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The hyperbolic triangle centroid

Abraham A. Ungar

Abstract. Some gyrocommutative gyrogroups, also known as Bruck loops or K-loops,
admit scalar multiplication, turning themselves into gyrovector spaces. The latter, in
turn, form the setting for hyperbolic geometry just as vector spaces form the setting for
Euclidean geometry. In classical mechanics the centroid of a triangle in velocity space
is the velocity of the center of momentum of three massive objects with equal masses
located at the triangle vertices. Employing gyrovector space techniques we find in this
article that, in full analogy, the centroid of a hyperbolic triangle in relativity velocity
space is the velocity of the center of momentum of three massive objects with equal rest
masses located at the triangle vertices. Being guided by the relativistic mass correction
of moving massive objects in special relativity theory, we express the hyperbolic triangle

centroid in terms of the triangle vertices, resulting in a novel hyperbolic triangle centroid
identity that captures remarkable analogies with its Euclidean counterpart.

Keywords: loops, gyrogroups, gyrovector spaces, hyperbolic geometry, Einstein addition,
Möbius transformation

Classification: 20N05, 51P05, 83A05

1. Introduction

Einstein addition of relativistic velocities in special relativity theory and
Möbius addition in the theory of complex functions are isomorphic binary op-
erations in a grouplike structure that turns out to be a loop. Einstein addition is
straightforwardly generalized in Section 5 into a binary operation ⊕

E
in the open

unit ball B of any real inner product space V, giving rise to the Einstein groupoid
(B,⊕

E
), presented in Section 5. We recall that a groupoid is a nonempty set with

a binary operation. Möbius addition in the complex open unit disc is a Möbius
transformation of the disc without rotation. It is generalized in [21] into a binary
operation, ⊕

M
, in the open unit ball B of any real inner product space V. It gives

rise to the Möbius groupoid (B,⊕
M
), presented in Section 3.

Both Möbius addition and Einstein addition are neither commutative nor as-
sociative. Accordingly, the groupoids of Einstein and Möbius do not form groups.
These two groupoids share a common grouplike structure called a gyrocommuta-
tive gyrogroup. The latter turns out to be equivalent to the Bruck loop. Unlike the
Bruck loop definition [12], however, the gyrocommutative gyrogroup definition,
Section 2, emphasizes analogies with groups.
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Endowing a gyrocommutative gyrogroup with scalar multiplication and inner
product, one obtains a gyrovector space. Remarkably, gyrovector spaces form
the setting for hyperbolic geometry just as vector spaces form the setting for
Euclidean geometry. In particular, the resulting Möbius and Einstein gyrovector
spaces are studied in this article in order to set the stage for the study of hyperbolic
geometry analytically, allowing the hyperbolic triangle centroid to be determined
analytically in Sections 6 and 7. An earlier study of the hyperbolic triangle
centroid is found in [2].
Möbius gyrovector spaces form the setting for the Poincaré ball model of hy-

perbolic geometry, as shown in Sections 3 and 4. Similarly, Einstein gyrovector
spaces form the setting for the Beltrami (also known as Klein) ball model of
hyperbolic geometry, as shown in Sections 5 and 6.
The study of hyperbolic geometry in terms of its two isomorphic models of

Poincaré and Beltrami is particularly useful. On the one hand, the Poincaré
model is conformal, so that hyperbolic angles between intersecting geodesics have
the same measure as Euclidean angles between corresponding intersecting tangent
lines [23, Figure 6.14]. On the other hand, geodesics in the Beltrami model are
Euclidean straight lines, allowing one to employ linear algebra in the determina-
tion of points of intersection of geodesics. Indeed, in this article we use linear
algebra to obtain the triangle centroid as the point of intersection of the trian-
gle medians in the Beltrami model, Figure 3, and translate the result into the
Poincaré model, Figure 4.

2. Gyrogroups and gyrovector spaces

Definition 1 (Gyrogroups). The groupoid (G,⊕) is a gyrogroup if its binary
operation satisfies the following axioms. In G there is at least one element, 0,
called a left identity, satisfying

(G1) 0⊕a = a Left Identity

for all a ∈ G. There is an element 0 ∈ G satisfying axiom (G1) such that for each
a in G there is an element ⊖a in G, called a left inverse of a, with

(G2) ⊖a⊕a = 0. Left Inverse

Moreover, for any a, b, z ∈ G there exists a unique element gyr[a, b]z ∈ G such
that

(G3) a⊕(b⊕z) = (a⊕b)⊕ gyr[a, b]z. Left Gyroassociative Law

If gyr[a, b] denotes the map gyr[a, b] : G → G given by z 7→ gyr[a, b]z then

(G4) gyr[a, b] ∈ Aut(G,⊕) Gyroautomorphism

and gyr[a, b] is called the Thomas gyration, or the gyroautomorphism of G, ge-
nerated by a, b ∈ G. The operation gyr : G × G → Aut(G,⊕) is called the
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gyrooperation of G. Finally, the gyroautomorphism gyr[a, b] generated by any
a, b ∈ G satisfies

(G5) gyr[a, b] = gyr[a⊕b, b]. Left Loop Property

Various gyrogroup theorems are presented in [23]. Thus, for instance, any
gyrogroup possesses a right identity and a right inverse as well, which are identical
to their left counterparts. Furthermore, the resulting identity element and the
inverse of any given element are unique. In full analogy with groups, gyrogroups
are classified into gyrocommutative and non-gyrocommutative gyrogroups.

Definition 2 (Gyrocommutative gyrogroups). The gyrogroup (G,⊕) is gyrocom-
mutative if for all a, b ∈ G

(G6) a ⊕ b = gyr[a, b](b ⊕ a). Gyrocommutative Law

A gyrogroup is a loop [23], and the gyrocommutative gyrogroup is equivalent
to the Bruck loop. Following Ungar [12], [20], the latter is also known as a K-
loop. Furthermore, a gyrocommutative gyrogroup is also a special Bol loop that
possesses the automorphic inverse property, ⊖(a⊕b) = ⊖a⊖b [18], [10]. Gyrocom-
mutative gyrogroups result from transversals to subgroups, as shown in [8], [9].
Indeed, transversals to subgroups [4] and transversals in loops [14] are important
in loop theory.

Definition 3 (Inner product gyrovector spaces). A(n inner product) gyrovector
space (G,⊕,⊗) is a gyrocommutative gyrogroup (G,⊕) that admits:

(1) Inner product , ·, (i) which gives rise to a positive definite norm ‖v‖, that
is, ‖v‖2 = v·v, ‖v‖ ≥ 0 and ‖v‖ = 0 if and only if v = 0, |u·v| ≤ ‖u‖‖v‖;
and (ii) which is invariant under gyroautomorphisms, that is,

gyr[a,b]u· gyr[a,b]v = u·v

for all gyrovectors a,b,u,v ∈ G;
(2) Scalar multiplication, ⊗, satisfying the following properties. For all real
numbers r, r1, r2 ∈ R and all gyrovectors a,b,v ∈ G:

(V1) 1⊗v = v,
(V2) (r

1
+ r

2
)⊗v = r

1
⊗v⊕r

2
⊗v, Scalar Distributive Law

(V3) (r
1
r
2
)⊗v = r

1
⊗(r

2
⊗v), Scalar Associative Law

(V4)
|r|⊗v

‖r⊗v‖
=
v

‖v‖
, Scaling Property

(V5) gyr[a,b](r⊗v) = r⊗ gyr[a,b]v, Gyroautomorphism Property
(V6) gyr[r

1
⊗v, r

2
⊗v] = I; Identity Automorphism

(3) Real vector space structure (‖G‖,⊕,⊗) for the set ‖G‖ of one-dimensional
‘vectors’

‖G‖ = {±‖v‖ : v ∈ G} ⊂ R
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with vector addition ⊕ and scalar multiplication ⊗, such that for all r ∈ R

and u,v ∈ G,

(V7) ‖r⊗v‖ = |r|⊗‖v‖, Homogeneity Property
(V8) ‖u⊕v‖ ≤ ‖u‖⊕‖v‖. Gyrotriangle inequality

A gyrovector space G = (G,⊕,⊗) is a gyrometric space, with gyrometric given
by the distance function

(1) d(u,v) = ‖⊖u⊕v‖ = ‖v⊖u‖

satisfying the gyrotriangle inequality

(2) ‖⊖u⊕w‖ ≤ ‖⊖u⊕v‖⊕‖⊖v⊕w‖

verified below.
By a gyrogroup identity [23] we have

(3) ⊖u⊕w = (⊖u⊕v)⊕ gyr[u,⊖v](⊖v⊕w).

Hence, by the gyrotriangle inequality (V 8) we have

‖⊖u⊕w‖ = ‖(⊖u⊕v)⊕ gyr[u,⊖v](⊖v⊕w)‖

≤ ‖⊖u⊕v‖⊕‖ gyr[u,⊖v](⊖v⊕w)‖

= ‖⊖u⊕v‖⊕‖⊖v⊕w‖.

(4)

Our ambiguous use of ⊕ and ⊗, Definition 3, as operations in the gyrovector
space (G,⊕,⊗) and in the vector space (‖G‖,⊕,⊗) should raise no confusion,
since the sets in which these operations operate are always clear from the con-
text. The operations in the former are nonassociative-nondistributive gyrovector
space operations, and in the latter are associative-distributive vector space oper-
ations. Additionally, the gyro-addition ⊕ is gyrocommutative in the former and
commutative in the latter.
An inner product gyrovector space possesses a weak form of a distributive law,

(5) r⊗(r
1
⊗v⊕r

2
⊗v) = r⊗(r

1
⊗v)⊕r⊗(r

2
⊗v)

called the monodistributive law , which follows from (V 2) and (V 3),

r⊗(r1⊗v⊕r2⊗v) = r⊗{(r1 + r2)⊗v}

= (r(r1 + r2))⊗v

= (rr1 + rr2)⊗v

= (rr1)⊗v⊕(rr1)⊗v

= r⊗(r1⊗v)⊕r⊗(r1⊗v).

(6)
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3. Möbius gyrovector spaces

Definition 4 (Möbius addition). Let V be a real inner product space, and let
B = {v∈V : ‖v‖ < 1} be the open unit ball of V. Möbius addition ⊕

M
in the ball

B is a binary operation in B given by the equation

(7) u⊕
M
v =

(1 + 2u·v + ‖v‖2)u+ (1− ‖u‖2)v

1 + 2u·v + ‖u‖2‖v‖2

where · and ‖·‖ are the inner product and norm that the ball B inherits from its
space V.

To justify calling ⊕
M
in Definition 4 a Möbius addition we note that it is a

natural extension of a special Möbius transformation of the complex open unit
disc, as explained in [21], [23]. In earlier studies by Ahlfors [1] and Ratcliffe [17],
Möbius addition is treated as a hyperbolic translation. Möbius translation be-
came Möbius addition in [21] following the discovery of the analogies it shares,
as a gyrocommutative gyrogroup operation, with ordinary vector addition. Ap-
plications of Möbius addition and its hyperbolic geometry in quantum mechanics
are found in [3], [15], [16], [24].
The groupoid (B,⊕

M
) is a gyrocommutative gyrogroup, as demonstrated in

[23], called a Möbius gyrogroup. Furthermore, it admits scalar multiplication ⊗,
turning itself into the Möbius gyrovector space (B,⊕

M
,⊗).

Definition 5 (Möbius scalar multiplication). Let (B,⊕
M
) be a Möbius gyro-

group. The Möbius scalar multiplication r⊗v = v⊗r in B is given by the equation

r⊗v =
(1 + ‖v‖)r − (1− ‖v‖)r

(1 + ‖v‖)r + (1− ‖v‖)r
v

‖v‖

= tanh(r tanh−1 ‖v‖)
v

‖v‖

(8)

where r∈R, v∈B, v 6= 0; and r⊗0 = 0.

As an example we present the Möbius half,

(9) 1
2⊗v =

γv
1 + γv

v

where γv = (1 − ‖v‖2)−1/2. In accordance with the scalar associative law of
gyrovector spaces we have

2⊗(12⊗v) = 2⊗
γv
1 + γv

v

=
γv
1 + γv

v⊕
M

γv
1 + γv

v

= v.

(10)
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α

β

γ

a
‖A‖2 = cos α+cos(β+γ)

cos α+cos(β−γ)

α + β + γ < π b

‖B‖2 = cos β+cos(α+γ)
cos β+cos(α−γ)

c

‖C‖2 = cos γ+cos(α+β)
cos γ+cos(α−β)

A

B

C

A = ⊖b⊕c, a = ‖A‖

B = ⊖c⊕a, b = ‖B‖

C = ⊖a⊕b, c = ‖C‖

cosα =
⊖a⊕b

‖⊖a⊕b‖
·
⊖a⊕c

‖⊖a⊕c‖

Figure 1: A Möbius triangle∆abc in the Möbius gyrovector plane(B,⊕,⊗),⊕ = ⊕M

is shown. Its sides are formed by geodesic segments that linkits verticesa,b andc,
having the hyperbolic lengthsa, b and c. The cosine of its angles are given by an
identity that is fully analogous to its Euclidean counterpart. The Möbius gyrovector
plane forms the setting for the Poincaré disc model of hyperbolic geometry just as
the common vector plane forms the setting for the standard model of Euclidean plane
geometry [13],[23]. Unlike the Euclidean triangle, the sides of the hyperbolic triangle
are uniquely determined by its angles.

4. The Poincaré ball model of hyperbolic geometry

Möbius gyrovector spaces form the setting for the Poincaré ball model of hy-
perbolic geometry, as demonstrated in [13], [23], just as vector spaces form the
setting for the standard model of Euclidean geometry. Thus, the unique geodesic
passing through the points a,b ∈ B in a Möbius gyrovector space (B,⊕

M
,⊗) is

given by the equation

(11) a⊕
M
(⊖
M
a⊕

M
b)⊗t

with the real parameter t ∈ R. It passes through the point a at “time” t = 0
and, owing to the left cancellation law of gyrogroup theory, it passes through the
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point b at “time” t = 1. Several geodesics in the Poincaré disc model, generated
by (11), are shown in Figures 1, 2 and 4.

The
Hyperbolic Pythagorean

Theorem

a

⊕ = ⊕M b

c

A

B

a2⊕ b2 = c2
C

α

β

π/2

A = ⊖b⊕c, a = ‖A‖

B = ⊖c⊕a, b = ‖B‖

C = ⊖a⊕b, c = ‖C‖

Figure 2: The Hyperbolic Pythagorean Theorem in the Poincaré disc model of hyper-
bolic geometry that is, equivalently, in the Möbius gyrovector plane(B,⊕,⊗),⊕ = ⊕M

[22],[23].

The hyperbolic midpoint mP

ab
of a and b in the Poincaré model is obtained

from (11) by selecting t = 1/2. It is the midpoint in the sense that d(a,mP

ab
)

= d(b,mP

ab
) where d(a,b) is the hyperbolic distance function in the Poincaré

model, given by the equation d(a,b) = ‖a⊖
M
b‖.

The cosine of the hyperbolic angle generated by two geodesics passing, respec-
tively, through the points a,b and a, c in the Möbius gyrovector space (B,⊕

M
,⊗),

Figure 1, is given by the equation

(12) cosα =
⊖a⊕

M
b

‖⊖a⊕
M
b‖

·
⊖a⊕

M
c

‖⊖a⊕
M
c‖

in full analogy with its Euclidean counterpart.
Three geodesic segments that form a triangle, and the triangle angles in the

Möbius gyrovector plane are shown in Figure 1. The hyperbolic Pythagorean
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theorem in the Möbius gyrovector plane is shown in Figure 2. It shares visual
analogies with its Euclidean counterpart, demonstrating the union of hyperbolic
and Euclidean geometry [25]. The task we face in this article is to determine the
centroid of the hyperbolic triangle in Figure 1.

5. Einstein gyrovector spaces

Definition 6 (Einstein addition). Let V be a real inner product space, and let
B = {v∈V : ‖v‖ < 1} be the open unit ball of V. Einstein addition ⊕

E
in the ball

B is a binary operation in B given by the equation ([5], [6], [7], [19], [23], [3], [26])

(13) u⊕v =
1

1 + u·v

{

u+
1

γu
v +

γu
1 + γu

(u·v)u

}

where the vacuum speed of light is normalized to c = 1, where · and ‖·‖ are the
inner product and norm that the ball B inherits from its space V, and where γv
is the Lorentz factor of v,

(14) γv =
1

√

1− ‖v‖2
.

The groupoid (B,⊕
E
) is a gyrocommutative gyrogroup, as demonstrated in [23],

called an Einstein gyrogroup. Furthermore, it admits scalar multiplication ⊗,
turning itself into an Einstein gyrovector space (B,⊕

E
,⊗).

Definition 7 (Einstein scalar multiplication). Let (B,⊕
E
) be an Einstein gy-

rogroup. The Einstein scalar multiplication r⊗v = v⊗r in B is given by the
equation

r⊗v =
(1 + ‖v‖)r − (1− ‖v‖)r

(1 + ‖v‖)r + (1− ‖v‖)r
v

‖v‖

= tanh(r tanh−1 ‖v‖)
v

‖v‖

(15)

where r∈R, v∈B, v 6= 0; and r⊗0 = 0.

Useful identities that relate the Einstein scalar multiplication to the Lorentz
factor (14) are [23, Chapter 3]

(16) γr⊗v =
1

2
γr
v {(1 + ‖v‖)r + (1− ‖v‖)r}

and

(17) γr⊗vr⊗v =
1

2
γr
v {(1 + ‖v‖)r − (1− ‖v‖)r}

v

‖v‖
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for v 6= 0, of which the special case of r = 2 is of particular interest in this article,

(18) γ2⊗v = 2γ
2
v − 1

and

(19) γ2⊗v2⊗v = 2γ
2
vv.

Interestingly, the scalar multiplication that Möbius and Einstein addition admit
coincide. This is compatible with the fact that for parallel vectors in the ball,
Möbius addition and Einstein addition coincide as well.

6. The Beltrami ball model of hyperbolic geometry

Einstein gyrovector spaces form the setting for the Beltrami ball model of
hyperbolic geometry just as vector spaces form the setting for the standard model
of Euclidean geometry [23]. Thus, the unique geodesic passing through the points
a,b ∈ B in an Einstein gyrovector space (B,⊕

E
,⊗) is given by the equation

(20) a⊕
E
(⊖
E
a⊕

M
b)⊗t

with the real parameter t ∈ R. It passes through the point a at “time” t = 0
and, owing to the left cancellation law of gyrogroup theory, it passes through the
point b at “time” t = 1. Several geodesics in the Beltrami disc model, generated
by (20), are shown in Figure 3.
The hyperbolic midpoint mB

ab
of a and b in the Beltrami model is obtained

from (20) by selecting t = 1/2. It is the midpoint in the sense that d(a,mB

ab
)

= d(b,mB

ab
) where d(a,b) is the hyperbolic distance function in the Beltrami

model, given by the equation d(a,b) = ‖a⊖
E
b‖.

Interestingly, the hyperbolic midpointmB

ab
can be written in terms of ordinary,

rather than Einstein, vector addition as

(21) mB
uv = a⊕E(⊖Ea⊕Mb)⊗

1
2 =

γuu+ γvv

γu + γv
.

The derivation of (21) follows from [23, Equation 3.41] and [23, Equation 1.40].

The hyperbolic midpoint mB
uv, (21), in the Beltrami ball model of hyperbolic

geometry is interesting. It can be interpreted, Figure 3, as the Newtonian velocity
of the center of momentum of two objects with relativistically corrected masses
mγu and mγv, that move respectively with velocities u and v relative to some
inertial frame,

(22) mB

uv =
mγuu+mγvv

mγu +mγv
=

γuu+ γvv

γu + γv
.
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u, mγ
u

v, mγ
v

w, mγ
w

C
B
uvw

mB

uv

mB

uw

mB

vw

mB

uv
=

γ
u
u+γ

v
v

γ
u
+γ

v

mB

uw
=

γ
u
u+γ

w
w

γ
u
+γ

w

mB

vw
=

γ
v
v+γ

w
w

γ
v
+γ

w

C
B
uvw

=
γ
u
u+γ

v
v+γ

w
w

γ
u
+γ

v
+γ

w

Figure 3: Hyperbolic midpoints, medians and a centroid of a triangle and its sides in
the Beltrami model and its underlying Einstein gyrovector space. They possess a rela-
tivistic mechanical interpretation, analogous to the classical mechanical interpretation
of their Euclidean counterparts in [11],[26].

The two masses mγu and mγv in (22), shown in Figure 3, are just the common
relativistic masses of two objects with equal rest masses m and respective relative
velocities u and v.
Having identified the hyperbolic midpoint mB

uv, (21), with the Newtonian ve-
locity of the center of momentum of the two relativistically corrected masses,
mγu and mγv, (22), it is clear that the Newtonian velocity m

B
uvw of the center

of momentum of the three relativistically corrected masses mγu, mγv, and mγw,

(23) mB

uvw =
mγuu+mγvv +mγww

mγu +mγv +mγw
=

γuu+ γvv + γww

γu + γv + γw

lies on the median connecting the point mB
uv to the point w of triangle ∆uvw

of Figure 3. By symmetry considerations, the Newtonian velocity mB
uvw of the

center of momentum of the three relativistically corrected masses mγu, mγv, and
mγw lies on the other two hyperbolic medians of triangle ∆uvw as well. Hence,
the point mB

uvw coincides with the centroid of the hyperbolic triangle ∆uvw, as
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shown in Figure 3. Hence, by elementary linear algebra, the hyperbolic centroid
CB
uvw of the hyperbolic triangle ∆uvw in the Beltrami ball model of hyperbolic
geometry, Figure 3, is equal to the velocity mB

uvw in (23), that is,

(24) CB
uvw =

γuu+ γvv + γww

γu + γv + γw
.

Formalizing our result in (24), and noting that an Einstein gyrovector space
underlies the Beltrami ball model of hyperbolic geometry, we have the following

Theorem 8. Let a,b, c ∈ B be any three non-gyrocollinear points of a Beltrami

ball model, B, of hyperbolic geometry, where B is the ball of a real inner product

space V. The centroid CB
abc
of the hyperbolic triangle ∆abc in B is given by the

equation

(25) CB
avc =

γaa+ γ
b
v + γcc

γa + γ
b
+ γc

.

7. Triangle centroids in the Poincaré ball model of hyperbolic

geometry

We wish, in this section, to translate the expression (25) of the centroid of a
hyperbolic triangle in an Einstein gyrovector space and its associated Beltrami
ball model of hyperbolic geometry into an expression describing the centroid of a
hyperbolic triangle in a Möbius gyrovector space and its associated Poincaré ball
model of hyperbolic geometry.
Let Ge = (B,⊕

E
,⊗) and Gm = (B,⊕

M
,⊗) be, respectively, the Einstein and

the Möbius gyrovector spaces of the ball B of a real inner product space V. They
are gyrovector space isomorphic, with the isomorphism and its inverse isomor-
phism from Gm into Ge given by the equations [23]

ve = 2⊗vm,

vm =
1
2⊗ve,

(26)

ve ∈ Ge, vm ∈ Gm. Accordingly, the gyrogroup operations ⊕E and ⊕
M
in Ge

and Gm are related to each other by the equation

um⊕
M
vm =

1
2⊗(2⊗um⊕

E
2⊗vm),

ue⊕Eve = 2⊗(
1
2⊗ue⊕M

1
2⊗ve).

(27)

Following (26) and (18) we have

(28) γve
= γ2⊗vm

= 2γ2vm
− 1.
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Similarly, following (26) and (19) we have

(29) γve
ve = γ2⊗vm

2⊗vm = 2γ
2
vm
vm .

Hence, by (21), (28) and (29) we have

mB
ueve

=
γue
ue + γve

ve

γue
+ γve

=
2γ2um

um + 2γ
2
vm
vm

(2γ2um
− 1) + (2γ2vm

− 1)

=
γ2um
um + γ2vm

vm

γ2um
+ γ2vm

− 1

(30)

so that

mP

umvm
= 12⊗m

B
ueve

= 12⊗
γ2um
um + γ2vm

vm

γ2um
+ γ2vm

− 1
.

(31)

We have thus obtained in (31) the following

Theorem 9. Let a,b ∈ B be any two points of a Poincaré ball model, B, of

hyperbolic geometry, where B is the ball of a real inner product space V. The

midpoint mP

ab
of the hyperbolic segment ab joining the points a and b in B is

given by the equation

(32) mP

ab
= 12⊗

γ2aa+ γ2
b
b

γ2a + γ2
b
− 1

.

In the same way we obtained (30) and (31) it follows, by (25), (28) and (29),
that

CB
uevewe

=
γue
ue + γve

ve + γwe
we

γue
+ γve

+ γwe

=
2γ2um

um + 2γ
2
vm
vm + 2γ

2
wm
wm

(2γ2um
− 1) + (2γ2vm

− 1) + (2γ2wm
− 1)

=
γ2um
um + γ2vm

vm + γ2wm
wm

γ2um
+ γ2vm

+ γ2wm
− 32

(33)
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uvw
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uv
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uw
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vw
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uv
= 1
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γ2

u
u+γ2

v
v

γ2
u
+γ2

v
−1

mP

uw
= 1

2⊗
γ2

u
u+γ2

w
w

γ2
u
+γ2
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= 1

2⊗
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v
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γ2
v
+γ2

w
−1

C
P
uvw

= 1
2⊗

γ2

u
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v
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w
w

γ2
u
+γ2

v
+γ2

w
−

3

2

Figure 4: A triangle∆uvw in the Poincaré disc model of hyperbolic geometry is
shown with the midpointsmP

uv
, mP

uw
andmP

vw
of its sides, and its medians, and

centroidCP
uvw

.

so that

CP
umvmwm

= 12⊗CB
uevewe

= 12⊗
γ2um
um + γ2vm

vm + γ2wm
wm

γ2um
+ γ2vm

+ γ2wm
− 32

(34)

for any um,vm,wm ∈ Gm.
We have thus obtained in (34) the following

Theorem 10. Let a,b, c ∈ B be any three non-gyrocollinear points of a Poincaré

ball model, B, of hyperbolic geometry, where B is the ball of a real inner product

space V. The centroid CP
abc
of the hyperbolic triangle ∆abc in B is given by the

equation

(35) CP
abc
= 12⊗

γ2aa+ γ2
b
b+ γ2cc

γ2a + γ2
b
+ γ2c −

3
2

.
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The hyperbolic triangle centroid was also studied by O. Bottema [2]. The
centroid of the hyperbolic triangle ∆abc in the Poincaré disc model, as determined
by (35), is shown in Figure 4.
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