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A bifurcation theorem for noncoercive integral functionals

Francesca Faraci

Abstract. In this paper we study the existence of critical points for noncoercive func-
tionals, whose principal part has a degenerate coerciveness. A bifurcation result at zero
for the associated differential operator is established.

Keywords: critical points, noncoercive and nondifferentiable functionals, bifurcation
points

Classification: 35B32, 35B38

1. Introduction and statement of the results

This paper is motivated by a recent study of Arcoya, Boccardo and Orsina
(see [1]) on the existence of critical points of noncoercive functionals whose prin-
cipal part has a degenerate coerciveness of the kind

∫

Ω
a(x, v)|∇v|2, v ∈ H10 (Ω)

where a : Ω× R → R satisfies the following assumption

c1

(1 + |s|)2α ≤ a(x, s) ≤ c2

for almost every x ∈ Ω and all s ∈ R.
They deal with the existence of critical points of functionals whose model is

J(v) =
1

2

∫

Ω
a(x, v)|∇v|2 − 1

m

∫

Ω
|v|m.

This functional, which is well defined thanks to the Sobolev embeddings if m ≤ 2∗
(where 2∗ = 2N

N−2 ), and weakly lower semicontinuous as it follows from the De

Giorgi Theorem, is however non coercive on H10 (Ω) (see Example 3.3. of [2]). The

lack of coerciveness implies that J may not attain its infimum in H10 (Ω).
Another difficulty arising in this problem is due to the differentiability of the

functional in a proper subspace of H10 (Ω), that is H10 (Ω) ∩ L∞(Ω).
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In order to prove existence and boundedness of minima the authors of [1] need a
suitable relationship involving m and α, since the behaviour of J may be different
depending on the assumption on m.
In the present paper we deal with the functional

Jλ(v) =
1

2

∫

Ω
a(x, v)|∇v|2 − λ

∫

Ω
F (x, v)

depending on a positive parameter λ. We will prove the existence of critical points
of Jλ for small λ, just assuming a suitable behaviour of the nonlinearity F at zero
without any growth assumption at infinity. In particular, it is possible to show
that λ = 0 is a bifurcation point of J ′

λ in H10 (Ω), that is (0, 0) belongs to the

closure in R × H10 (Ω) of the set

{(λ, u) ∈ R × (H10 (Ω) ∩ L∞(Ω)) : u is a nontrivial critical point of Jλ}.
Let us state the precise assumptions on the functional Jλ that we will study

below.
Here and in the sequel Ω is a bounded open subset of R

N , N > 2. Let
a : Ω × R → R be a Carathéodory function, differentiable in R for almost every
x ∈ Ω, satisfying the following assumption

(1)
c1

(1 + |s|)2α ≤ a(x, s) ≤ c2

for almost every x ∈ Ω, for all s ∈ R, where c1, c2 are positive constants and

(2) 0 ≤ α <
N

2N − 2
(note that N

2N−2 ∈ ]12 , 1[ for every N > 2).

Let f : Ω × R → R be a Carathéodory function, such that f(x, 0) = 0 for
almost every x in Ω and F is defined by F (x, v) =

∫ v
0 f(x, s) ds. We introduce,

for v ∈ H10 (Ω), the functional

Jλ(v) =
1

2

∫

Ω
a(x, v)|∇v|2 − λ

∫

Ω
F (x, v).

If f satisfies the growth condition

(3) |f(x, s)| ≤ c3(1 + |s|m−1)

with 1 < m < 2∗, then it is well known that Jλ is well defined in H10 (Ω) and

Gateaux differentiable in H10 (Ω) ∩ L∞(Ω) (but not in H10 (Ω)!), with derivative
given by

〈J ′
λ(v), w〉 =

∫

Ω
a(x, v)∇v∇w +

∫

Ω
as(x, v)|∇v|2w − λ

∫

Ω
f(x, v)w

for every v and w in H10 (Ω) ∩ L∞(Ω).
Our results are
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Theorem 1. Let us assume that there exists δ > 1 such that

sup
0≤s≤δ

sup
x∈Ω

|f(x, s)| < +∞.

Moreover, suppose that there are a non-empty open set D ⊆ Ω and a set B ⊆ D

of positive measure such that

(4) lim sup
ξ→0+

infx∈B

∫ ξ
0 f(x, s) ds

|ξ|2 = +∞, lim inf
ξ→0+

infx∈D

∫ ξ
0 f(x, s) ds

|ξ|2 > −∞.

Then, there exists a λ∗ > 0 such that for all 0 < λ < λ∗, Jλ has at least a

nonnegative critical point uλ in H10 (Ω) ∩ L∞(Ω) \ {0}. Moreover one has

lim
λ→0+

‖uλ‖H10 (Ω)
= 0

and the function λ → Jλ(uλ) is negative and decreasing in ]0, λ
∗[ .

Theorem 2. Let us assume that there exists δ > 1 such that

sup
−δ≤s≤0

sup
x∈Ω

|f(x, s)| < +∞

and

(5) lim sup
ξ→0−

infx∈B

∫ ξ
0 f(x, s) ds

|ξ|2 = +∞, lim inf
ξ→0−

infx∈D

∫ ξ
0 f(x, s) ds

|ξ|2 > −∞

with B and D as in Theorem 1.
Then, there exists a λ∗ > 0 such that for all 0 < λ < λ∗, Jλ has at least a non

positive critical point vλ in H10 (Ω) ∩ L∞(Ω) \ {0}. Moreover one has

lim
λ→0+

‖vλ‖H10 (Ω)
= 0

and the function λ → Jλ(vλ) is negative and decreasing in ]0, λ
∗[ .

Theorem 3. Let us assume that there exists δ > 1 such that

sup
|s|≤δ

sup
x∈Ω

|f(x, s)| < +∞

and

lim sup
ξ→0+

infx∈B

∫ ξ
0 f(x, s) ds

|ξ|2 = lim sup
ξ→0−

infx∈B

∫ ξ
0 f(x, s) ds

|ξ|2 = +∞,
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(6) lim inf
ξ→0

infx∈D

∫ ξ
0 f(x, s) ds

|ξ|2 > −∞

with B and D as in Theorem 1.
Then, there exists a λ∗ > 0 such that for all 0 < λ < λ∗, Jλ has at least

two nontrivial critical points uλ and vλ in H10 (Ω) ∩ L∞(Ω) \ {0} where uλ is

nonnegative and vλ is nonpositive. Moreover, one has

lim
λ→0+

‖uλ‖H10 (Ω)
= lim

λ→0+
‖vλ‖H10 (Ω)

= 0

and the functions λ → Jλ(uλ) and λ → Jλ(vλ) are negative and decreasing in
]0, λ∗[ .

We notice that in our results no growth assumption on f is required.
At first we assumed (3) with 1 < m < 2∗(1− α). Under this assumption and (4)
or (5) we were able to prove (even in the case m = 2(1 − α)) the existence of a
nontrivial minimum for Jλ in H10 (Ω) ∩ L∞(Ω). The boundedness of the solution
induced us to check whether the growth assumption could be removed, by means
of a suitable truncation of the nonlinearity.
We would like to mention briefly the assumptions made in [1].
In Theorem 1.1 of [1] the authors assume (3) with 1 < m < 2(1 − α) and a

stricter assumption at zero on the nonlinearity, that is

(7) lim
s→0

F (x, s)

s2
= +∞

uniformly with respect to x ∈ Ω. If 2 < m < 2∗(1 − α) the authors need further
assumptions on F (see Theorem 1.2 of [1]) in order to apply a suitable Mountain
Pass Theorem for nondifferentiable functionals, namely

(8) lim
s→0

F (x, s)

s2
= 0, lim

s→+∞

F (x, s)

s2
= +∞

uniformly with respect to x ∈ Ω, and f(x, s)s ≥ rF (x, s) for some r > 2 and
all |s| ≥ s0. We notice that our existence theorems hold under rather different
hypotheses on f if in these results we replace the nonlinearity f with λf .
Let us recall finally Theorem 1.3 of [1] where a positive parameter appears:

Theorem ([1, Theorem 1.3]). Let f satisfy (3) with 2(1−α) < m < min{2, 2∗(1−
α)} and (7).
Then, there exists a positive λ0 such that the functional Jλ has at least a non

trivial critical point in H10 (Ω) ∩ L∞(Ω) for every 0 < λ < λ0.

It is easily seen that our Theorem 3 improves the above result: we are able to
find under weakened assumptions two solutions of opposite sign and to give some
more information on the energy functional.

We conclude this section with some examples.
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Example 1 (of a function satisfying Theorem 3 but not condition (7) appearing
in Theorems 1.1 and 1.3 of [1]).

Let m ∈]32 , 2[ and

f(x, s) = f(s) =







m|s|m−2s

(

sin 1√
|s|
+ 1

)

− 12 |s|
m− 5

2 s cos 1√
|s|

if s 6= 0,

0 if s = 0.

We notice that, if s 6= 0,
F (x, s)

s2
= |s|m−2

(

sin
1
√

|s|
+ 1

)

and so our condition (6) holds while the limit of the quotient as s → 0 does not
exist.

Example 2 (of a function satisfying Theorem 3, but not Theorem 1.2 of [1]).
Let r ∈]1, 2[ , m > 1, and f(x, s) = f(s) = |s|r−2s+ |s|m−2s. It is immediately

seen that f satisfies condition (6) but it does not verify assumptions (8).

Notations. In the following we will use the following functions

Tk(s) = max{−k,min{k, s}},
and the following sets

Ak = {x ∈ Ω : |u(x)| ≥ k}
with k > 0. By C, C1, C2, . . . we will denote various positive constants whose
values may vary from line to line.

2. Proofs

Our main tools are a recent variational principle by B. Ricceri that allows us
to prove the existence of a minimum without requiring the coerciveness of the
energy functional on the space and some regularity results that allow us to prove
the boundedness of the minimum. For the convenience of the reader, we recall
their statements:

Theorem A ([6, Theorem 2.5]). Let X be a reflexive real Banach space, and

let Φ,Ψ : X → R be two sequentially weakly lower semicontinuous functionals.

Assume also that Ψ is (strongly) continuous and satisfies lim‖x‖→+∞Ψ(x) = +∞.
For each ρ > infX Ψ, put

ϕ(ρ) = inf
x∈Ψ−1(]−∞,ρ[)

Φ(x) − inf
(Ψ−1(]−∞,ρ[))w

Φ

ρ −Ψ(x) ,

where (Ψ−1(]−∞, ρ[))w is the closure in the weak topology.
Then, for each ρ > infX Ψ and each λ > ϕ(ρ), the restriction of the functional
Φ + λΨ to Ψ−1(]−∞, ρ[) has a global minimum.
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Lemma B ([3, Lemma 2.1]). Let w be a function in W
1,σ
0 (Ω) with σ < N such

that for k ≥ k0 > 0,
∫

Ak

|∇w|σ ≤ ckθσ|Ak|
σ

σ∗
+ε,

where ε, c > 0, 0 ≤ θ < 1, σ∗ = σN
N−σ . Then the norm of w in L∞(Ω) is bounded

by a constant depending on c, θ, σ, N , ε, k0, |Ω|.

Lemma C ([5, Lemma 5.2]). Let w be a function in W
1,σ
0 (Ω) with σ < N such

that for k ≥ k0 > 0,
∫

Ak

|∇w|σ ≤ ckσ|Ak|1−
σ
N
+ε,

where ε, c > 0. Then the norm of w in L∞(Ω) is bounded by a constant depending
on c, σ, N , ε, k0, ‖w‖L1(Ak0

).

The following lemma will be useful in the sequel.

Lemma 4. If α ∈]0, N
2N−2 [ and

(9) q =
2N(1− α)

N − 2α

then, for every u ∈ W
1,q
0 (Ω) such that a(x, u(x))|∇u(x)|2 belongs to L1(Ω), one

has
∫

Ω
|∇u|q ≤ C

(∫

Ω
a(x, u)|∇u|2

)
q

2
(∫

Ω
(1 + |u|)q∗

)1− q

2

.

Proof: See [1]. �

The technique used in the proof of our results is analogous to the one used in [1]:
we extend our functional to a larger space where assumptions of Theorem A are
satisfied.

Proof of Theorem 1: Let us introduce the following functions

f̃(x, s) =











0 if s < 0,

f(x, s) if 0 ≤ s ≤ δ,

f(x, δ) if s > δ,

ã(x, s) =

{

a(x, 0) if s < 0,

a(x, s) if s ≥ 0.

Clearly f̃ is a Carathéodory function, satisfying condition (4) and

|f̃(x, s)| ≤ L ≡ sup
0≤s≤δ

sup
x∈Ω

|f(x, s)|
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for every x ∈ Ω and s ∈ R; ã is differentiable in R for almost every x in Ω,
satisfying (1) and (2).

Let q be as in Lemma 4. We notice that 1 < q < 2. In W
1,q
0 (Ω) we introduce

the following functionals

Ψ(u) =







1

2

∫

Ω
ã(x, u)|∇u|2 if

∫

Ω ã(x, u)|∇u|2 < +∞,

+∞ otherwise,

and

Φ(u) = −
∫

Ω
F̃ (x, u)

where F̃ (x, u) =
∫ u
0 f̃(x, s)ds. It is easily seen that Ψ is continuous in W

1,q
0 (Ω),

while the weak lower semicontinuity of the same functional on W
1,q
0 (Ω) is a con-

sequence of the De Giorgi Theorem ([4]). Moreover, Ψ is coercive on W
1,q
0 (Ω):

reasoning as in [1], let u ∈ W
1,q
0 (Ω), such that Ψ(u) is finite. Hence, using

Lemma 4 and Poincaré inequality, one has

∫

Ω
|∇u|q ≤ CΨ(u)

q

2

(∫

Ω
(1 + |u|)q∗

)1− q

2

≤ CΨ(u)
q

2



1 +

(∫

Ω
|∇u|q

)
q∗

q





(1− q

2
)

≤ CΨ(u)
q

2



1 +

(∫

Ω
|∇u|q

)
q∗

q
(1− q

2
)


 .

The coerciveness of Ψ in W
1,q
0 (Ω) follows from

q∗

q (1−
q
2 ) = α < 1.

In a standard way it is shown that Φ is weakly lower semicontinuous on

W
1,q
0 (Ω). Thus, we can apply Theorem A with X = W

1,q
0 (Ω): let ρ̃ > 0 =

inf
W
1,q
0 (Ω)

Ψ such that ϕ(ρ̃) > 0. Put λ0 = min{ 1
ϕ(ρ̃)

, 1}. For every λ ∈]0, λ0[ ,
the restriction of J̃λ = Ψ+ λΦ to Ψ−1]−∞, ρ̃[, has a global minimum, say uλ.
We are going to prove now that uλ is different from zero.

Let us prove that

(10) lim inf
‖u‖→0

Φ(u)

Ψ(u)
= −∞ .

Thanks to our assumptions we can fix a sequence {ξk} of positive numbers con-
verging to zero and two constants σ, and Γ with σ > 0 such that

lim
k→+∞

infx∈B

∫ ξk

0 f̃(x, s)ds

|ξk|2
= +∞



450 F. Faraci

and

inf
x∈D

∫ ξ

0
f̃(x, s)ds ≥ Γ|ξ|2

for all ξ ∈ [0, σ]. Next, fix a set C ⊂ B of positive measure. It is possible to
construct a function v ∈ H10 (Ω) such that v(x) ∈ [0, 1] for all x ∈ Ω, v(x) = 1 for
all x ∈ C, and v(x) = 0 for all x ∈ Ω \ D.
Let Q > 0, and choose T such that

Q <
T |C|+ Γ

∫

D\C |v|2
c2
2

∫

Ω |∇v|2 .

Then, there is ν ∈ N such that ξk < σ and

inf
x∈B

∫ ξk

0
f̃(x, s)ds ≥ T |ξk|2

for all k > ν. For k > ν, one has

(11)

−Φ(ξkv)

Ψ(ξkv)
≥
∫

C

(

∫ ξk

0 f̃(x, s) ds
)

dx+
∫

D\C

(

∫ ξkv(x)
0 f̃(x, s) ds

)

dx

c2
2 ξ2

k

∫

Ω |∇v|2

≥
T |C|+ Γ

∫

D\C |v|2
c2
2

∫

Ω |∇v|2 > Q.

From (11), clearly (10) follows. Hence, there is a sequence {wk} in W
1,q
0 (Ω)

converging to zero, such that for k large enough we have wk ∈ Ψ−1(] − ∞, ρ̃[),
and

Ψ(wk) + λΦ(wk) < 0.

Since uλ is a global minimum of the restriction of Ψ+ λΦ to Ψ−1(]−∞, ρ̃[), it is

proved that J̃λ(uλ) < 0.

Our next step consists in proving that uλ belongs to L∞(Ω).

Let k ≥ 1. It is easily seen that Tk(uλ) belongs toW
1,q
0 (Ω) and that Ψ(Tk(uλ)) <

ρ̃. Hence, J̃λ(uλ) ≤ J̃λ(Tk(uλ)). This means that, if A
λ
k = {x ∈ Ω : |uλ(x)| ≥ k},

∫

Aλ
k

ã(x, uλ)|∇uλ|2 ≤ 2λ

∫

Aλ
k

[F̃ (x, uλ)− F̃ (x, Tk(uλ))]

≤ 2λ

∫

Aλ
k

[|F̃ (x, uλ)|+ |F̃ (x, Tk(uλ))|]

≤ Cλ

(

∫

Aλ
k

|uλ|+ k|Aλ
k |
)
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≤ Cλ|Aλ
k |
1− 1

q∗

(

∫

Aλ
k

|uλ|q
∗

) 1
q∗

+ Cλk|Aλ
k |

≤ Cλ|Aλ
k |
1− 1

q∗

(

∫

Aλ
k

|∇uλ|q
) 1

q

+ Cλk|Aλ
k |.

Now, since q∗

q (1−
q
2 ) = α,

(12)

∫

Aλ
k

|∇uλ|q =
∫

Aλ
k

|∇uλ|q
(1 + |uλ|)αq

(1 + |uλ|)αq

≤
(

∫

Aλ
k

|∇uλ|2
(1 + |uλ|)2α

)
q

2
(

∫

Aλ
k

(1 + |uλ|)q
∗

)1− q

2

≤ C

(

∫

Aλ
k

ã(x, uλ)|∇uλ|2
)

q

2
(

∫

Aλ
k

|uλ|q
∗

)1− q

2

≤ C

(

∫

Aλ
k

ã(x, uλ)|∇uλ|2
)

q

2
(

∫

Aλ
k

|∇uλ|q
)α

≤ Cλ
q

2 |Aλ
k |

q

2
(1− 1

q∗
)

(

∫

Aλ
k

|∇uλ|q
)α+ 1

2

+ Cλ
q

2 k
q

2 |Aλ
k |

q

2

(

∫

Aλ
k

|∇uλ|q
)α

.

Let us suppose first that α < 1
2 .

Dividing both members by
(

∫

Aλ
k
|∇uλ|q

)α
and taking the power 1

1−α , we finally

obtain

∫

Aλ
k

|∇uλ|q ≤ Cλ
q

2(1−α) |Aλ
k |

q

2(1−α)
(1− 1

q∗
)

(

∫

Aλ
k

|∇uλ|q
)

1
2(1−α)

+ Cλ
q

2(1−α) k
q

2(1−α) |Aλ
k |

q

2(1−α)

≤ 1

2(1− α)

∫

Aλ
k

|∇uλ|q + Cλ
q

1−2α |Aλ
k |

q

1−2α
(1− 1

q∗
)

+ Cλ
q

2(1−α) k
q

2(1−α) |Aλ
k |

q

2(1−α)
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as it is easily seen applying Young inequality. Hence,

(13)

∫

Aλ
k

|∇uλ|q ≤ Cλ
q

1−2α |Aλ
k |

q

1−2α
(1− 1

q∗
)

+ Cλ
q

2(1−α) k
q

2(1−α) |Aλ
k |

q

2(1−α) .

Now, it is easily seen that there exists a λ∗ < λ0 such that for every k ≥ 1 and
0 < λ < λ∗ one has |Aλ

k | ≤ 1. We notice that Aλ
k ⊆ Aλ

1 for every λ < λ0 and

so it is enough to prove that |Aλ
1 | ≤ 1 for every λ < λ∗, by the monotonicity of

Lebesgue’s measure.
One has

∫

Ω
|∇uλ|q ≤ CΨ(uλ)

q

2

(

1 +

(
∫

Ω
|∇uλ|q

)α)

≤ CΨ(uλ)
q

2 + CΨ(uλ)
q

2

(∫

Ω
|∇uλ|q

)α

≤ CΨ(uλ)
q

2 + CΨ(uλ)
q

2(1−α) + α

∫

Ω
|∇uλ|q

and so
∫

Ω
|∇uλ|q ≤ CΨ(uλ)

q

2 + CΨ(uλ)
q

2(1−α) .

From the coerciveness of Ψ and the localization of the solutions given by The-
orem A, i.e. Ψ(uλ) < ρ̃, it follows that the set {uλ : λ ∈]0, λ0[} is bounded in
W
1,q
0 (Ω).
Thus, applying Poincaré inequality we have:

Ψ(uλ) < λ

∫

Ω
F̃ (x, uλ) ≤ λC‖uλ‖L1(Ω)

≤ λC‖uλ‖Lq∗(Ω) ≤ λC‖uλ‖W
1,q
0 (Ω)

≤ λC.

Let us suppose that there exists a sequence λn of positive numbers converging

to zero, such that |Aλn

1 | > 1. Hence, from the above computations, we find out
that uλn

(eventually passing to a subsequence) converges in measure to zero, i.e.

for every ε, η > 0 there exists ν ∈ N such that for every n > ν |Aλn
η | < ε.

Choosing η = 1 and ε = 1 we deduce the existence of ν1 such that |Aλn

1 | < 1 for
every n > ν1 and our claim follows.
From (13) we deduce that

∫

Aλ
k

|∇uλ|q ≤ Cλ
q

2(1−α) k
q

2(1−α) |Aλ
k |

q

2(1−α) .
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We can apply then Lemma B with σ = q, θ = 1
2(1−α)

(that is less than 1 in

according to our assumptions) and ε = q
N(1−α)

.

In particular, there exists C1 that does not depend on λ such that |Aλ
k∗ | = 0 with

k∗ = 1 +C1λ
1

2(1−α) , i.e. ‖uλ‖L∞(Ω) ≤ k∗. By definition of k∗, for λ smaller than

a suitable positive number that we still call λ∗, we have k∗ ≤ δ.

Let now α ≥ 1
2 .

We estimate now the right hand side of (12) in the following way:

∫

Aλ
k

|∇uλ|q ≤ Cλ
q

2 |Aλ
k |

q

2
(1− 1

q∗
)

(

∫

Aλ
k

|∇uλ|q
)α− 1

2 ∫

Aλ
k

|∇uλ|q

+ Cλ
q

2 k
q

2 |Aλ
k |

q

2

(

∫

Aλ
k

|∇uλ|q
)α

.

Reasoning as above, in both cases α = 12 , α > 1
2 it is possible to find a λ∗ < λ0

such that for every 0 < λ < λ∗

Cλ
q

2 |Aλ
k |

q

2
(1− 1

q∗
)

(

∫

Aλ
k

|∇uλ|q
)α− 1

2

<
1

2
.

Then (12) becomes

∫

Aλ
k

|∇uλ|q ≤ Cλ
q

2 k
q

2 |Aλ
k |

q

2

(

∫

Aλ
k

|∇uλ|q
)α

≤ Cλ
q

2(1−α) k
q

2(1−α) |Aλ
k |

q

2(1−α) + α

∫

Aλ
k

|∇uλ|q

applying again Young inequality. Finally we have

(14)

∫

Aλ
k

|∇uλ|q ≤ Cλ
q

2(1−α) k
q

2(1−α) |Aλ
k |

q

2(1−α) .

If α = 12 , (14) reads as follows

(15)

∫

Aλ
k

|∇uλ|q ≤ Cλqkq|Aλ
k |q.

If α > 1
2 , one has

kq∗ ≤ 1

|Aλ
k
|

∫

Aλ
k

kq∗ ≤ 1

|Aλ
k
|

∫

Aλ
k

|uλ|q
∗ ≤ C1

|Aλ
k
|
.
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Hence, from (14)

(16)

∫

Aλ
k

|∇uλ|q ≤ Cλ
q

2(1−α) k
q( 1
2(1−α)

−1)
kq|Aλ

k |
q

2(1−α)

≤ Cλ
q

2(1−α) kq|Aλ
k |

q

2(1−α)
− q

q∗
( 1
2(1−α)

−1)
.

We are ready to apply Lemma C to both (15), (16) with σ = q, ε = q+ q
N − 1

and ε = q
2(1−α)

(1 − 1
q∗ ) respectively. (We notice that the constant given by

Lemma C depends on the norm of uλ in L1(Aλ
k), but it is possible to estimate it

removing the dependance on uλ).

In particular, there exist constants C2 and C3 not depending on λ such that

‖uλ‖L∞(Ω) ≤ 1 + C2λ
N
2 and ‖uλ‖L∞(Ω) ≤ 1 + C3λ

q

2ε respectively. Hence, in

both cases it is possible to find a positive value of λ, still denoted by λ∗ such that
‖uλ‖L∞(Ω) ≤ δ. It is proved that uλ belongs to L∞(Ω).

This implies that uλ also belongs to H10 (Ω) since

∫

Ω
|∇uλ|2 ≤ (1 + ‖uλ‖L∞(Ω))

2α
∫

Ω

|∇uλ|2
(1 + |uλ|)2α

≤ C(1 + ‖uλ‖L∞(Ω))
2αΨ(uλ)

≤ λC(1 + ‖uλ‖L∞(Ω))
2α‖uλ‖L∞(Ω).

We claim that uλ ≥ 0. Indeed if the set B = {x ∈ Ω : uλ(x) < 0} has positive
measure, then the restriction of uλ to B belongs to H10 (B). Moreover one has
that

J̃ ′
λ(uλ)(w) =

∫

B
ã(x, uλ)∇uλ∇w +

∫

B
ãu(x, uλ)|∇uλ|2w

− λ

∫

B
f̃(x, uλ)w = 0

for every w ∈ H10 (B) ∩ L∞(Ω). Choosing w = uλ, we have

∫

B
ã(x, uλ)|∇uλ|2 = 0

that implies uλ = 0 in H10 (B), that is an absurd.

We have proved that 0 ≤ uλ(x) ≤ δ for almost every x ∈ Ω and every 0 < λ <

λ∗ and it is clear that Jλ(uλ) < 0.



A bifurcation theorem for noncoercive integral functionals 455

Hence, it is immediately seen that uλ is a critical point of Jλ:

0 = J̃ ′
λ(uλ)(w) =

∫

Ω
ã(x, uλ)∇uλ∇w +

∫

Ω
ãu(x, uλ)|∇uλ|2w

− λ

∫

Ω
f̃(x, uλ)w

=

∫

Ω
a(x, uλ)∇uλ∇w +

∫

Ω
au(x, uλ)|∇uλ|2w

− λ

∫

Ω
f(x, uλ)w = J ′

λ(uλ)(w)

for every w ∈ H10 (Ω) ∩ L∞(Ω). We point out that from

∫

Ω
|∇uλ|2 ≤ (1 + ‖uλ‖L∞(Ω))

2αΨ(uλ),

it follows that limλ→0 ‖uλ‖H10 (Ω)
= 0. Finally, if 0 < λ1 < λ2 < λ∗, let

mλ1 = Φ(uλ1) +
1

λ1
Ψ(uλ1) = inf

v∈Ψ−1]−∞,ρ̃[

(

Φ(v) +
1

λ1
Ψ(v)

)

and

mλ2 = Φ(uλ2) +
1

λ2
Ψ(uλ2) = inf

v∈Ψ−1]−∞,ρ̃[

(

Φ(v) +
1

λ2
Ψ(v)

)

;

one has

Jλ1(uλ1) = λ1mλ1 > λ2mλ1 ≥ λ2mλ2 = Jλ2(uλ2).

Hence, the function λ → Jλ(uλ) is decreasing in ]0, λ
∗[ and the proof is complete.

�

Proof of Theorem 2: It is analogous to the proof of Theorem 1 with functions

f̄(x, s) =











f(x,−δ) if s < −δ,

f(x, s) if − δ ≤ s ≤ 0,
0 if s > 0,

ā(x, s) =

{

a(x, s) if s < 0,

a(x, 0) if s ≥ 0.

�



456 F. Faraci

Proof of Theorem 3: It is a combination of the proofs of the previous theo-
rems. �

Remark. It is worth noticing that in general J̃λ is not coercive.

For instance, let 12 < α < N
2N−2 , r < 2, f(x, u) = ur−1 if 0 ≤ u ≤ δ, a(x, u) =

1
(1+|u|)2α

.

Let us choose v ∈ H10 (Ω) such that ess inf v > 0. If τ > δ
ess inf v , then

J̃λ(τv) =
τ2

2

∫

Ω

|∇v|2
(1 + τv)2α

− λ

∫

Ω

∫ τv

0
f̃(x, s) ds

=
τ2(1−α)

2

∫

Ω

|∇v|2
( 1τ + v)2α

− λ

∫

Ω

[

∫ δ

0
f̃(x, s) ds+

∫ τv

δ
f̃(x, s)ds

]

=
τ2(1−α)

2

∫

Ω

|∇v|2
( 1τ + v)2α

− λ

∫

Ω

[

δr

r
+ δr−1(τv − δ)

]

=
τ2(1−α)

2

∫

Ω

|∇v|2
( 1τ + v)2α

+ λ

(

1− 1
r

)

δr|Ω| − λτδr−1
∫

Ω
v.

Since α > 1
2 , it is immediately seen that 2(1−α) < 1 and so the left hand side of

the previous inequality goes to -∞ as τ tends to +∞.
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