposes one may use an equivalent, less canonical but more ele-
mentary definition. A finite set X equipped with a Markov chain action for each
element of the quasigroupQ is called a Q-IFS (Section 3 of [14] — the name comes
from fractal geometry [1]). Consider a function f : X → Y between two such ob-
jects, with incidence matrix F . Then f is defined to be a Q-IFS-homomorphism
if for each element q of the quasigroup Q, its Markov matrices RX (q) on X and
RY (q) on Y are connected by the intertwining relation RX(q)F = FRY (q). The
sum X + Y of two Q-IFS X and Y is obtained by taking the disjoint union of
the underlying sets, equipped with direct sum Markov matrices RX (q)⊕ RY (q).
Then a general Q-set or permutation representation of Q may be defined as a
direct sum of a finite number of homomorphic images of homogeneous spaces
(Theorem 9.2 of [14]). The summands are known as the orbits of the permu-
tation representation. Of course, this all specialises appropriately to the group
case (Corollary 9.4 of [14]). In the group case, and in all the quasigroup cases
studied so far, all the homomorphic images of homogeneous spaces observed are
themselves homogeneous spaces. At any rate, for the image of a homogeneous
space P\Q given by a surjective function with incidence matrix F , one may ex-
tend Definition 5.1 by assigning value n−1i Tr(F+A+PAiAPF ) to each element of
the i-th quasigroup conjugacy class Ci. The permutation character of a general
permutation representation of Q is then defined to be the sum of the characters
of its orbits. By Corollary 9.4 of [14] and Proposition 5.2 above, the definition
is consistent with the usual definition for groups. The following result illustrates
the use of these general quasigroup permutation characters.

Theorem 6.1. Let X be a permutation representation of a finite quasigroup Q.
Then the number of orbits of X is given by the multiplicity of the principal
character ψ1 of Q in the permutation character of X .

Proof: It suffices to show that ψ1 occurs with multiplicity 1 in the character π
of the image of a homogeneous space P\Q under a surjective intertwining with
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incidence matrix F . Using the notation of [3], one has

n2〈π, ψ1〉 = π ∗ ψ1(Q̂)
=

∑

x∈Q

∑

y∈Q

π(x, y)ψ1(y, x)

=
∑

x∈Q

∑

y∈Q

π(x, y)

= n
s∑

i=1

Tr(F+A+PAiAPF )

= nTr(F+A+P JAPF )

= n2,

the latter equation following by Theorem 10.2 of [14]. Thus 〈π, φ1〉 = 1, as
required. �

7. An example

Consider the quasigroup Q = (Z4,−) of integers modulo 4 under subtraction.
(This is isomorphic to the opposite of the example presented in Section 4 of [3],
and has the same character table as that example.) Its subquasigroups Q, {0, 2},
{0} and ∅ yield homogeneous spaces with 1, 2, 3 and 4 elements respectively.
The 1-, 2-, and 4-element spaces are quite analogous to the homogeneous spaces
of the group Z4: in particular, the corresponding Markov matrices (2.1) are all
permutation matrices. On the other hand, the 3-element homogeneous space 0\Q
exhibits stochasticity. The orbits of the relative left multiplication group of {0}
in Q are {0}, {1, 3} and {2}, yielding

(7.1) A0 =





1 0 0
0 1 0
0 0 1
0 1 0





as the corresponding incidence matrix. The pseudoinverse of A0 is the matrix

(7.2) A+0 =




1 0 0 0
0 .5 0 .5
0 0 1 0



 .

From (2.1), one then obtains

(7.3) R0\Q(1) = R0\Q(3) =




0 1 0
.5 0 .5
0 1 0



 and R0\Q(2) =




0 0 1
0 1 0
1 0 0



 ,
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while R0\Q(0) is the 3× 3 identity matrix.
Table 1 shows the character table of (Z4,−) and the permutation characters of

its homogeneous spaces. The latter are indexed by the cardinalities of the spaces.
These permutation characters are also exhibited as linear combinations of the
basic characters ψ1, ψ2, ψ3. Note that the principal character ψ1 occurs exactly
once in each permutation character, as described by Theorem 5.1. From Table 1,
it may be seen that the inequivalent permutation representations {0, 2}\Q+∅\Q
and 0\Q+ 0\Q have the same permutation character π2 + π4 = 2π3.

Table 1. Basic and permutation characters of (Z4,−).

(Z4,−) C1 C2 C3
ψ1 1 1 1
ψ2 1 1 −1
ψ3

√
2 −√

2 0
ψ1 = π1 1 1 1

ψ1 + ψ2 = π2 2 2 0
ψ1 + ψ2 + ψ3/

√
2 = π3 3 1 0

ψ1 + ψ2 + ψ3 ·
√
2 = π4 4 0 0

Remark 7.1. Consider the conformal field theory describing the scaling limit
of the Ising model at the critical point (cf. Example 5.2.12 of [2] or [9]). This
theory has three physical representations ρ0, ρ1, ρ1/2, with respective statistical

dimensions 1, 1,
√
2 (Example 11.3.22 of [2] or (1.57) of [9]). These statistical

dimensions are the dimensions of the basic characters ψ1, ψ2, and ψ3 of (Z4,−).
Now the centraliser ring of (Z4,−) yields the fusion rules of the conformal field
theory under the assignments ρ0 7→ A1, ρ1 7→ A2, ρ1/2 7→ A3/

√
2. It is then of

interest to note that the Markov matrices R0\Q(1) and R0\Q(3) in the faithful

permutation representation 0\Q of Q = (Z4,−) have exactly the stochasticity of
the sites of the Ising model: a uniform two-way split between “spin up” and “spin
down”.
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