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Equality of two diffeomorphism
invariant Colombeau algebras

JIRf JELINEK

Abstract. The two diffeomorphism invariant algebras introduced in Grosser M., Far-
kas E., Kunziger M., Steinbauer R., On the foundations of nonlinear generalized func-
tions I, II, Mem. Amer. Math. Soc. 153 (2001), no. 729, 93 pp., are identical.

Keywords: Colombeau algebra of generalized functions, representative, diffeomorphism
invariance

Classification: 46F, 46F05

The paper is a continuation of [9] and its only aim is to prove that both dif-
feomorphism invariant Colombeau-type algebras G4 and G2 introduced in [8] and
[6] (Grosser et al.) coincide. In [6] diverse possibilities to define Colombeau-type
algebras are researched; our result shows that there is only one diffeomorphism
invariant Colombeau-type algebra among them for a given domain Q C R,

§1. In this paper, we use notations introduced in [9] and mostly we refer to [9].
This paper is devoted to prove the following

Theorem. For every open Q C R?, the algebras G2(Q2) and G4(Q) coincide.

As the algebras are quotient algebras G2 := 81\2/[/./\/' and g4 := 5]3[/./\/05&, the
theorem says that for any representative R € £ 1\2/[ another representative Re& ]?/[
can be found with R — R € N. To prove it, in all what follows, we assume that
Re& 1\24 is given and we are going to construct R. This will be done in several
steps. In every step functions of variables ¢, z are constructed and their properties

are presented with the aim to construct at last the required representative R. First
we show that it is sufficient to do it for representatives with compact support.

Proposition. Suppose that for any representative R € £ ]\2/[ (Rd) such that there is
a compact K € R? fulfilling R(p, ) = 0 whenever x € R \ K, a representative
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R e EL(RY) can be found with R — R € N. Then for any open Q C R the
algebras G2(Q) and G4(Q) coincide.
ProOOF: Let R € £2(Q). Recall that unlike in [8] and [6] here a representa-

tive is defined on £(Q) = Ap(R%) x Q and we do not loose generality with this
assumption. Choose a locally finite covering

Q:UQm with Q,, € Q

and a partition of unity 1 = ) xm, on § subordinated to this covering, xm €
2(Qm), Km := supp xm. Then R = > Ry, if we denote Ry, (p,z) := R(p,x) -
xm(z) and we have Rp,(p,2) = 0 whenever © € Q \ K. Ry, can be easily
extended to belong to EJ%/[(Rd) putting Ry, (¢, ) = 0 whenever z € R\ K.
By hypothesis, we can find R, € Eﬁ(Rd) with Ry, — Rm € N. Then, for every
m, we choose a test function o, € Z(y) that is = 1 on a neighbourhood
of Ky,. The functions y,, and oy, are considered to be elements of £ (Rd) as
functions independent of the first variable. Consequently, o, € £ J?J Considering
all representatives to be elements of £2,(9) (i.e. restricted to Ag (R%) xQ), we have
(note that A is an ideal) R— " Rymom = 32 (Rm — Rmom) = S2(Rm — Rm)om €
N, the sum being locally finite. From the same reason, R:= > Rmom € 8131. R
is thus a required representative. ([

§2. Remark. For B € R?, it is known that Z(B) is a Fréchet space. Its topology
can be generated by a countable system of norms defined by continuous scalar
products, e.g.

odm yam .
. () —2 (6 de.
ot = [ ger—aem 9O g gy PO

A continuous scalar product ¢,v — (p,1) is €°°, being sesqui-linear, and we
have

dy (0, p) = 2R(p, V),
A, (0, 0) = 2R(1, va);

the derivatives of higher orders are zero. Hence the norm generated by a con-
tinuous scalar product is € °° in all points except of origin. The function 9 —

(W, ) = [¥]|? is € always.

Notation. The function Vjy, used in Equivalent Definition [9, §7, (4°) and (5°)]
of £ ]%/[, can be

) wie)=( X [fe@a?)” (pea.
BENE
I<|BISN
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Evidently, this function fulfills [9, (6)]:

VN eN, & (bounded) C Ag IC1,C2 >0 VpeAB:

Cy }/sﬁ d5’<VN<)<01 }/sﬁ d§’

BENG BeNG
1<|BIEN 1<\,3|<N

Evidently every multiple ¢- V() satisfies these inequalities, so it can be used in

Equivalent Definition [9, §7, (4°) and (5°)]. Also the function

1/2
Vi = (3 Iellgd ) ffe)del?) T (p e o)
BENE
I<|BISN

fulfills the above inequalities [9, (6)] that allows us to use it in Equivalent Defini-
tions [9, §7, (4°), (5°)]. Indeed, a bounded set is relatively compact, so 3¢1,co > 0

(depending on #) V¢ € % we have ca < ||¢| 42 < c15 [9, (6)] follows easily.
It can be checked that

@) ISepl "4 = ¢ - 724, / Sepl)e? dg = £ / PO e (5 e N,

so Vi (Sep) = Vi (¢)-
For all what follows, a function p € Ag([—1,1]) is fixed such that

p(€) >0 iff €€]-1,1],
pe = Sep, U:i= P1/2 * X[-3/2, 3/2]

(convolution with the characteristic function),
Im (&) == 3(27E) (m integer).

S0 Ui (&) = 1iff € € [=2™,2M], 0 < Uy (&) < 1iff € € | -2+ 27 [ and ¥, is
decreasing on [2,2"+1]. Denote furthermore

K = [-2™,2m]4

and for &€ = (£1,...,&4) € R, denote 924(€) := ¥, (1) . .. I (Eg). If there is no
danger of confusion, we will write simply ¥, (€) instead of 929(¢).
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§3. Thanks to §1, Proposition we can assume that the given representative R
belongs to EJ%/[(Rd) and that there is a compact K € Q fulfilling R(p,z) = 0 for
z € RY\ K. In this case, in the equivalent definitions of £2; and A (]9, §§7, 8])
we can omit VK &€ 2 and replace the uniformity on K with the uniformity on
the whole of R%. Denote by Ny, the number N from Equivalent Definition [9, 87,
(5°)] holding at the same time for all || < L and for all differentials of order
k < L. Certainly, this equivalent definition remains valid if we take any greater
number for Nj,. We replace our representative with another one determining the
same generalized function, if needed, to obtain the following

Properties of R.

(1°) There is an increasing sequence {N,}; .y C N, Nz, > L, fulfilling:
VB € R% % (bounded) C Ag(B), L € N 3U (absolutely convex open
neighbourhood of zero) C A(B), C >0 V{=1,2,...,L, ¢¥1,...,%; € U,
peB+2U,e€)0,1],eNe >V, (¢), « € NY, |a| < L, v € R%:

(3) |05y, 59, R)(Seip )| = 0%y, oy, R(Sep,2)| < &N,
|0% R(Sep, )| < Ce Nt
(2°) The first inequality in (3) can be written in the form
(4) 0%y, RS0, 2)| < €Nl el

if we omit the hypothesis 91, ...,%, € U, only supposing ¢1, ...,y € A(B)
(||e]|z¢ denotes the Minkowski functional assigned to U).

(3°) If L = 1, the hypothesis e'Z > Vyy, () can be omitted, so that (3) and (4)
hold for every € € ]0,1].

(4°) Consequently, if £ is convex, ¢1,92 € % + 2U, we have to consider two
cases.
If L =1, |a] <1 then

() |0%(R(S=p2, ) — R(Se1,2)) | < e Moo = gily -

Otherwise if |o| < L and Nz > Vi, (91), eNE > Vi, (92), £=1,.... L,
P1,...,Pp—1 € A(B), then

6) 0%t (R(Sep2.2) — R(Sep1,7))]

_N
S e B rllps - Yol o2 — @1lly -

PROOF OF (3°): The items (1°) and (2°) are consequences of [9, §7, (5°)]. The
equality in (3) follows from the chain rule where the inner function is linear, so
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its higher derivatives vanish. (2°) follows from the linearity of differentials. This
holds for any representative with compact support. However, for (3°) we have
to choose a suitable representative determining a given generalized function and
possibly we have to choose the number N7, too. Let R be a given representative.
Applying %HXB ||_2N1/d V](h instead of Vly, in Equivalent Definition [9, §7, (5°)]
(or in Properties, item (1°)) for L = 1, we get & and C' > 0 such that (3) holds
ifl=1]a<1,¢¥1 €U, p € B+ 2U and

—2N1/d
(7) eM > L 172V (p).

Let us define R/ (¢, z) := 9(|o||2N1/¢ Vi, (9) - R(p, 2) (£? norms).

First we prove that R’ € £2 and R— R’ € N. Let € — ¢° (see [9, §7, (2°), §8,
(4°)]) be a bounded path with asymptotically vanishing moments of order Ny + 1.
This means that the set {¢%; € €]0,1]} is bounded and

VJ</1+1(808) = 0(eMh (e \,0).

Consequently the set {||¢°]|; € €]0,1]} is bounded and by (2), as V](,l < V](,H_l,
we have

1S20% PNV (Sep®) < Nl PN/ =N vl L (0°) = O(e).

It follows that for a sufficiently small €, S, belongs to the open set (independent
of ) {gp; ||<p||2N1/d VJ(h (p) < 1} where R/(e,7) = R(e, 7). Hence the assertions

R' € &% and R— R' € N are proved.

Now we want to prove that R’ fulfills (3°). This means that the relations (3)
with R’ hold for all € € ]0,1], provided L = ¢ =1 (Ja|] < 1). To this aim, for
¥ € A(B) we first estimate

Ay 0" R (Sep,2) = dyd® (9(11S=o P/ VR, (S29)) - RSz, 0))
= a0 (118l VE, (Se)) - 07 R(Sep, )

(8) +z9(|\s san?Nl/val s€<p) dwa R(S-p,7)

+19(H<p|\2Nl/d "MV (9)) - Ay R(Sep, ).

If ||| 2NV1/d e~ M Vi, () > 2 then R'(Sz, ) = 0, hence we have to estimate (8)
only if
2N1/d N-
Bl VE (9) < M

637
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By the Holder inequality we have (x denotes the characteristic function):

. -1
9) 1= /saxB <ol llxgll, ie el = lxgl™-

Consequently
1 —2N1/d N-
Bllxs 172 VR () < M

and this is exactly our hypothesis (7) assuring that (3) holds. Hence two terms
of (8) are estimated:

|0°R(Sep,2)| < Ce™™, |9y R(Scp,x)| < Ce™ N
It remains to estimate

(10) dyo ([l =MV, () < max [ F0(0)] e dy (1ol VE, (9)-

By [9, §2, Proposition] about local equicontinuity of differentials there is an ab-
solutely convex open neighbourhood of zero U C A(B) such that

(11) dy (lel M2V () <1

whenever ¢ € %+ 2U, v € U. Under these hypotheses, we have got
ayd (Il v () < Crem ™
with a constant C; depending only on 9. Due to (8) and (3), it follows
dyd R (Sep,z) < C10 72N 4 0™ < (01 +1)0e 21,

Replacing ¢ with a smaller one, we get < £72N1 | Tt remains to estimate
O“R'(S=p, ). This is similar or simpler, so we let it to the reader. O

PROOF OF (4°): Using the mean value theorem, we have for some 7 € 10, 1]

laadi_l,l---ﬂbeqR(SQ*" 2, @) = 6adi_1,1m,¢ef1R(527" w1 x)’

< ’30‘(1[3(32*” (o1 + (1 = 7)p2), )1, -, o1, P2 — <P1]’-
The function 7 — V(71 + (1 — T)pa) is convex because V(i) is the Euclidean

norm of the point with coordinates [ ¢%¢(¢)d¢. Thus in the second case of (4°),
Vv, (Te1 + (1 — T)p2) < eVE holds for all 7 € [0, 1] and we can apply (4). O
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§4. Notation. Let a number » € N be given, let us consider the Fourier series
of a function ¢ € A(K;) on the cube K, 11 C R? (§2, Notation, the function 99¢
will be denoted simply by 9,)

W(E)= Y g T where -6 := &y + -+ Baa,
(12) pezs
dy = 27d+2) /w(g)e—Q*"’lm'B{ de

As [¢ =0, we have ¢y = 0. As ¥, =1 on K, we have as well

Y(E) = e T (6),
B#0

We will use another expansion 1) = > c’ﬁ 7'5 where the functions 7'5 are defined:
B#0

—r

v5(€) = €2 TG, (€) — 9, (6)

with constants cg such that ”ylﬁ € A. This means that

(13) & / Ir(€) € = / 2B, (¢) de.

It is known that the Fourier coefficients (12) of a test function tend rapidly to
zero if |3| — oco. By (13), Cg tend rapidly to zero as well.

We arrange the multi-indices # # 0 into a sequence {ﬁj}

“° " in such a wa;
j=1 1" Y

that the sequence {| ﬁj|} is non-decreasing; then we change the notation writing
75», c;», ... rather than 7,53» , cbj, ... . Then the above expansion takes the form

o
b=
j=1

Evidently [3;] < j < (2|ﬂj|—|—1)d («< j does not exceed the number of the indices 3
with 3] <|3;]). Hence any multi-sequence {ag}ﬁ is moderated (i.e. lag| < c|3|™
for some ¢ and m) iff the sequence {aﬁj }j is moderated. {aﬁ} 3 tends rapidly to
zero iff {aﬁj }j tends rapidly to zero.

If U ¢ A(Kr41) is an absolutely convex open neighbourhood of zero, then
||*y§||u is a moderate sequence (this can be calculated e.g. if ||~y£3||u is the norm

|75l from §2, Remark). So we get the following
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Result. If U C A(K,41) is an absolutely convex open neighbourhood of zero,
then there are v; € A(Ky41) (j € N) such that

o0
(14) > il <1
j=1

and any function ¢ € A(K,) has an expansion

V= ¢

with coefficients c; tending rapidly to zero.

Indeed, choose a moderate sequence A; ' oo such that the functions «; :=

Vi/Aj € A(Kpq1) fulfill (14) and then put c; = ¢} - A;.

Definition of Ry,.,,. Let to any k,7,n € N and w € Ag(K,), a neighbourhood
of zero U in the space A(K,41) be assigned which is the unit ball for a smooth
norm (see §2, Remark), independent of n, following Properties of R (§3) with
B ={w} C A(Kyr41) and all L < k. Assume furthermore that U is as small as
|dyVa, ()| < 1 whenever L = 1,...,k, ¢ € w+ 2U, 1 € U, due to the local
equicontinuity of the differentials of ¥’°° functions, [9, §2, Proposition].

Then the function ¢, & — Rjpp. (@, ) is defined on the domain

(15)  Syn(w+ UNAK))) x RE = Sy (w +U) N Ag(Kp_pn) x RY

as follows.

Rirne = }lé% Ry,

J—o00

J J
(16)  Rj(Sy-n @)= /---/R(Srn (s0+ thﬂj)a w) 11 rs(ty) dt;,
J= j=1
e (wH+UNAYNKY), ps:=Ssp (§2, following (2)), 6 = Oy, = 9 n(k+1) N

For the sake of simplicity of the notation, we do not indicate the dependence of
Rjyonk,rnw.

Properties of Ry,
(1°) If k,r,n € N, w € Ag(K,), then Ry, is well defined on its domain (15). If
zeRY pcwt (UNAK)), then

(17) Rirnw(Sg-—np, x) = Jli_}rréo Rj(Sy-n ¢, )
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uniformly with respect to ¢,z and
(18) |ernw(5'2,nsp7x)| < C- 2nN1 ,

with a constant C' not depending on n.
(2°) IfneN,zeR) £=0,1,...,L -1, L <k,a € N{, |a| < L,
pewt+ UNAE)), 27" > Viy, (9), 1, 9 € UNA(K;), then

(19) 0°d}, .y, Brrnw(Sanpi2) = lim 0%, Ry(Syn0.2)

uniformly with respect to x, ¢, 11, . .., 1y under the above conditions (k, r,n
fixed). Consequently ¢,z +— Bo‘dilw’W Rirnw(So—n @, x) is continuous,
hence the order of derivatives (under the above conditions) does not matter.
Furthermore we have

(20) ’aadﬁ;l,,,,,@w ernw(SQ*”QDvx)’ < C 2

with a constant C' not depending on n, and

(21) ‘aadew o (kaw(sﬂ@,x)—R(sﬂcp,x))‘ < 9nNe g,

(3°) Rpppe is €° with respect to the first variable on its domain (15) and there
is an absolutely convex open neighbourhood of zero V = V.., C A(K;) not
depending on n such that if x € R? neN, LeN, eV ((=1,...,L),
@ € w+U, then

(22) |d517___71/;L Rirnw(Sa-n¢, I)| <bp- 2" 5];nL

with a constant b;, depending only on L and p.
PROOF OF (17) AND (19): By the definition (16) we have

Oy, Ry (Sg-nip, )
¢ J J
— / . ./8ad¢17---7w£ R(SQ*H (Sﬁ + th]")/]), .I) H pé(t]) dt]
= e

and we have as well

0°d, 4, Ri(Sa—np, )
J+1

_ /.../aadf;h___va(Sg,n (<p+ji:1tj’}/j), z) TT potty) t;.

i=1
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because [ ps(tyy1)dtsrq = 1. It follows

laadilv---,w Ry41(Sp-nip, @) — 80{(%1,---71/% R;(Sy-nep, x)}

Lt

; 41
— 0%l g, B(Samn (go+];tm), z)] - H1 ps(t;) dt;| .
- =

Now we want to apply §3, Property of R (4°) for ¢ = 27™. By hypotheses of
§3, (4°), there are two cases. For L = 1 this gives estimation

|RJ+1(S2*”<P5 I) - RJ(SQ*"SO7 ZC)|
é 4
(24) <| o) 2" N[ty vl - TIZ ps(t) dt;

< 2"Mig v tally < Il

(6 defined in (16)), so by (14) the limit in (17) is uniform. Thus Ry, is well
defined. Similarly (19) can be deduced from (23): By the local equicontinuity of
dV, () noted in the definition of Ry, we get using the mean value theorem

J J
’VNL (<P + 2 tm‘) - VNL(sa)‘ < H EtﬂjH < 6 =2 kDN < g1
j=1 j=1 u

J
From the hypothesis in (2°) Vi, (¢) < 2_”NL—1’ we obtain ’VNL (<p—|— o tj”Yj) ‘ <
Jj=1

27"NL that is the hypothesis in §3, Property (4°). Thus, by §3, (4°) (for £ =
0,1,...,L —1) we get from (23):

aadil,...,w Ryt1(Synp.a) = aadﬁ117~~7w Rj(Sy-ng, x)‘

N
< 2" [l - - ellos - Oenllvally -

As above, thanks to (14), the uniform convergence of the limit in (19) and then
the equality (19) follows. O

(25)

PROOF OF (18) AND (20): In all cases where the uniform convergence is already
proved, we have

0°dly,  , Rirnu(Sa—n ¢, @) = lim 0°d, .\ Rj(Sy-n o, x)

J—00

7 J
Jj=1 j=1

J—00
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It was shown while proving (19) that the hypothesis in (2°) Viy, () < 27 Ve —1

J
implies Vi, (cp—i— > tj7j> < 27"NL and this is the hypothesis in Properties of R
j=1
(§3) allowing us to use (3) and (4) for estimating the term 8adf;1 _y R(Srn ((p—l—

J
thvj), :E) in the last integral. By §3, Property (3°) this hypothesis is not
Jj=1

needed for proving (18). Thus (18) and (20) follow from the corresponding prop-
erties of R.
(]

PROOF OF (21): (25) holds for J = 0 as well with Ry = R. Adding the inequal-
ities (25), we get

aadﬁ’lwﬂﬁl Ryp1(Sp-np, @) = 0"d; IRRENIY) R(Sy-np, )

J+1
N, N,
< 2N Yl el - n D Il < 27N Nlbalyg - - el - Orem
j=1
due to (14). Hence the inequality (21) is proved. O

PRrROOF OF 3°: For L € N let ¢1,...,¢1, € A(K,) be given functions, let

o0 o0

(26) 1/)g = Z ng ’}/j ) ie. Sszﬂ/)g = Z ng Szfn'-)/j (6 = ]., ceey L)

j=1 j=1
be their expansions by §4, Notation with ~; fulfilling (14). As lim ¢;; = 0
j—o0
(rapidly), there is an A > 0 for which

(27) legj| < A (V¢=1,...,L, j€N).
In the following calculation, hq, ..., hj are real variables with
1-9
28 h —_—
(28) el < =

and we have to put hy,...,hr, = 0 to obtain the following equality:

ot L
L . .
Bin Rernio(Saon 9, 0) = o Jim Ry (Spon (10 + X hete) o)

J

S e e R LI GRS Ztm) o) L et

643
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By (26) this is equal to

00 J
li R(Sy-n h s tivs),
8 ahL Jl—’moo / 2 SD - Zl nglc@ K +]§1 ]7]) ;v)
J
: Hpa(tj)dfj
= lim / / So—n 90—|— Z hy ZICZJ v + Zt]%) )

(9 6hL J—o0
: H ps(ty)di;
j=1

because by §3, Property (4°), (27) and (28), the difference of both expressions
after lim is estimated by

J—00
L 00 00
N- N-
2NN Rl Y legsl - il < 2N A =0) D vl
/=1 j=J+1 Jj=J+1

This tends to zero thanks to ( 4), only we have to verify the hypothesis in §3, (4°)

that ¢ + Z he Z coj v+ Zt]*y] and ¢ + Z hy Z coj v+ thy] are elements
/=1 j=1 /=1 j=1

of w+ 2U. Indeed, p € w —I— U and for the other terms we have by (28), (27)
and (14)

oo

L J L 1—6 00 J
Dohey e+t <D 2 Al + D dllly < 1.
=1 j=1 u =1 j=1 j=1

Thus (29) is verified. After a substitution in (29) (and putting hi,...,hy = 0)
we get

8L
L p—
(30) dwl,---ﬂﬁL Rirne(Sa—n ¢, 2) = m

lim / / 52 n so—i- Ztﬂ]) ) : ﬁ[pa( Xi: he%)

J—o0

= lim / 52 n cp—i— Ztﬂy) :v)

J—o00

' (%a;h Hpa(t - Z he%)

j=1



645

Diffeomorphism invariant Colombeau algebras II

provided the last limit is uniform with respect to hy, |hy| < 1L__Aé (¢=1,...,L).

Now we are going to prove it. Let us denote the last integral by I;. Using the
Leibniz rule for the derivation of a product:

—ctj,) %ﬁ ( EL:W%)

Je=1

5 I J
mgpé(tj _z; hé%’) =y (

we obtain

]J_/.../R(S2n((p+jéltj’yj), I)
J L

> (M) sl - S e s

Jisjr=1 £=1 -

Using the Kronecker delta (ég:, is the truth value of the statement j = j') we can

IJ—/ / Szn v+ Zt]*yj),a:)
J

Z (H—C&jz) H1 o1;) )i 1652p5(t - Zlhz%‘)dtj
=

G1ygr=1 =1

write

and we have as well

IJ:/.../R(ST,L(@jL étﬂj), :17)

J+1 J+1 s L
Z (H _Csz) H Btj) =1 p5( Z hgcfj)
Ji,-njr=1 (=1 j=1 t=1

Indeed, if some j, = J+1, then the term ps (tJ_H — Z hecy J+1) is differentiated

and so its integral is equal to 0; else its integral is 1s equal to 1. It follows

Ijpi—15=
/ / 52 n <p+J§+Ilfm) w) —R(Szfn (so+éltm)= x)}

J+1 L J+1 L git

> (H—cm) 11 (%)Zl H pa( Ei: ZCZJ)

Jiyenjr=1 (=1 j=1
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By (27) and (28) we have | Z hcgj| < 1=6,s0 [tj| < 1or ps (t - Z th@) 0,

and we can apply §3, Property of R (4°). We get

J+1 J+1

Ly =Ll <2 gl > H .5, H Haze 9 péHgl
J1se-jr=14=1

It is Hp5H$1 =1 (§2, following (2)) and, in the last product, for given ji,...,5r,
there are at most L indices j for which p; is differentiated. Thus this product can
be estimated

J+1 J+1 . ,
11 HaZz 18 p5H$1 =ika S 5§6H325:15;ZPH$1
7=1 7=1
L
J+1
TR (s 10 ) =5

with a constant b;, depending only on p and L. It follows

J+1
Lypr =I5 < 2™ Bopllygally ) H |cej, |
Ji,ejr=14=1

(31) N . L J+1 N . L oo

= 2" M5 b vyl TT D el < 26 R bpllvssally [T D Ieesl

i=1j=1 (=1j=1

= 2"Mieh 6L vl

where the constant ¢ = , rrllaxLZ;’il lcej| depends only on 41, ...,9 and 7.

Now the uniform convergence of (30) can be deduced from (14). The smoothness
is verified; it remains to deduce the estimations.

The inequality (31) holds for J = 0 as well with Iy = 0. Adding these inequal-
ities we get

J
117 < 2Meehs ™R Y il < 2 Nete TR
J=1
This is an estimation for the last integral in (30). Hence

(5 ) Rk (Sa-n 0, 2)] < beban 5L,
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by, depends only on p and L, ¢ is the constant in (31), ¢ = 1 if ¢1,...,9, belong
to

V={veA); =3¢, Xl <1},

By 84, Result v; depends on U not depending on n. It remains to prove that V
is a neighbourhood of zero in A(K;). It is known that the Fourier coefficients
of functions v running over a bounded set in A(K;) tend uniformly rapidly to
zero. Evidently the same holds for the coefficients c; in §4, Notation. Hence
any bounded set is absorbed by V. In a metric vector space such sets V are
neighbourhoods of zero. ([

§5. Partition of unity. The space 2 has the property of smooth partition of
unity expressed by the following

Theorem. For B € R?, Jet {ws +Us},cq be an open covering of the space
2(B), where S is an arbitrary set of indices, ws € 2(B) (Vs € S), Us are open
neighbourhoods of zero in 2(B). Then there is a locally finite smooth (i.e. €°°)

partition of unity on 2(B)
[ee]
1= %,
m=1

subordinated to this covering.

This means:
1° The functions @, : Z(B) — [0, 1], fulfilling this equality, are ¥ *°and

Vm dseS: supp Py C ws+Us.

2° For every w € Z(B) there is an absolutely convex open neighbourhood of
zero U C 2(B) such that w + U meets only a finite number of supports of
functions ®,,.

For the proof, we refer to [13, (5.3.8)], where a more general theorem is proved
concerning several cathegories of smoothness, not only ¥°°. Hypotheses: Z is a
Lindel6f locally convex space and there are sufficiently many ¢ °° functions on &
so that they generate the original topology on 2This is fulfilled, see §2, Remark.

Corollary. For B € R%, let {w; +Us},cq be an open covering of the space
Ao(B), where (Vs € S) ws € Ag(B) and Uy is an open neighbourhood of zero in
A(B). Then there is a locally finite smooth partition of unity on Ag(B)

o
1= &n
m=1

subordinated to this covering.
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PROOF: We can write Us = U N A(B) where U are neighbourhoods of zero
in the space Z(B). Then we apply Theorem to the covering {(ws + Zj{s)}s U
{2(B) \ Ap(B)} of 2(B). O
§6. Notation. Let us have chosen k,r € N. Then, for every w € Ag(K,), we have
a neighbourhood of zero U, C A(K;) (independent of n) such that ¥n € N the
function Ry, is defined by §4, on So—n (w +Uy) x R%. Thus we have a covering
of Ag(K) with the sets w + U,,. We choose a partition of unity 1 =3 > &,
on Ag(K,) by the above corollary. For every m, we choose a test function wy, for
which supp @, C wm + U, ; we will use the notation Uy, rather than U, .

Definition of Ry,,. With the above notation, for ¢ € Ag(K;)
(so Sy—n ¢ € Ag(Ky—p)) we define

0
(32) ern(S2*"90733) = Z q)m(@) ) ernwm(S2*"¢a I)
m=1

If ¢ does not belong to supp ®,, the term of this sum is considered to be zero
even if Ry pw, (So—n, ) is not defined.

Properties of Ry,,. (1°) For every k,r,n € N, the function Ry,., is defined on
Ao(Kr—pn) x RY.
Moreover, for every w € Ag(K) and L € Ny, there exist an absolutely convex
open neighbourhood of zero Y C A(K,) and a constant C' > 0, both independent
of n, such that for every n € N and = € RY the following hold.

(2°) f1<L<k (=0,1,...,L-1,aeNd |o| <L, pecw+U, 27Nl >
VN, (©), ¥1,...,¢%¢ €U, then ¢,z — df;}hm’w 0% Rypn(Sg—n¢, x) is contin-
uous and

(33) ’dé 1yethe 0% Ry (Sa-ntp, I)’ <C- ZnNLv
(34) ‘aad’f ity (Rirn(Sy-nip,) = R(Sy nip, ) \ < ooV g,

(0 = bpn by (16)).

(3°) Rppp is €°° with respect to the first variable on its domain Ag(Ky—y) and
foew+Uandyyeld (¢=1,...,L), then

’dilw,d}L ka(Srncp,iE)’ < c2"™M 6k_nL

PROOF OF (2°): If w € Ag(K), we choose a neighbourhood of zero U C A(K)
such that w 4+ U meets only a finite number of supports of the functions &,
(by 5.2°). So U can be chosen as small as (Vm)

(35) either (w+U)Nsupp Py, =0 or (w+U) Cwm +Un .
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Furthermore, thanks to [9, §2, Proposition], let i/ be as small as

(36) dfy o ®m(0) <1

whenever 1 </ < k-1 meN pecw+U, ¥1,...,0 € U; for £ = 0 this is
fulfilled, too. Now we use the following Leibniz rule for derivation of a product of
two functions: if F1, Fy are two smooth functions on (a part of) a locally convex
space, then

E(R@R@) W obd = Y Al A(e)-df 2 Fa(p),

I
11U12={1,...,Z}
disjoint

where, for I = {il, e ,i#l} C {1,..., ¢}, 1 denotes the finite sequence v;, , ...,
(T and the summation is extended over all ordered decompositions of multi-
index (1,...,£) in two disjoint multi-indices I, I3 that are written in the increas-
ing order. Unlike the chain rule (theorem on the derivative of the composition),
here the multi-index I; or Iz can be empty. The proof of the Leibniz formula
can be deduced easily from the chain rule if the outer function is F(u,v) = v,
u=F, v=Fs.

We apply the Leibniz rule for differentiating the product to the defining for-
mula (32):

dil 7"'7¢ZaaRk7‘n(527n907 fL')

o0
I I
- Z Z d’l#,bjll Dm(p) - dﬁljaakawm(Srn% z)
m=1

Iy
LUul={1,...,¢}
disjoint

and, by (35) as ¢ € w+U, the first sum is extended only over a finite number of m
for which (w+U) C wm+Um. Then (wW+U)— (W+U) C (wm +Um) — (Wm +Um);
for absolutely convex sets it follows U/ C U;,. Hence the functions Ry,
fulfilling §4, Properties on wy, + Uy, fulfil it the more on w + U. By the above

Leibniz formula, we estimate dﬁn b 0% Ry (Sg—np, ) using (36) for estimating

the term df;fl D, (p) and using §4, Properties of Ry, for estimating the term
1

dl#p?(’“)O‘kawm (Sy—n¢,x). So we deduce (33) from the corresponding inequality
2

(20) in Properties of Ry,.,,,- The constant C' in (33) depends only on the constants
assigned by §4, Properties to the functions Ry, and on the used finite set of

terms of the sum Y, so it is independent of n.
m
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For estimating 8°‘df;17___7w (Riyn(So-n, ®) = R(Sq-n¢, x)), we apply the Leib-

niz formula to the product >_0°_; () (Rrnw,, (So-—n @, ©) — R(Sg-np, z)) and
proceed similarly. ([

PrOOF OF (3°): Unlike in §4, Properties of Rj,,., here the neighbourhood U
depends on L. We chose U as small as (36) hold whenever 1 < ¢ < L, m € N,
w €w+U, P1,...,9%p € U. Denote by Vy, the neighbourhood V defined by §4
(3°) for the function Ry, and chose furthermore ¢/ such that we have instead
of (35):

either (w+U)Nsupp@py, =0 or (w+U) Cwm+ Vm NUR).

Then we follow the above proof and deduce (3°) from the corresponding properties
of Rirngw, 84: (18) and the item (3°). O

§7. Notations. Choose test functions 9o € Z(K, ~ Ky—1) (a € Ng, 0<|al <
Ny), fulfilling (like in [8, (22), (23)])

/wa<§)-§“d§=1
/w(g)-sﬁdg:o for §#a 0< |3 < N

Let Ay : 2(Kry1) — 2(K;) be a continuous (hence smooth) linear mapping
defined (see end of §2, 9, means 924):

Ao =@ U1+ Z Ca Yo
0<]a| <N,

with such constants ¢, depending on ¢ that

VB eNg,0< A < Ny /Ar p(6)€% de = /w(§)§5 de.

This means [ ()60 de = [0,_1(€)p(€)EP d¢ +cg, hence cg are well determined;
A, maps Ag(K,41) into Ag(K,) and A(Kyy1) into A(K;). A, is identical on
D(Kyp_1); for ¢ € Ag(Kr41) and N < Ni, we have Viy(Arp) = Vi (p).

Definition of R;m. Let k,n € N be given. For r € N, we define the functions
Rl on Ag(K,—n) x R? by induction as follows. R}, = Rpy,. If R, isalready
defined on Ag(Ky—pn) x R?, we define
(37) R;c,r—i-l,n(SQ*”SDvx) =
Rk,r+1,n(S2*n(pu ‘T) + R;CTTL (52’" (Ar(p)v ‘T) - Rk,r—i—l,n (52*”(AT’90)7 .’L‘)
for e Ag(Kr11), z € RY.
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Properties of R} . (1°) For every k,r,n € N the function R} is defined on
Ao (Kr_p) X R9 and for v € Ag(Kyp—p—1) it is R;gmn((p, x) = R;€7T+17n(g0,x).
Moreover, for every ' € Ag(K;) and L € Ny there is an absolutely convex open

neighbourhood of zero Y’ C A(K;) and a constant C; . > 0, both independent

of n, such that for every n € N, z € R? the following hold.

(2°) ¥1<L<k(=0,1,....L—1,aeNd |a| <L, ¢ €/ +U 27Nl >
Vi, (@), Wi, ¢, €U, then ¢ 2 — di:’[v"'?¢2 O* Ry, (So-n¢, x) is con-
tinuous and
(38) df O R, (Sy-ny,x)| < C) 2"NL

(AR 1A krn\*22=n¥ = Ykr )
(39) ’aadf ! 71/;2 (R;crn(SQ*’lsplvx) - R(S2—n(p/,£[:))‘ < Cl;r 2nNL ’ 5kn .

1

(3°) Ry, is €°° with respect to the first variable on its domain Ag(K;—p) and

Vo e +U Yy el (E=1,...,L), it is

L N —L
‘ddﬂh---ﬂ/’i Rﬁcrn(82*"@/7x)‘ < Ol/fr 2n™ 5kn :

PROOF OF (38): (1°) follows easily from the fact that A, is identical on Ag(K,—1).

The other properties will be proved by induction. For r = 1 this is affirmed by
86, Properties of Rp,,. Assuming that (38) is satisfied for un certain r, we
have to prove it for r + 1. So we have to prove that every one of the three
terms on the right-hand side of the defining equality (37) satisfies (38). This is
clear for Ry, .11 ,(S3-np,x) due to Properties of Ry, (33). We are going to
prove it for R} (Sy-n(Arg), ). Let, by the hypothesis, w € Ag(Ky41). Then
W' = Ap(w) € Ag(K,) and by the induction assumption we have U’ C A(K;)
and C,/W > 0, both independent of n, fulfilling (2°). Now, U := A, 71U’ is a neigh-
bourhood of zero in A(K11). Fory; el (j=1,...,¢) and ¢ € w+U we have
Y= Ay el ¢ = A € W' + U, hence (chain rule with the inner function

J
A, linear)

dfbl,...,zplaa R (Sg—n (Arp), w)‘ = ‘de 3,..,,%50‘ R (Sy-n¢ )| < Cp, 2" NVE

Exactly by the same way we deduce the same estimation for the last term in (37),
ie.

df;l,---ﬂlfzaa ka—i—lm(Sz*" (Arp), )| < CZ”NL,

only we have to start with (33) instead of the induction assumption. Thus (38)
is proved by induction. (I
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PROOF OF (39): Taking (39) as the induction assumption, we get by the recurrent
definition (37) of R :

krn*

A%, 0% (Bl 1.0(Sa—np, ) = R(Sy-np, )|
< (4t 0 (B rs1,n(Samn6,0) = R(Syonp, )|
+ ‘dz 1,...,1/1560{ [R;f,r,n(s2*” (Ar(p)v ‘T) - R(SQ*”(AT’SDL .’L‘)}

— a4 17“.#}2606 [Rkﬂ,_,_l,n(San (Arg), ) — R(Sq-n(Ar), )] }

As above, we estimate every one of these three terms using (34) and the induction
assumption. (I

PROOF OF (3°): by §6 (3°) can be the same as the proof of (38). O
§8. Definition of R} . We define

Ry, (Sy-np,x) = rlglolo Ry (So—nip, )

for ¢ € Ao(Rd) and 2 € R%. Every ¢ belongs to Aog(Ky—1) for some r € N; up
from this r the sequence {Rzm}r is constant thanks to §7, Property 1°, so it is
R;m(S’Tngo,x) = R;wn(Sgwcp, ).

Properties of R . (1°). For every k,n € N the function R} is defined on

Ao(R%) x RY,

Moreover, if B @ R%, % a bounded set C Ao(B) and L € Ny, then there is an
absolutely convex open neighbourhood of zero U’ = Z/l;C C A(B) and a constant
Ollf > 0, both independent of n, such that for every n € N, x € R? the following
hold.

(2°) f1<L<k £=01,....L-1,aecNg |a <L pecB 2Nl
VN, (@), ¥1,...,9p €U, then ¢,z — df;}, " 9“ R), (So-n¢p, x) is contin-

[y
uous and

(40) ‘df oty O° Ry, (Sy—n¢, :E)‘ < Cy, 9nNE,
(41) ’(?adil"ww (R (So—np,2) — R(So-nep, I))’ < 2" NL g

(3°) Ry, is € with respect to the first variable and if ¢ € %, ¢y € U’
(¢=1,...,L), then

(42) a5, o, Rin(Sonip,2)| < Cp2n™ gL,
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PrROOF: We have R} (Sy-n,z) = R}, (Sq-nep,x) for ¢ € Ag(K,_1) so by §7,
Property (3°), Ry, is smooth with respect to the first variable on every Ag(K,_1).
As smoothness depends only on the behaviour of R;m on bounded sets, R;m is

smooth on Ao(Rd). For proving the estimations, we can assume without loss of
generality that B = K,_1 for some r € N. It is known that the bounded sets in
2 are relatively compact; thus, for a given L, the set & can be covered with a
finite number of sets w},, + U}, where U}, is assigned to w!, by §7, Properties of
Ry.,.. Putting U’ = (U, we get the properties of R} from Properties of R;W,E

krn®

§9. Up to now, we have constructed functions that were € °° with respect to the
first variable. Now we are going to regularize the function R;m by convolution
with respect to the second variable to obtain a simultaneously ¥"°° function.

Notation. The function pg is introduced in §2, Notation. If k,n are chosen, we
have still § = §,, = 2~ (k+D)Nk Denote furthermore

PP (@) = p(a1) .. plag),  pSHE) = ps(@1) <. ps(@q)
for x=(x1,...,2q) eR?.

Definition. We define a function Ry, on Ay (R%) x R? by convolution as follows.
Rin (9, 2) = Rjpp (0, 2) % p§ () = /Rﬁm(% y) p5 (@ — y) dy.

Properties of Ekn For every k,n € N, Ekn is a ¥°° function on Ao(Rd) x R,
That is: Ry, € E(R?). Moreover, if B € R%, # a bounded set C Ag(B) and
L € N, then there is an absolutely convex open neighbourhood of zero U = U}, C
A(B) and a constant ék > 0, both independent of n, such that for every n € N,
zeRY 0=01,....L, ¢1,.... 00 €U, p € B, aeNg, |a] < L, we have

D ~ —2L
(43) (A0 Rin(Syonp, )| < G220,
If in addition L < k, 2~ "Ve—1 > VN, (¢) and £ < L — 1, then
(44) ’dély---ﬂﬁe a° Rkn(szwga,x)‘ < ) 2",
If in addition || < L — 1, then

(45) ‘aadflww (Rkn(SéfngD,:C)—R(SQﬂL(p,I))‘ < Gpone g,
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PROOF OF (43):

5adil,...,¢e§kn(527n%95)‘ = ‘mdé Loeeothe (Rfm(szfn%w) * P?d(x))‘
= | (..o R (S, ) + 095 ().
By (42), this is
< G2 T |0% | o = Cr 2N -6 g 0% g

As |a| < L, we obtain (43).
We see that for given k,n the derivatives ‘df;l7___7waa Rip(So-n¢p, )| are equi-

bounded if p € B, x € R?, hence they are continuous on 2 x R% for any bounded
B C Ag(B) x R (B € R?%). They are continuous on Ag(B) x R? because
they are continuous on convergent sequences in a metric space. Thus the order of
taking derivatives does not matter and Ry, is smooth ([13, 1.11.5.(2°)]). O

PROOF OF (44):
O,y Rin(Sait) =00, (B (Symvip2) (00|
= [(0°a),....p, R (Sa-np0)) 5 95 (a)|
Then we deduce easily (44) from (40). O
PROOF OF (45): We first estimate
’aadih---vwék"(‘gr"% z) — 8adil,---7wR;m(S2*"% 3:)’
N ‘/ (80‘(1317___71”3;%(32,”% y) - 8adil,---7wR;m(S27"% x))p?d(x —v) dy‘

= SuP{badﬁlv--vaﬁm(S?’"%y) - 8adfbl,m,¢eR;m(527"%x)} ;
01— y1l <8, Jeg — yal <0} < C2"Ve - d
because the function z — 9%d’, Loithe R}, (So—n¢, x) has its derivatives of order 1

estimated by (40). Then (45) follows from (41). O

§10. Lemma. Let % be a bounded set in Z(R%). Then there is a natural number
k such that Vy () > 27k for all o € B (Vi defined by §2, Notation).

As V](, is non-decreasing, this inequality holds for all sufficiently large k.
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PROOF: If not, there would be a sequence {¢y }re; C % such that V](,k (or) <27F
(VE). As Z is a metrizable compact, a subsequence {cpkn}zozl is convergent in
Ao, limpy, = ¢ € Ag. We have V{(¢i) < V]Qk(gok) <27k for N < Ni. As

Ny / oo (see §3, Properties of R), we have 0 < Vi (¢) < lim2~% = 0 for all
N € N, that is impossible. (Proof: If ¢ has all moments of order > 1 equal to
0, then its Fourier transform has zero derivatives at origin; being holomorphic, it
must be constant). O

Notation. Denote 9, () := 0(2"Vethtl. le\,k(gp)) (¥ by §2, Notation). ¥}, is
€°° on Ay and

Dpn(p) =0 i 2"NEHHELLVE () > 2,
Dpnle) =1 if 2PN YL (o) <1,

Definition. We define

k:l
(47) =3 @) (Banlp2) = Byo1nlip, )
k=1

if we set }N%O,n =0.

Remark. For a given n and ¢, at most two terms of the sum (46) are nonzero.
Onuly a finite number of terms of the sum (47) are nonzero: if k satisfies the above
lemma, then ¥, (¢) = 0.

(48) Z Dken(p 19k+1,n(90)) =1

is a smooth partition of unity on {gﬁ € Ayp; VJ/Vl (p) < 2_”N1_2}. Indeed, the

sequence {Z”N k"""f"'l‘/]’\,lc (w)}k is non-decreasing and its first member is

onN 1+2V](,1 (p) < 1. Thanks to Lemma, there is the greatest index k' for which
1k N, k'+2

20 MLV () < 1 Then 2" B2V () > 1,

N, +k'+37,1
2"k 42 V > 2, hence
Nk,+2(90) )

(U (@) = O 41,0(0) + (O 41,0(0) — o n () =1

and the other terms of (48) are zero.
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Properties of R,. R, € ERY). If B € R, 2 C Ay(B) is a bounded set and
L € N, then there is an absolutely convex open neighbourhood of zero U C A(B)
and a constant C' > 0, both independent of n, such that for every n € N, z € R,
the following hold:

IfaeNd, [o| <L-1,0eNg, £ <L—1,3 € Bwith ]l g2 > 1, P1,..., 0 €U,
then

(49) [0 0% Ru(Sy-n,2)| < C NI,
17 »Ye

If (Vg € N) ¢ € BN Ay, with |3]|42 >1 ¢ €N, then
(50) ‘En(sz,nsz, ) — R(Sy-n, x)‘ <o,

PROOF OF (49): For a nonzero term of (46) or (47), we have 2"Vet+k+1 Vi L(§) <
2, i.e. V](,k @) < 27"Ne=E If || 3] 2 > 1, then (§2, Notation) VN, (@) < VN (@) <
277Ne=F 50 the hypothesis Vi, (§) < 27"Ne=1 (L < k) in §9, Properties of
Ry, for (44) and (45) is always satisfied. By the Leibniz rule (formulated in

the proof of §6, Property (2°)) applied to the definition (47) of Ry, (recall that
V(@) = V(Sy-n$)), we have

(51) dil 5,0 Ry (Sy—n, )

I I D ~ D ~
Y Y athpdt 20 (B (Sy-n8,2) = By1,0(Sp-05.2))
k ’1/11 ’1/112
=1 LUl={1,...t}
disjoint

(If I = (i1,...,ix7), then @ZI denotes (zzil, . ,Ji#I)). Due to Lemma, the sum
o0 ko ~
> can be replaced with > with a number kg depending on % but not on
k=1 k=1
Y E B

First we estimate

A2 (4n(?)) = dZ 10 (2" VY @)

i

— Z Z (6M19) (2nNk+k+1 . V/ ~ H dfglm 2nNk+k+1 V/ (~))
M=1 I=I1U--Uly mel
#(), disjoint

(chain rule [13, 1.8.3] or [8, Theorem 12], the summation is extended over all
decompositions I = I; U--- U Iy on non-empty disjoint parts). Let us choose
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(by [9, §2, Proposition]) an absolutely convex open neighbourhood of zero i C
A(B) such that for every k=1,..., ko, £=1,...,L, g € B, 1,...,¢p €U, we

have |d$; J Vi, (@)| < 1. We obtain:
Lo

(52) ‘d?;j (9kn(@))| < Cp 27N #T < 0y 2n N L

with a constant C), depending only on ¢, L and k, not on n.
We are going to estimate the second term in (51)

I = ~ =~ ~
d220% (Rin (S50 3.2) = Bio1,n(Sy-0800)).
I

We distinguish two cases. If L < k — 1 then #I> < k — 1 and we can use the
estimation (45) as follows:

[4220% (R (830 5:) = B n(S-8.7) )|
o () 5 00)
— (Biin(Sp-0.2) = R(Sp—n5,2))|
< 2"VE - (Chbn + Cr10p-1.0) < 2"V - (Chy + Cr1) Op—1.m.

Together with (52), a term of the sum in (51) for L < k — 1 fulfills

1 ~ I o ~ o ~
20 90,(2) - €220 (R (830 5.0) = i—1,0(S2-n 811 )|
Y i,

< Cp 2Rl 9" NE (G 4+ Cp_1) - 1.0 < O (Ck, + Ci—1)

(6 is defined in §9, Notation), that is a constant independent of n, however it
depends on # and the number of nonzero terms of the sum in (51) depends on
B, too.

If L > k, we use the estimations (43) valid for all L and we obtain:

T ~ . ~ _ ~ _
d?;]jaaRkn(Szfngo,x) < Cp 2™ g2k < Gy on g2
Together with (52), a term of the sum in (51) for L > k fulfills

1 ~ I o ~ o ~
20 940,(2) - €220 (R (S35, 0) = R—1,0(S2-n 51 )|
11)11 1/)[2

< Ck: 2nNk L(ék + ék—l) 2nN1 . 65%[/ < Ck; (ék; + ék_1)2nNL(2L+1)(L+1)'
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So in both cases we can use the last estimation and (49) follows. O

PROOF OF (50): If ¢ € Ay, then V](,q () =0 and k > ¢ for all nonzero terms of
the sum in (46). In that case, it follows from the definition and (48)

| Ru(S:3.) — B(S:5.)|

k‘o kO
=D kn@ — Vs 10(@) - Rin(S:3,7) = > (e (@) = Vi1,0(P)) - R(S3, 7)
k=q k=q

ko
<> kP = Iy 1,0(@) - | B (S:5,2) = R(S:,2)
k=q

ko ko
< Z ék 2nN16kn _ Z ak 2nN1—n(k+1)Nk < O 2~
k=q k=q
by (45), as Vv, (@) = 0. O

§11. Now we have all tools for defining the desired representative R.

Definition of R. We define
[e.e]
B(e,2) = Y (a1 (I012) = 0n (10l %8) ) B, )
n=1

for ¢ € Ag(R%) and = € R? (¢ by §2, Notation).

2/d 2/d . 2/d
Remark. Note that 19n+1(|\<p|\i£2) - ﬁn(Hsz{z) # 0iff 2" < H‘%’Héz < ont2

and, for a given ¢, at most 2 terms of this sum are # 0.

> (e (I6l22) o0 (1612)) =1

n=1
is a smooth partition of unity on {¢ € Z; ||¢|| 42 > 4}.

Properties of R. R € £(RY). If B € R%, # a bounded set C Ag(B) and L € N,

then there is an absolutely convex open neighbourhood of zero U C A(B) and a

constant C' > 0, such that for every z € R% the following hold.

(1°) Ife€]0,1),a €N, o] L —1,0 €Ny, L < L—1, 0 € B, 1,..., 10 €U,
then

(53) }df;l"uwaa E(Sggp,x)} < C e NL@L+1)(L+1),
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Consequently, Reé& ]3[
(2°) ¥g € Nit holds: If ¢ € ZN Ay, and 0 <e < min{ , 4||><B||‘2/d} then

(54) R(Sep,2) = R(Sep,)| < C -,

Due to [9, §8, (0°)], we have R — R € .

PRrROOF OF (53): We write simply ||e|| instead of ||e| ;2 and we assume B to be
convex and balanced. For proving (53), we calculate (see (2)):

R(Sp,) Z( w1 (I1801177%) = 9 (1=0117/) ) Bn( Sz, )

=
&

Il
NE

(0127 118=01*/) = Do (27 1S20l*/) ) R (g (Sare 0). )

3
Il
—

M

(91 (IS0 @1/%) = Do (112 1*/) ) R (S (Sane ), ).

Il
—

n

By the definition of 1, a term of this sum can be nonzero only if

(56) < SoeglPd <4, e 1< m ol < 4

% € Ag(B), hence there are constants ¢y, ca > 0 such that
a<lelfi<a  (Yoen.

Due to (56), it follows that for nonzero terms of the sum in (55), we have

(57) 1oy <2 < ey

By the Leibniz rule (formulated in the proof of §6, Property 2°) applied to (55),
we have

(58) Y, . 0% R(Szp, )

=YY A (1S lP) = do (11 Sere el

n=1 LiUlx={1,...,0}
disjoint

o~
0% R (Sy-n (S2ne 0). ).
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The function ¢ — 91 (||Sane <p|\2/d) — 9o (|| S2ne <p||2/d) is composed of functions

[t 01 (1Y) — 9o (1Y D] € 2([(1,49))

and

@ — || Sane ]|

Hence, for proving that the term dﬁfll (191(H52"590||2/d) - 190(H5’2n6s0||2/d)) in

(58) is equi-bounded under the hypotheses (1°) (for a fixed L), it is sufficient to
prove the same for derivatives of ||Sane ¢[|?> up to a certain order. We have

dyp[Sare 0|2 = dys (Sone , Sane ) = 2R(Sane @, Sane 1),
d12/117¢2 [|S2ne <,0||2 = 2R(S2n: Y1, Sane12)

and the higher derivatives are zero. So we have using the Holder inequality

AylSme | =28 [ Sprso SoncT| < ISne ol 1Sl = i el

(27€)

Thanks to (57), this will be equi-bounded if U C {;||¥]| < 1}, ¥ €U, p € B, as
the bounded set A is absorbed by U. The same can be deduced for the second
derivative. B

Now, we have to estimate the term dﬁfj 0% Ry (Sg—n(Sane ), ) in (58). We

apply §10, Properties of an, namely the estimation (49), to the bounded set
—{Snw,gﬁéz% 02<77<Cl}

The supports of the functions ¢ € % are contained in B := = ¢1 B (for B convex
and balanced). Thanks to (57) we have Son.p € 2 for ¢ € %. Thus we get U

and C by §10, Properties of R,. Let
U= {QDE.A(B); Sncpeij{ Vn with iCQ <n< cl}.

U is a neighbourhood of zero in A(B) because it absorbs bounded sets in a metric
vector space. If ¢ € %, ¥1,...,9p € U, then ¢ := Soncp € HF and ; =
Sonctpj € U (j = 1,...,0) due to (57). If @] = [[Sane || < 1, then (by (56))
the term dﬁfjaaén (Sg-n(S2ne ), ) in (58) is multiplied by zero, so we have to

estimate this term only if ||@|| > 1, hence we can use (49). It follows using the
chain rule for the inner function Son. linear:

|72 0% R (Syn (Sane ), ) | = ]d#fzaaR (Sy-n@, )|

< 0.9 NLRL+D(L+1) < éciVL@L‘Fl)(L"‘I) e~ NLL+1)(L+1)
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due to (57). From (58) we deduce (53). O
PROOF OF (54): By (9), ¢l > lxz/l~! (norms in .#2?). If & < %||XB||_2/d7 then

2/d 2/d | _—1 2/d 2/d
I1Sel®/4 = [lp]?/4 - 71 > o]/ - 4 x| > 4.

Under this hypothesis we have by §11, Remark similarly to (55):

R(S: 9, f} (41 (S=0l1?/) = O (115e01*/) ) R(S: ,2)

- (911520 0112/ = 90 (1 Sare 0 I*/) ) R(Spn(Sanc ), ).

With (55) it gives
[R(Se0,2) = R(Seip,2)|

< 3 (91(ISane %) = Do (IS2ne 01%%))

n=1

: ‘EN(Szfn(S% ), x) = R(Sy-n(S2ne w)ax)"

If ¢ € 2N Ay, then & := San-p) € BN Ay,. By (50) this is < C - 27" and
by (57) this is < C - ( ) 1. By the above lemma, N Ay, = 0 for sufficiently

large ¢, so the constant in our estimation can be independent of q. Hence, (54) is
proved. ([
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