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Orientations and 3-colourings of graphs

Vincent Chouinard-Prévost, Alexandre Côté, Claude Tardif

Abstract. We provide the list of all paths with at most 16 arcs with the property that

if a graph G admits an orientation ~G such that one of the paths in our list admits no

homomorphism to ~G, then G is 3-colourable.
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1. Introduction

Let ~Pn denote the directed path with vertices 0, 1, . . . , n and arcs (0, 1), (1, 2),
. . . , (n−1, n). One well-known result on graph colourings states that if a graph G

admits an acyclic orientation ~G containing no copy of ~Pn, then G is n-colourable.
It seems to have been discovered independently by Gallai [1], Hasse [2], Roy [5] and
possibly others. In terms of homomorphisms, the result can be stated as follows:

If there is no homomorphism from ~Pn to ~G, then G is n-colourable. In fact, a little

more can be said: The absence of homomorphism from ~Pn to ~G implies that there

exists a homomorphism from ~G to the transitive tournament ~Tn on n vertices;
the n-colouring of G can then be recovered from this homomorphism. This is an

example of a “homomorphism duality” between ~Pn and ~Tn. More generally, the
following holds:

Theorem 1 ([3]). For every directed tree ~T , there exists a directed graph ~D~T

such that for every directed graph ~G, there exists a homomorphism from ~G to
~D~T
if and only if there is no homomorphism from ~T to ~G.

Thus, if for some directed tree ~T we know that χ( ~D~T
) ≤ n, we get the following

variation of the Gallai-Hasse-Roy theorem:

Let G be a graph which admits an orientation ~G such that there is no

homomorphism from ~T to ~G. Then χ(G) ≤ n.

We will call a path ~T an n-colourability certificate if χ( ~D~T
) ≤ n. In particular,

the following is known:
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Theorem 2 ([4]). For integers k, n such that 2 ≤ k ≤ n, let ~Pk,n denote the

directed path with k forward edges followed by one backward edge and n+ 2− k

forward edges. Then ~Pk,n is an n-colourability certificate.

For k = 2 or n, this gives a stronger test than the Hasse-Gallai-Roy theorem;
the other tests are independent. It would be interesting to obtain a general
characterisation of the n-colourability certificates. So far, the results of Theorem 2
are the only ones available in this direction. In this note, we present the results
of a computer search for the 3-colourability certificates with at most 16 arcs, in
the hope that it will lead to further theoretical development in the field.

2. The results

We will use binary notation to represent paths, a 0 denoting a backward arc,

and a 1 a forward arc. Thus ~P3,3 and ~P2,3 are represented respectively by 111011

and 110111. If there exists a homomorphism from the path ~T to the path ~T ′,

then there also exist a homomorphism from ~D~T
to ~D~T ′

. Thus if ~T ′ is an n-

colourability certificate, then so is ~T . In listing the 3-colourability certificates
with at most 16 arcs, we need only to list those which are maximal with respect
to the homomorphism order, that is, those who do not admit homomorphisms to
other paths in the list.

In [4], the dual ~D~T
of a tree ~T is characterized as follows: The vertices of ~D~T

are the functions from the vertex set of ~T to the arc set of ~T such that f(u) is

incident to u for all u. There is an arc from f to g in ~D~T
if for every arc (u, v) of ~T ,

we have f(u) 6= (u, v) or g(v) 6= (u, v) (or both). Thus for paths ~T with up to 16

arcs, ~D~T
can have as many as 215 vertices. Švejdarová [6] proved that apart from

the isolated vertices, ~D~T
has only one connected component. We can of course

remove all the isolated vertices, along with the vertices which are “dominated”
in the sense that their in-neighbourhood and out-neighbourhood are contained it

those of other vertices. In this way it is generally possible to dismantle ~D~T
down

to a size which can be managed by a graph colouring program.

There are 216 strings of zeroes and ones which correspond to paths with 16 arcs.
However most paths admit two encodings, obtained respectively by reading it from

left to right and from right to left. Moreover every path ~T admits an “inverse”
~T−1 obtained by reversing the orientation of every arc; ~D~T−1

is then obtained by

reversing the arcs of ~D~T
. Therefore χ( ~D~T−1

) = χ( ~D~T
), hence ~T−1 belongs to our

list if and only if ~T does. The task of filtering through the remaining candidates
is still considerable, but it is possible to reduce it repeatedly by removing strings
containing substrings such as 1111, 1110111 and others, which correspond to
paths whose dual is known not to be 3-colourable. We eventually obtained the
list presented in the following table.
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Paths Number of vertices in the dual
00010100100, 11101011011 20
00010010100, 11101101011 13
00100010100, 11011101011 15

The maximal 3-colouring certificates with at most 16 arcs

These paths each consist of a copy of ~P3 and two copies of ~P2, joined together
by a fence of length 1 and a fence of length 3 in all possible ways. Thus our
family has a nice structure, and perhaps the most surprising fact is that all the
maximal 3-colouring certificates with at most 16 arcs have exactly 11 arcs. Thus
there is some hope that a nice characterisation of the n-colouring certificates may
be found.

For the moment, it is not known whether a 3-colouring certificate can contain

more than one copy of ~P3. In this direction we are able to prove negative results

concerning two families of paths. Let ~F1,n denote the path 11101010 . . .010111

(with n zeroes) consisting of two copies of ~Pn joined by a “fence”. Similarly, let
~F2,n denote the path 1110011001100 . . .001100111 (with 2n zeroes).

Proposition 3. None of the paths ~F1,n, ~F2,n, n ≥ 1 are 3-colouring certificates.

Proof: We will show that for every path ~F1,n, ~F2,n, there exists a 4-chromatic

oriented graph ~G such that there is no homomorphism from ~F1,n or ~F2,n to ~G. For
m ≥ 1, let Am be the graph with vertex set {0, 1, . . . , 6m+2} and edges [i−1, i],
i = 1, . . . , 6m + 2 and [i − 1, i + 1], i = 1, . . . , 6m + 1. Then Am is uniquely
3-colourable; we fix the 3-colouring c : Am 7→ {0, 1, 2} defined by c(i) = imod 3,

and we give an orientation ~Am to Am by pointing each edge towards its endpoint

with the largest colour. We then add a vertex t to ~Am, along with the arcs

(0, t), (t, 6m+2), to get a new oriented graph ~Bm. Note that ~Bm is also uniquely
3-colourable, with c(t) = 1; in particular, c(t) = c(3m+ 1); independently of the
labels of the colours.

The oriented graph ~Gm is obtained from two copies ~B′
m, ~B′′

m of ~Bm, by
identifying the vertices 3m+1′ and 3m+1′′ and adding the arc (t′, t′′). We then

have χ(~Gm) = 4; and the only copy of ~P3 contained in ~Gm is the one spanned
by the vertices 0′, t′, t′′, 6m + 2′′. However any fence of type 01010 . . .010 or

001100 . . .001100 joining 6m + 2′′ to 0′ in ~Gm must pass through the identified
vertex 6m+ 1′ = 6m+ 1′′, hence have at least as many vertices as the diameter

of ~Am, which is roughly 3m+ 1. Thus for any fixed n, there exists an integer m

such that there is no homomorphism from ~F1,n or ~F2,n to ~Gm. �
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3. Algorithmic considerations

The verification that there is no homomorphism from a path ~T = x1x2 . . . xn

to an oriented graph ~G amounts to (boolean) matrix multiplication: Let A be the

adjacency matrix of ~G. Consider the product M =
∏n

i=1Mi, where Mi is A if

xi = 1 and AT if xi = 0. Then M = 0 if and only if there is no homomorphism

from ~T to ~G. Of course, with large paths or families of paths, a substantial amount
of time may be saved by storing subproducts that will be used repeatedly. Thus, it
is possible to implement quick n-colourability tests using n-colouring certificates.

Of course, the question as to whether such an implementation would be worth
the while depends on the strength of the n-colourability certificates that can
be characterized. It is unlikely that a perfectly reliable family of tests can be
characterized, since 3-colouring is an NP-complete problem. However, even a
lower reliability could be useful for practical purposes, and intriguing from a
theoretical point of view.

We found it interesting to submit our small family of paths to some tests to see
how reliable it was. The input graphs were subgraphs of the cartesian product
G × H , where G is the Petersen graph and H is the graph obtained from the
9-cycle by adding edges between vertices with a common neighbour. That is, the
vertices of G × H are the couples (u, v) with u ∈ V (G) and v ∈ V (H), and the
edges of G × H are the pairs [(u, v), (u′, v′)] such that u = u′ and [v, v′] ∈ E(H)
or [u, u′] ∈ E(G) and v = v′. Then G×H is 3-colourable, but its 3-colourings are
highly constrained, since H is uniquely 3-colourable and G has few 3-colourings.
Thus the greedy algorithm seldom succeeds in 3-colouring it.

For our first test, we selected subgraphs of G×H and oriented them as follows:
starting from a random ordering x1, x2, . . . x90 of the vertices ofG×H , we coloured
them using the greedy algorithm until we reached a first vertex xk which needed
a fourth colour. We then took the subgraph X of G×H induced by {x1, . . . , xk},
and oriented it by pointing each edge towards its endpoint with the largest colour.

Because of the vertex xk, ~X necessarily contains a copy of ~P3 hence the original
Gallai-Hasse-Roy fails to prove that X is 3-colourable. In 100000 instances, at
least one of our 3-colouring certificates proved that X was 3-colourable 30% of
the time, and 1.5% of the time one of the 3-colouring certificates with eleven
arcs detected 3-colourability while none of the 3-colouring certificates with six
arcs did. Individually, the 3-colouring certificates with eleven arcs each detected
3-colourability in 10% to 25% of the cases. The two paths 00100010100 and
11011101011 were the most efficient, each detecting 3-colourability in 25% of the
cases. However, every time one of these two paths detected 3-colourability, at
least one other path also detected 3-colourability. Every other path with 11 arcs
was sometimes alone in detecting 3-colourability.

This behaviour of the paths 00100010100 and 11011101011 prompted us to do
a second test. It was very much like the first, except that the greedy colouring
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proceeded until we reached a second vertex that could not be coloured with the
first three colours. This time, in 100000 instances, the performance of our 3-
colouring certificates dropped to 4.8%, and 1.2% of the time one of the 3-colouring
certificates with eleven arcs detected 3-colourability while none of the 3-colouring
certificates with six arcs did. Each path detected 3-colourability in 0.5% to 3.5%
of the cases, and this time each path with 11 arcs was sometimes alone in detecting
3-colourability.
It is interesting to note that while the reliability of our family of 3-colouring

certificates decreased considerably in the second test, the relative efficiency of the
paths with 11 arcs increased notably when compared to that of the paths with 6
arcs. In the case of general graphs, the reliability of our family of certificates is
probably much lower still, but the relative increase indicates that it is probably
worth the while to seek larger families of n-colourability certificates.
Now, any colouring algorithm derived from a finite family of n-colourability cer-

tificates can be made constructive: For any tree ~T , there is a polynomial algorithm

which finds a homomorphism from ~G to ~D~T
whenever there is no homomorphism

from ~T to ~G. Therefore it suffices to store an n-colouring of ~D~T
to derive an

n-colouring of ~G. This situation would change if one could find an infinite family
of n-colouring certificates. On one hand the n-colouring tests derived from this
family could be much more reliable, but the n-colouring tests derived from this
family would no longer be necessarily constructive.
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