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Equality of two diffeomorphism

invariant Colombeau algebras

Jiř́ı Jeĺınek

Abstract. The two diffeomorphism invariant algebras introduced in Grosser M., Far-
kas E., Kunziger M., Steinbauer R., On the foundations of nonlinear generalized func-
tions I, II , Mem. Amer. Math. Soc. 153 (2001), no. 729, 93 pp., are identical.

Keywords: Colombeau algebra of generalized functions, representative, diffeomorphism
invariance

Classification: 46F, 46F05

The paper is a continuation of [9] and its only aim is to prove that both dif-

feomorphism invariant Colombeau-type algebras Gd and G2 introduced in [8] and
[6] (Grosser et al.) coincide. In [6] diverse possibilities to define Colombeau-type
algebras are researched; our result shows that there is only one diffeomorphism
invariant Colombeau-type algebra among them for a given domain Ω ⊂ R

d.

§1. In this paper, we use notations introduced in [9] and mostly we refer to [9].
This paper is devoted to prove the following

Theorem. For every open Ω ⊂ R
d, the algebras G2(Ω) and Gd(Ω) coincide.

As the algebras are quotient algebras G2 := E 2M/N and G
d := E dM/N ∩E dM , the

theorem says that for any representative R ∈ E 2M another representative R̃ ∈ E dM
can be found with R − R̃ ∈ N . To prove it, in all what follows, we assume that
R ∈ E 2M is given and we are going to construct R̃. This will be done in several
steps. In every step functions of variables ϕ, x are constructed and their properties

are presented with the aim to construct at last the required representative R̃. First
we show that it is sufficient to do it for representatives with compact support.

Proposition. Suppose that for any representativeR ∈ E 2M (R
d) such that there is

a compact K ⋐ R
d fulfilling R(ϕ, x) = 0 whenever x ∈ R

d
rK, a representative

Partially supported by the grant GAČR 201/00/0767 and partially by the grant MSM
113200007.
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R̃ ∈ E dM (R
d) can be found with R − R̃ ∈ N . Then for any open Ω ⊂ R

d the

algebras G2(Ω) and Gd(Ω) coincide.

Proof: Let R ∈ E 2M (Ω). Recall that unlike in [8] and [6] here a representa-

tive is defined on E(Ω) = A0(R
d) × Ω and we do not loose generality with this

assumption. Choose a locally finite covering

Ω =
⋃
Ωm with Ωm ⋐ Ω

and a partition of unity 1 =
∑
χm on Ω subordinated to this covering, χm ∈

D(Ωm), Km := suppχm. Then R =
∑
Rm if we denote Rm(ϕ, x) := R(ϕ, x) ·

χm(x) and we have Rm(ϕ, x) = 0 whenever x ∈ Ω r Km. Rm can be easily

extended to belong to E 2M (R
d) putting Rm(ϕ, x) = 0 whenever x ∈ R

d
r Km.

By hypothesis, we can find R̃m ∈ E dM (R
d) with R̃m − Rm ∈ N . Then, for every

m, we choose a test function σm ∈ D(Ωm) that is = 1 on a neighbourhood

of Km. The functions χm and σm are considered to be elements of E(Rd) as
functions independent of the first variable. Consequently, σm ∈ E dM . Considering

all representatives to be elements of E 2M (Ω) (i.e. restricted to A0(R
d)×Ω), we have

(note that N is an ideal) R−
∑
R̃mσm =

∑
(Rm− R̃mσm) =

∑
(Rm− R̃m)σm ∈

N , the sum being locally finite. From the same reason, R̃ :=
∑
R̃mσm ∈ E dM . R̃

is thus a required representative. �

§2. Remark. For B ⋐ R
d, it is known that D(B) is a Fréchet space. Its topology

can be generated by a countable system of norms defined by continuous scalar
products, e.g.

ϕ, ψ 7→

∫
∂ dm

∂ξm1 . . . ∂ξmd
ϕ(ξ) ·

∂ dm

∂ξm1 . . . ∂ξmd
ψ(ξ) dξ .

A continuous scalar product ϕ, ψ 7→ (ϕ, ψ) is C ∞, being sesqui-linear, and we
have

dψ(ϕ,ϕ) = 2ℜ(ϕ, ψ),

d2ψ1,ψ2(ϕ,ϕ) = 2ℜ(ψ1, ψ2);

the derivatives of higher orders are zero. Hence the norm generated by a con-
tinuous scalar product is C ∞ in all points except of origin. The function ψ 7→
(ψ, ψ) = ‖ψ‖2 is C ∞ always.

Notation. The function VN , used in Equivalent Definition [9, §7, (4
◦) and (5◦)]

of E 2M , can be

(1) VN (ϕ) =
( ∑

β∈Nd
0

1≤|β|≤N

∣∣ ∫ ξβϕ(ξ) dξ
∣∣ 2

)1/2
(ϕ ∈ A0).
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Evidently, this function fulfills [9, (6)]:

∀N ∈ N, B (bounded) ⊂ A0 ∃C1, C2 > 0 ∀ϕ ∈ B :

C2
∑

β∈N
d
0

1≤|β|≤N

∣∣∣∣
∫
ξβϕ(ξ) dξ

∣∣∣∣ ≤ VN (ϕ) ≤ C1
∑

β∈N
d
0

1≤|β|≤N

∣∣∣∣
∫
ξβϕ(ξ) dξ

∣∣∣∣ .

Evidently every multiple c ·VN (ϕ) satisfies these inequalities, so it can be used in
Equivalent Definition [9, §7, (4◦) and (5◦)]. Also the function

V ′
N (ϕ) =

( ∑

β∈Nd
0

1≤|β|≤N

‖ϕ‖
4|β|/d
L2

∣∣ ∫ ξβϕ(ξ) dξ
∣∣ 2

)1/2
(ϕ ∈ A0)

fulfills the above inequalities [9, (6)] that allows us to use it in Equivalent Defini-
tions [9, §7, (4◦), (5◦)]. Indeed, a bounded set is relatively compact, so ∃ c1, c2 > 0
(depending on B) ∀ϕ ∈ B we have c2 ≤ ‖ϕ‖

L2
≤ c1; [9, (6)] follows easily.

It can be checked that

(2) ‖Sεϕ‖
−2/d = ε · ‖ϕ‖−2/d ,

∫
Sεϕ(ξ)ξ

β dξ = ε|β|
∫
ϕ(ξ)ξβ dξ (β ∈ N

d
0),

so V ′
N (Sεϕ) = V

′
N (ϕ).

For all what follows, a function ρ ∈ A0([−1, 1]) is fixed such that

ρ(ξ) > 0 iff ξ ∈ ]−1, 1[ ,

ρε := Sερ , ϑ := ρ1/2 ∗ χ[−3/2, 3/2]

(convolution with the characteristic function),

ϑm(ξ) := ϑ(2
−mξ) (m integer).

So ϑm(ξ) = 1 iff ξ ∈ [−2m, 2m], 0 < ϑm(ξ) ≤ 1 iff ξ ∈ ]−2m+1, 2m+1[ and ϑm is
decreasing on [2m, 2m+1]. Denote furthermore

Km := [−2
m, 2m]d

and for ξ = (ξ1, . . . , ξd) ∈ R
d, denote ϑ⊗dm (ξ) := ϑm(ξ1) . . . ϑm(ξd). If there is no

danger of confusion, we will write simply ϑm(ξ) instead of ϑ
⊗d
m (ξ).
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§3. Thanks to §1, Proposition we can assume that the given representative R
belongs to E 2M (R

d) and that there is a compact K ⋐ Ω fulfilling R(ϕ, x) = 0 for

x ∈ R
d

rK. In this case, in the equivalent definitions of E 2M and N ([9, §§7, 8])
we can omit ∀K ⋐ Ω and replace the uniformity on K with the uniformity on
the whole of R

d. Denote by NL the number N from Equivalent Definition [9, §7,
(5◦)] holding at the same time for all |α| ≤ L and for all differentials of order
k ≤ L. Certainly, this equivalent definition remains valid if we take any greater
number for NL. We replace our representative with another one determining the
same generalized function, if needed, to obtain the following

Properties of R.
(1◦) There is an increasing sequence {NL}L∈N

⊂ N, NL ≥ L, fulfilling:

∀B ⋐ R
d, B (bounded) ⊂ A0(B), L ∈ N ∃U (absolutely convex open

neighbourhood of zero) ⊂ A(B), C > 0 ∀ ℓ = 1, 2, . . . , L, ψ1, . . . , ψℓ ∈ U ,
ϕ ∈ B+ 2U , ε ∈ ]0, 1], εNL ≥ VNL

(ϕ), α ∈ N
d
0, |α| ≤ L, x ∈ R

d:

(3)

∣∣∂α(dℓSεψ1,...,Sεψℓ
R)(Sεϕ, x)

∣∣ =
∣∣∂αdℓψ1,...,ψℓ

R(Sεϕ, x)
∣∣ ≤ ε−NL ,

∣∣∂αR(Sεϕ, x)
∣∣ ≤ Cε−NL .

(2◦) The first inequality in (3) can be written in the form

(4)
∣∣∂αdℓψ1,...,ψℓ

R(Sεϕ, x)
∣∣ ≤ ε−NL‖ψ1‖U . . . ‖ψℓ‖U

if we omit the hypothesis ψ1, . . . , ψℓ ∈ U , only supposing ψ1, . . . , ψℓ ∈ A(B)
(‖•‖U denotes the Minkowski functional assigned to U).

(3◦) If L = 1, the hypothesis εNL ≥ VNL
(ϕ) can be omitted, so that (3) and (4)

hold for every ε ∈ ]0, 1].
(4◦) Consequently, if B is convex, ϕ1, ϕ2 ∈ B + 2U , we have to consider two

cases.
If L = 1, |α| ≤ 1 then

(5)
∣∣∂α

(
R(Sεϕ2, x)−R(Sεϕ1, x)

)∣∣ ≤ ε−N1‖ϕ2 − ϕ1‖U .

Otherwise if |α| ≤ L and εNL ≥ VNL
(ϕ1), ε

NL ≥ VNL
(ϕ2), ℓ = 1, . . . , L,

ψ1, . . . , ψℓ−1 ∈ A(B), then

(6)
∣∣∂αdℓ−1ψ1,...,ψℓ−1

(
R(Sεϕ2, x)−R(Sεϕ1, x)

)∣∣

≤ ε−NL‖ψ1‖U . . . ‖ψℓ−1‖U ‖ϕ2 − ϕ1‖U .

Proof of (3◦): The items (1◦) and (2◦) are consequences of [9, §7, (5◦)]. The
equality in (3) follows from the chain rule where the inner function is linear, so
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its higher derivatives vanish. (2◦) follows from the linearity of differentials. This
holds for any representative with compact support. However, for (3◦) we have
to choose a suitable representative determining a given generalized function and
possibly we have to choose the number N1, too. Let R be a given representative.

Applying 12‖χB
‖−2N1/d V ′

N1
instead of VN1 in Equivalent Definition [9, §7, (5

◦)]

(or in Properties, item (1◦)) for L = 1, we get U and C > 0 such that (3) holds
if ℓ = 1, |α| ≤ 1, ψ1 ∈ U , ϕ ∈ B+ 2U and

(7) εN1 ≥ 1
2‖χB

‖−2N1/d V ′
N1(ϕ).

Let us define R′(ϕ, x) := ϑ(‖ϕ‖2N1/d V ′
N1
(ϕ)) · R(ϕ, x) (L 2 norms).

First we prove that R′ ∈ E 2M and R−R′ ∈ N . Let ε 7→ ϕε (see [9, §7, (2◦), §8,
(4◦)]) be a bounded path with asymptotically vanishing moments of order N1+1.
This means that the set {ϕε; ε ∈ ]0, 1]} is bounded and

V ′
N1+1(ϕ

ε) = O(εN1+1) (εց 0).

Consequently the set {‖ϕε‖; ε ∈ ]0, 1]} is bounded and by (2), as V ′
N1

≤ V ′
N1+1

,

we have

‖Sεϕ
ε‖2N1/d V ′

N1
(Sεϕ

ε) ≤ ‖ϕε‖2N1/d ε−N1 V ′
N1+1

(ϕε) = O(ε).

It follows that for a sufficiently small ε, Sεϕ
ε belongs to the open set (independent

of x)
{
ϕ ; ‖ϕ‖2N1/d V ′

N1
(ϕ) < 1

}
where R′(•, x) = R(•, x). Hence the assertions

R′ ∈ E 2M and R−R′ ∈ N are proved.
Now we want to prove that R′ fulfills (3◦). This means that the relations (3)

with R′ hold for all ε ∈ ]0, 1], provided L = ℓ = 1 (|α| ≤ 1). To this aim, for
ψ ∈ A(B) we first estimate

(8)

dψ∂
αR′(Sεϕ, x) = dψ∂

α
(
ϑ
(
‖Sεϕ‖

2N1/d V ′
N1
(Sεϕ)

)
·R(Sεϕ, x)

)

= dψϑ
(
‖Sεϕ‖

2N1/d V ′
N1(Sεϕ)

)
· ∂αR(Sεϕ, x)

+ ϑ
(
‖Sεϕ‖

2N1/d V ′
N1(Sεϕ)

)
· dψ∂

αR(Sεϕ, x)

= dψϑ
(
‖ϕ‖2N1/d ε−N1 V ′

N1
(ϕ)

)
· ∂αR(Sεϕ, x)

+ ϑ
(
‖ϕ‖2N1/d ε−N1 V ′

N1(ϕ)
)
· dψ∂

αR(Sεϕ, x).

If ‖ϕ‖2N1/d ε−N1 V ′
N1
(ϕ) > 2 then R′(Sεϕ, x) = 0, hence we have to estimate (8)

only if
1
2‖ϕ‖

2N1/d V ′
N1(ϕ) ≤ εN1 .
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By the Hölder inequality we have (χ denotes the characteristic function):

(9) 1 =

∫
ϕχ

B
≤ ‖ϕ‖ ‖χ

B
‖, i.e. ‖ϕ‖ ≥ ‖χ

B
‖−1.

Consequently
1
2‖χB

‖−2N1/d V ′
N1(ϕ) ≤ εN1

and this is exactly our hypothesis (7) assuring that (3) holds. Hence two terms
of (8) are estimated:

∣∣∂αR(Sεϕ, x)
∣∣ ≤ Cε−N1 ,

∣∣∂αdψR(Sεϕ, x)
∣∣ ≤ Cε−N1 .

It remains to estimate

(10) dψϑ
(
‖ϕ‖2N1/d ε−N1 V ′

N1(ϕ)
)
≤ max

t

∣∣∣ ddtϑ(t)
∣∣∣ ε−N1 ·dψ

(
‖ϕ‖2N1/d V ′

N1(ϕ)
)
.

By [9, §2, Proposition] about local equicontinuity of differentials there is an ab-
solutely convex open neighbourhood of zero U ⊂ A(B) such that

(11) dψ
(
‖ϕ‖2N1/d V ′

N1
(ϕ)

)
≤ 1

whenever ϕ ∈ B+ 2U , ψ ∈ U . Under these hypotheses, we have got

dψϑ
(
‖ϕ‖2N1/d ε−N1 V ′

N1(ϕ)
)
≤ C1ε

−N1

with a constant C1 depending only on ϑ. Due to (8) and (3), it follows

dψ∂
αR′(Sεϕ, x) ≤ C1C ε

−2N1 + Cε−N1 ≤ (C1 + 1)C ε
−2N1 .

Replacing U with a smaller one, we get ≤ ε−2N1 . It remains to estimate
∂αR′(Sεϕ, x). This is similar or simpler, so we let it to the reader. �

Proof of (4◦): Using the mean value theorem, we have for some τ ∈ ]0, 1[

∣∣∣∂αdℓ−1ψ1,...,ψℓ−1
R(S2−n ϕ2, x)− ∂αdℓ−1ψ1,...,ψℓ−1

R(S2−n ϕ1, x)
∣∣∣

≤
∣∣∣∂αdℓR(S2−n (τϕ1 + (1− τ )ϕ2), x)[ψ1, . . . , ψℓ−1, ϕ2 − ϕ1]

∣∣∣.

The function τ 7→ VN (τϕ1 + (1− τ )ϕ2) is convex because VN (ϕ) is the Euclidean

norm of the point with coordinates
∫
ξβϕ(ξ) dξ. Thus in the second case of (4◦),

VNL
(τϕ1 + (1− τ )ϕ2) ≤ εNL holds for all τ ∈ [0, 1] and we can apply (4). �
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§4. Notation. Let a number r ∈ N be given, let us consider the Fourier series
of a function ψ ∈ A(Kr) on the cube Kr+1 ⊂ R

d (§2, Notation, the function ϑ⊗dr
will be denoted simply by ϑr)

(12)

ψ(ξ) =
∑

β∈Zd

c′β e
2−r−1πiβ·ξ where β · ξ := β1ξ1 + · · ·+ βdξd ,

c′β = 2
−d(r+2)

∫
ψ(ξ) e−2

−r−1πiβ·ξ dξ .

As
∫
ψ = 0, we have c′0 = 0. As ϑr = 1 on Kr, we have as well

ψ(ξ) =
∑

β 6=0

c′β e
2−r−1πiβ·ξ ϑr(ξ).

We will use another expansion ψ =
∑
β 6=0

c′β γ
′
β where the functions γ

′
β are defined:

γ′β(ξ) = e
2−r−1πiβ·ξ ϑr(ξ)− c′′β ϑr(ξ)

with constants c′′β such that γ
′
β ∈ A. This means that

(13) c′′β

∫
ϑr(ξ) dξ =

∫
e2

−r−1πiβ·ξ ϑr(ξ) dξ .

It is known that the Fourier coefficients (12) of a test function tend rapidly to
zero if |β| → ∞. By (13), c′′β tend rapidly to zero as well.

We arrange the multi-indices β 6= 0 into a sequence
{
βj

}∞
j=1 in such a way

that the sequence
{
|βj |

}
is non-decreasing; then we change the notation writing

γ′j , c
′
j , . . . rather than γ

′
βj
, c′βj

, . . . . Then the above expansion takes the form

ψ =

∞∑

j=1

c′j γ
′
j .

Evidently |βj | ≤ j ≤ (2|βj |+1)
d (⇐ j does not exceed the number of the indices β

with |β| ≤ |βj |). Hence any multi-sequence
{
aβ

}
β
is moderated (i.e. |aβ | ≤ c|β|m

for some c and m) iff the sequence
{
aβj

}
j is moderated.

{
aβ

}
β tends rapidly to

zero iff
{
aβj

}
j tends rapidly to zero.

If U ⊂ A(Kr+1) is an absolutely convex open neighbourhood of zero, then
‖γ′j‖U

is a moderate sequence (this can be calculated e.g. if ‖γ′β‖U
is the norm

‖γ′β‖ from §2, Remark). So we get the following
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Result. If U ⊂ A(Kr+1) is an absolutely convex open neighbourhood of zero,
then there are γj ∈ A(Kr+1) (j ∈ N) such that

(14)

∞∑

j=1

‖γj‖U ≤ 1

and any function ψ ∈ A(Kr) has an expansion

ψ =
∑

cj γj

with coefficients cj tending rapidly to zero.

Indeed, choose a moderate sequence λj ր ∞ such that the functions γj :=
γ′j/λj ∈ A(Kr+1) fulfill (14) and then put cj = c

′
j · λj .

Definition of Rkrnω. Let to any k, r, n ∈ N and ω ∈ A0(Kr), a neighbourhood
of zero U in the space A(Kr+1) be assigned which is the unit ball for a smooth
norm (see §2, Remark), independent of n, following Properties of R (§3) with
B = {ω} ⊂ A(Kr+1) and all L ≤ k. Assume furthermore that U is as small as
|dψVNL

(ϕ)| ≤ 1 whenever L = 1, . . . , k, ϕ ∈ ω + 2U , ψ ∈ U , due to the local
equicontinuity of the differentials of C ∞ functions, [9, §2, Proposition].
Then the function ϕ, x 7→ Rkrnω(ϕ, x) is defined on the domain

(15) S2−n

(
ω + (U ∩A(Kr))

)
× R

d = S2−n(ω + U) ∩ A0(Kr−n)× R
d

as follows.

Rkrnω := lim
J∈N

J→∞

RJ ,

RJ (S2−n ϕ, x) :=

∫
· · ·

∫
R

(
S2−n

(
ϕ+

J∑
j=1

tjγj

)
, x

) J∏

j=1

ρδ(tj) dtj ,(16)

ϕ ∈ (ω + U) ∩ A0(Kr), ρδ := Sδ ρ (§2, following (2)), δ = δkn := 2
−n(k+1)Nk .

For the sake of simplicity of the notation, we do not indicate the dependence of
RJ on k, r, n, ω.

Properties of Rkrnω.
(1◦) If k, r, n ∈ N, ω ∈ A0(Kr), then Rkrnω is well defined on its domain (15). If

x ∈ R
d, ϕ ∈ ω + (U ∩ A(Kr)), then

(17) Rkrnω(S2−nϕ, x) = lim
J→∞

RJ (S2−n ϕ, x)
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uniformly with respect to ϕ, x and

(18) |Rkrnω(S2−nϕ, x)| ≤ C · 2nN1 ,

with a constant C not depending on n.

(2◦) If n ∈ N, x ∈ R
d, ℓ = 0, 1, . . . , L− 1, L ≤ k, α ∈ N

d
0, |α| ≤ L,

ϕ ∈ ω + (U ∩ A(Kr)), 2
−nNL−1 > VNL

(ϕ), ψ1, . . . , ψℓ ∈ U ∩ A(Kr), then

∂αdℓψ1,...,ψℓ
Rkrnω(S2−nϕ, x) = lim

J→∞
∂αdℓψ1,...,ψℓ

RJ (S2−n ϕ, x)(19)

uniformly with respect to x, ϕ, ψ1, . . . , ψℓ under the above conditions (k, r, n

fixed). Consequently ϕ, x 7→ ∂αdℓψ1,...,ψℓ
Rkrnω(S2−n ϕ, x) is continuous,

hence the order of derivatives (under the above conditions) does not matter.
Furthermore we have

∣∣∣∂αdℓψ1,...,ψℓ
Rkrnω(S2−nϕ, x)

∣∣∣ ≤ C 2nNL(20)

with a constant C not depending on n, and

∣∣∣∂αdℓψ1,...,ψℓ

(
Rkrnω(S2−nϕ, x)−R(S2−nϕ, x)

)∣∣∣ ≤ 2nNL · δkn .(21)

(3◦) Rkrnω is C ∞ with respect to the first variable on its domain (15) and there
is an absolutely convex open neighbourhood of zero V = Vkrω ⊂ A(Kr) not
depending on n such that if x ∈ R

d, n ∈ N, L ∈ N, ψℓ ∈ V (ℓ = 1, . . . , L),
ϕ ∈ ω + U , then

(22)
∣∣dLψ1,...,ψL

Rkrnω(S2−nϕ, x)
∣∣ ≤ bL · 2nN1 · δ−Lkn

with a constant bL depending only on L and ρ.

Proof of (17) and (19): By the definition (16) we have

∂αdℓψ1,...,ψℓ
RJ (S2−nϕ, x)

=

∫
· · ·

∫
∂αdℓψ1,...,ψℓ

R
(
S2−n

(
ϕ+

J∑
j=1

tjγj

)
, x

) J∏

j=1

ρδ(tj) dtj

and we have as well

∂αdℓψ1,...,ψℓ
RJ (S2−nϕ, x)

=

∫
· · ·

∫
∂αdℓψ1,...,ψℓ

R
(
S2−n

(
ϕ+

J∑
j=1

tjγj

)
, x

) J+1∏

j=1

ρδ(tj) dtj ,
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because
∫
ρδ(tJ+1) dtJ+1 = 1. It follows

(23)

∣∣∣∂αdℓψ1,...,ψℓ
RJ+1(S2−nϕ, x)− ∂αdℓψ1,...,ψℓ

RJ (S2−nϕ, x)
∣∣∣

=

∣∣∣∣∣

∫ δ

−δ
· · ·

∫ δ

−δ

[
∂αdℓψ1,...,ψℓ

R
(
S2−n

(
ϕ+

J+1∑
j=1

tjγj

)
, x

)

− ∂αdℓψ1,...,ψℓ
R

(
S2−n

(
ϕ+

J∑
j=1

tjγj

)
, x

)]
·
J+1∏

j=1

ρδ(tj) dtj

∣∣∣∣∣ .

Now we want to apply §3, Property of R (4◦) for ε = 2−n. By hypotheses of
§3, (4◦), there are two cases. For L = 1 this gives estimation

(24)

|RJ+1(S2−nϕ, x)−RJ (S2−nϕ, x)|

≤
∣∣∣
δ∫

−δ

· · ·
δ∫

−δ

2nN1‖tj+1γj+1‖U ·
∏J+1
j=1 ρδ(tj) dtj

∣∣∣

≤ 2nN1δkn‖γJ+1‖U ≤ ‖γJ+1‖U

(δ defined in (16)), so by (14) the limit in (17) is uniform. Thus Rkrnω is well
defined. Similarly (19) can be deduced from (23): By the local equicontinuity of
dVNL

(ϕ) noted in the definition of Rkrnω, we get using the mean value theorem

∣∣∣VNL

(
ϕ+

J∑
j=1

tjγj

)
− VNL

(ϕ)
∣∣∣ ≤

∥∥∥
J∑
j=1

tjγj

∥∥∥
U

≤ δ = 2−n(k+1)Nk ≤ 2−nNL−1.

From the hypothesis in (2◦) VNL
(ϕ) < 2−nNL−1, we obtain

∣∣∣VNL

(
ϕ+

J∑
j=1

tjγj

)∣∣∣ ≤

2−nNL that is the hypothesis in §3, Property (4◦). Thus, by §3, (4◦) (for ℓ =
0, 1, . . . , L− 1) we get from (23):

(25)

∣∣∣∂αdℓψ1,...,ψℓ
RJ+1(S2−nϕ, x)− ∂αdℓψ1,...,ψℓ

RJ (S2−nϕ, x)
∣∣∣

≤ 2nNL ‖ψ1‖U . . . ‖ψℓ‖U · δkn‖γJ+1‖U .

As above, thanks to (14), the uniform convergence of the limit in (19) and then
the equality (19) follows. �

Proof of (18) and (20): In all cases where the uniform convergence is already
proved, we have

∂αdℓψ1,...,ψℓ
Rkrnω(S2−n ϕ, x) = lim

J→∞
∂αdℓψ1,...,ψℓ

RJ (S2−n ϕ, x)

= lim
J→∞

∫
· · ·

∫
∂αdℓψ1,...,ψℓ

R
(
S2−n

(
ϕ+

J∑
j=1

tjγj

)
, x

) J∏

j=1

ρδ(tj) dtj .
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It was shown while proving (19) that the hypothesis in (2◦) VNL
(ϕ) < 2−nNL−1

implies VNL

(
ϕ+

J∑
j=1

tjγj

)
≤ 2−nNL , and this is the hypothesis in Properties of R

(§3) allowing us to use (3) and (4) for estimating the term ∂αdℓψ1,...,ψℓ
R

(
S2−n

(
ϕ+

J∑
j=1

tjγj

)
, x

)
in the last integral. By §3, Property (3◦) this hypothesis is not

needed for proving (18). Thus (18) and (20) follow from the corresponding prop-
erties of R.

�

Proof of (21): (25) holds for J = 0 as well with RJ = R. Adding the inequal-
ities (25), we get

∣∣∣∂αdℓψ1,...,ψℓ
RJ+1(S2−nϕ, x) − ∂αdℓψ1,...,ψℓ

R(S2−nϕ, x)
∣∣∣

≤ 2nNL ‖ψ1‖U . . . ‖ψℓ‖U · δkn

J+1∑

j=1

‖γj‖U ≤ 2nNL ‖ψ1‖U . . . ‖ψℓ‖U · δkn

due to (14). Hence the inequality (21) is proved. �

Proof of 3◦: For L ∈ N let ψ1, . . . , ψL ∈ A(Kr) be given functions, let

(26) ψℓ =
∞∑

j=1

cℓj γj , i.e. S2−nψℓ =
∞∑

j=1

cℓj S2−nγj (ℓ = 1, . . . , L)

be their expansions by §4, Notation with γj fulfilling (14). As lim
j→∞

cℓj = 0

(rapidly), there is an A > 0 for which

(27) |cℓj | ≤ A (∀ ℓ = 1, . . . , L, j ∈ N).

In the following calculation, h1, . . . , hL are real variables with

(28) |hℓ| <
1− δ

LA

and we have to put h1, . . . , hL = 0 to obtain the following equality:

dLψ1,...,ψL
Rkrnω(S2−n ϕ, x) =

∂L

∂h1 . . . ∂hL
lim
J→∞

RJ

(
S2−n

(
ϕ+

L∑
ℓ=1

hℓψℓ

)
, x

)

=
∂L

∂h1 . . . ∂hL
lim
J→∞

∫
· · ·

∫
R

(
S2−n

(
ϕ+

L∑
ℓ=1

hℓψℓ +
J∑
j=1

tjγj

)
, x

) J∏

j=1

ρδ(tj) dtj .
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By (26) this is equal to

(29)

∂L

∂h1 . . . ∂hL
lim
J→∞

∫
· · ·

∫
R

(
S2−n

(
ϕ+

L∑
ℓ=1

hℓ
∞∑
j=1

cℓj γj +
J∑
j=1

tjγj

)
, x

)

·
J∏

j=1

ρδ(tj) dtj

=
∂L

∂h1 . . . ∂hL
lim
J→∞

∫
· · ·

∫
R

(
S2−n

(
ϕ+

L∑
ℓ=1

hℓ
J∑
j=1

cℓj γj +
J∑
j=1

tjγj

)
, x

)

·
J∏

j=1

ρδ(tj) dtj

because by §3, Property (4◦), (27) and (28), the difference of both expressions
after lim

J→∞
is estimated by

2nN1
L∑

ℓ=1

|hℓ|
∞∑

j=J+1

|cℓj | · ‖γj‖U ≤ 2nN1(1− δ)
∞∑

j=J+1

‖γj‖U .

This tends to zero thanks to (14), only we have to verify the hypothesis in §3, (4◦)

that ϕ+
L∑
ℓ=1

hℓ
∞∑
j=1

cℓj γj +
J∑
j=1

tjγj and ϕ+
L∑
ℓ=1

hℓ
J∑
j=1

cℓj γj +
J∑
j=1

tjγj are elements

of ω + 2U . Indeed, ϕ ∈ ω + U and for the other terms we have by (28), (27)
and (14)

∥∥∥∥∥∥

L∑

ℓ=1

hℓ

∞∑

j=1

cℓj γj +

J∑

j=1

tjγj

∥∥∥∥∥∥
U

<

L∑

ℓ=1

1− δ

LA

∞∑

j=1

A‖γj‖U +
J∑

j=1

δ‖γj‖U ≤ 1.

Thus (29) is verified. After a substitution in (29) (and putting h1, . . . , hL = 0)
we get

(30) dLψ1,...,ψL
Rkrnω(S2−n ϕ, x) =

∂L

∂h1 . . . ∂hL

lim
J→∞

∫
· · ·

∫
R

(
S2−n

(
ϕ+

J∑
j=1

tjγj

)
, x

)
·
J∏

j=1

ρδ

(
tj −

L∑
ℓ=1

hℓcℓj

)
dtj

= lim
J→∞

∫
· · ·

∫
R

(
S2−n

(
ϕ+

J∑
j=1

tjγj

)
, x

)

·
∂L

∂h1 . . . ∂hL

J∏

j=1

ρδ

(
tj −

L∑
ℓ=1

hℓcℓj

)
dtj
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provided the last limit is uniform with respect to hℓ, |hℓ| <
1−δ
LA (ℓ = 1, . . . , L).

Now we are going to prove it. Let us denote the last integral by IJ . Using the
Leibniz rule for the derivation of a product:

∂

∂hℓ

J∏

j=1

ρδ

(
tj −

L∑
ℓ=1

hℓcℓj

)
=

J∑

jℓ=1

(
− cℓ,jℓ

) ∂

∂tjℓ

J∏

j=1

ρδ

(
tj −

L∑
ℓ=1

hℓcℓj

)
,

we obtain

IJ =

∫
· · ·

∫
R

(
S2−n

(
ϕ+

J∑
j=1

tjγj

)
, x

)

·
J∑

j1,...,jL=1

( L∏

ℓ=1

−cℓ,jℓ
∂

∂tjℓ

) J∏

j=1

ρδ

(
tj −

L∑
ℓ=1

hℓcℓj

)
dtj .

Using the Kronecker delta (δ
j′

j is the truth value of the statement j = j
′) we can

write

IJ =

∫
· · ·

∫
R

(
S2−n

(
ϕ+

J∑
j=1

tjγj

)
, x

)

·
J∑

j1,...,jL=1

( L∏

ℓ=1

−cℓ,jℓ

) J∏

j=1

(
∂
∂tj

)PL
ℓ=1 δ

jℓ
j ρδ

(
tj −

L∑
ℓ=1

hℓcℓj

)
dtj

and we have as well

IJ =

∫
· · ·

∫
R

(
S2−n

(
ϕ+

J∑
j=1

tjγj

)
, x

)

·
J+1∑

j1,...,jL=1

( L∏

ℓ=1

−cℓ,jℓ

) J+1∏

j=1

(
∂
∂tj

)PL
ℓ=1 δ

jℓ
j ρδ

(
tj −

L∑
ℓ=1

hℓcℓj

)
dtj .

Indeed, if some jℓ = J+1, then the term ρδ

(
tJ+1−

L∑
ℓ=1

hℓcℓ,J+1

)
is differentiated

and so its integral is equal to 0; else its integral is is equal to 1. It follows

IJ+1 − IJ =
∫
· · ·

∫ [
R

(
S2−n

(
ϕ+

J+1∑
j=1

tjγj

)
, x

)
−R

(
S2−n

(
ϕ+

J∑
j=1

tjγj

)
, x

)]

·
J+1∑

j1,...,jL=1

( L∏

ℓ=1

−cℓ,jℓ

) J+1∏

j=1

(
∂
∂tj

)PL
ℓ=1 δ

jℓ
j ρδ

(
tj −

L∑
ℓ=1

hℓcℓj

)
dtj .
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By (27) and (28) we have
∣∣ L∑
ℓ=1

hℓcℓj
∣∣ ≤ 1−δ, so |tj | ≤ 1 or ρδ

(
tj−

L∑
ℓ=1

hℓcℓj

)
= 0,

and we can apply §3, Property of R (4◦). We get

|IJ+1 − IJ | ≤ 2
nN1‖γJ+1‖U

J+1∑

j1,...,jL=1

L∏

ℓ=1

|cℓ,jℓ |
J+1∏

j=1

∥∥∂
PL

ℓ=1 δ
jℓ
j ρδ

∥∥
L1
.

It is
∥∥ρδ

∥∥
L1
= 1 (§2, following (2)) and, in the last product, for given j1, . . . , jL

there are at most L indices j for which ρδ is differentiated. Thus this product can
be estimated

J+1∏

j=1

∥∥∂
PL

ℓ=1 δ
jℓ
j ρδ

∥∥
L1
=
J+1∏

j=1

δ−
PL

ℓ=1 δ
jℓ
j

∥∥∂
PL

ℓ=1 δ
jℓ
j ρ

∥∥
L1

≤ δ−
PJ+1

j=1

PL
ℓ=1 δ

jℓ
j

(
max
0≤ℓ≤L

‖∂ℓρ‖
L1

)L
= δ−L · bL

with a constant bL depending only on ρ and L. It follows

(31)

|IJ+1 − IJ | ≤ 2
nN1δ−LbL‖γJ+1‖U

J+1∑

j1,...,jL=1

L∏

ℓ=1

|cℓ,jℓ |

= 2nN1δ−LbL‖γJ+1‖U

L∏

ℓ=1

J+1∑

j=1

|cℓj | ≤ 2nN1δ−LbL‖γJ+1‖U

L∏

ℓ=1

∞∑

j=1

|cℓj |

= 2nN1cLδ−LbL‖γJ+1‖U

where the constant c = max
ℓ=1,...,L

∑∞
j=1 |cℓj | depends only on ψ1, . . . , ψL and r.

Now the uniform convergence of (30) can be deduced from (14). The smoothness
is verified; it remains to deduce the estimations.
The inequality (31) holds for J = 0 as well with I0 = 0. Adding these inequal-

ities we get

|IJ | ≤ 2nN1cLδ−LbL

J∑

j=1

‖γj‖U ≤ 2nN1cLδ−LbL .

This is an estimation for the last integral in (30). Hence

|dLψ1,...,ψL
Rkrnω(S2−n ϕ, x)| ≤ bLc

L2nN1 · δ−L.
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bL depends only on ρ and L, c is the constant in (31), c = 1 if ψ1, . . . , ψL belong
to

V =
{
ψ ∈ A(Kr); ψ =

∑
cjγj ,

∑
|cj | ≤ 1

}
.

By §4, Result γj depends on U not depending on n. It remains to prove that V
is a neighbourhood of zero in A(Kr). It is known that the Fourier coefficients
of functions ψ running over a bounded set in A(Kr) tend uniformly rapidly to
zero. Evidently the same holds for the coefficients cj in §4, Notation. Hence
any bounded set is absorbed by V . In a metric vector space such sets V are
neighbourhoods of zero. �

§5. Partition of unity. The space D has the property of smooth partition of
unity expressed by the following

Theorem. For B ⋐ R
d, let {ωs + Us}s∈S be an open covering of the space

D(B), where S is an arbitrary set of indices, ωs ∈ D(B) (∀ s ∈ S), Us are open
neighbourhoods of zero in D(B). Then there is a locally finite smooth (i.e. C ∞)
partition of unity on D(B)

1 =

∞∑

m=1

Φm

subordinated to this covering.

This means:

1◦ The functions Φm : D(B)→ [0, 1], fulfilling this equality, are C ∞and

∀m ∃ s ∈ S : suppΦm ⊂ ωs + Us .

2◦ For every ω ∈ D(B) there is an absolutely convex open neighbourhood of
zero U ⊂ D(B) such that ω + U meets only a finite number of supports of
functions Φm.

For the proof, we refer to [13, (5.3.8)], where a more general theorem is proved
concerning several cathegories of smoothness, not only C ∞. Hypotheses: D is a
Lindelöf locally convex space and there are sufficiently many C ∞ functions on D

so that they generate the original topology on DṪhis is fulfilled, see §2, Remark.

Corollary. For B ⋐ R
d, let {ωs + Us}s∈S be an open covering of the space

A0(B), where (∀ s ∈ S) ωs ∈ A0(B) and Us is an open neighbourhood of zero in
A(B). Then there is a locally finite smooth partition of unity on A0(B)

1 =

∞∑

m=1

Φm

subordinated to this covering.
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Proof: We can write Us = Ũs ∩ A(B) where Ũs are neighbourhoods of zero

in the space D(B). Then we apply Theorem to the covering
{
(ωs + Ũs)

}
s ∪

{D(B)r A0(B)} of D(B). �

§6. Notation. Let us have chosen k, r ∈ N. Then, for every ω ∈ A0(Kr), we have
a neighbourhood of zero Uω ⊂ A(Kr) (independent of n) such that ∀n ∈ N the

function Rkrnω is defined by §4, on S2−n(ω+Uω)×R
d. Thus we have a covering

of A0(Kr) with the sets ω + Uω. We choose a partition of unity 1 =
∑∞
m=1 Φm

on A0(Kr) by the above corollary. For every m, we choose a test function ωm for
which suppΦm ⊂ ωm + Uωm ; we will use the notation Um rather than Uωm .

Definition of Rkrn. With the above notation, for ϕ ∈ A0(Kr)
(so S2−n ϕ ∈ A0(Kr−n)) we define

(32) Rkrn(S2−nϕ, x) :=

∞∑

m=1

Φm(ϕ) · Rkrnωm
(S2−nϕ, x).

If ϕ does not belong to suppΦm, the term of this sum is considered to be zero
even if Rkrnωm

(S2−nϕ, x) is not defined.

Properties of Rkrn. (1
◦) For every k, r, n ∈ N, the function Rkrn is defined on

A0(Kr−n)× R
d.

Moreover, for every ω ∈ A0(Kr) and L ∈ N0, there exist an absolutely convex
open neighbourhood of zero U ⊂ A(Kr) and a constant C > 0, both independent

of n, such that for every n ∈ N and x ∈ R
d the following hold.

(2◦) If 1 ≤ L ≤ k, ℓ = 0, 1, . . . , L− 1, α ∈ N
d
0, |α| ≤ L, ϕ ∈ ω + U , 2−nNL−1 >

VNL
(ϕ), ψ1, . . . , ψℓ ∈ U , then ϕ, x 7→ dℓψ1,...,ψℓ

∂αRkrn(S2−nϕ, x) is contin-

uous and

∣∣∣dℓψ1,...,ψℓ
∂αRkrn(S2−nϕ, x)

∣∣∣ ≤ C · 2nNL,(33)
∣∣∣∂αdℓψ1,...,ψℓ

(
Rkrn(S2−nϕ, x) −R(S2−nϕ, x)

)∣∣∣ ≤ C 2nNL · δkn(34)

(δ = δkn by (16)).

(3◦) Rkrn is C ∞ with respect to the first variable on its domain A0(Kr−n) and
if ϕ ∈ ω + U and ψℓ ∈ U (ℓ = 1, . . . , L), then

∣∣dLψ1,...,ψL
Rkrn(S2−nϕ, x)

∣∣ ≤ C 2nN1 · δ−Lkn .

Proof of (2◦): If ω ∈ A0(Kr), we choose a neighbourhood of zero U ⊂ A(Kr)
such that ω + U meets only a finite number of supports of the functions Φm
(by 5.2◦). So U can be chosen as small as (∀m)

(35) either (ω + U) ∩ suppΦm = ∅ or (ω + U) ⊂ ωm + Um .



Diffeomorphism invariant Colombeau algebras II 649

Furthermore, thanks to [9, §2, Proposition], let U be as small as

(36)
∣∣∣dℓψ1,...,ψℓ

Φm(ϕ)
∣∣∣ ≤ 1

whenever 1 ≤ ℓ ≤ k − 1, m ∈ N, ϕ ∈ ω + U , ψ1, . . . , ψℓ ∈ U ; for ℓ = 0 this is
fulfilled, too. Now we use the following Leibniz rule for derivation of a product of
two functions: if F1, F2 are two smooth functions on (a part of) a locally convex
space, then

dℓ
(
F1(ϕ)F2(ϕ)

)
[ψ1, . . . , ψℓ] =

∑

I1
I1∪I2={1,...,ℓ}
disjoint

d#I1
ψI1

F1(ϕ) · d
#I2
ψI2

F2(ϕ),

where, for I =
{
i1, . . . , i#I

}
⊂ {1, . . . , ℓ}, ψI denotes the finite sequence ψi1 , . . . ,

ψi#I
and the summation is extended over all ordered decompositions of multi-

index (1, . . . , ℓ) in two disjoint multi-indices I1, I2 that are written in the increas-
ing order. Unlike the chain rule (theorem on the derivative of the composition),
here the multi-index I1 or I2 can be empty. The proof of the Leibniz formula
can be deduced easily from the chain rule if the outer function is F (u, v) = uv,
u = F1, v = F2.
We apply the Leibniz rule for differentiating the product to the defining for-

mula (32):

dℓψ1,...,ψℓ
∂αRkrn(S2−nϕ, x)

=
∞∑

m=1

∑

I1
I1∪I2={1,...,ℓ}
disjoint

d#I1
ψI1

Φm(ϕ) · d
#I2
ψI2

∂αRkrnωm
(S2−nϕ, x)

and, by (35) as ϕ ∈ ω+U , the first sum is extended only over a finite number ofm
for which (ω+U) ⊂ ωm+Um. Then (ω+U)−(ω+U) ⊂ (ωm+Um)−(ωm+Um);
for absolutely convex sets it follows U ⊂ Um. Hence the functions Rkrnωm

,
fulfilling §4, Properties on ωm + Um fulfil it the more on ω + U . By the above
Leibniz formula, we estimate dℓψ1,...,ψℓ

∂αRkrn(S2−nϕ, x) using (36) for estimating

the term d#I1
ψI1

Φm(ϕ) and using §4, Properties of Rkrnω for estimating the term

d
#I2
ψI2

∂αRkrnωm
(S2−nϕ, x). So we deduce (33) from the corresponding inequality

(20) in Properties of Rkrnω. The constant C in (33) depends only on the constants
assigned by §4, Properties to the functions Rkrnωm

and on the used finite set of
terms of the sum

∑
m
, so it is independent of n.
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For estimating ∂αdℓψ1,...,ψℓ

(
Rkrn(S2−nϕ, x)−R(S2−nϕ, x)

)
, we apply the Leib-

niz formula to the product
∑∞
m=1 Φm(ϕ)·

(
Rkrnωm

(S2−nϕ, x)−R(S2−nϕ, x)
)
and

proceed similarly. �

Proof of (3◦): Unlike in §4, Properties of Rkrnω, here the neighbourhood U
depends on L. We chose U as small as (36) hold whenever 1 ≤ ℓ ≤ L, m ∈ N,
ϕ ∈ ω + U , ψ1, . . . , ψℓ ∈ U . Denote by Vm the neighbourhood V defined by §4
(3◦) for the function Rkrnωm

and chose furthermore U such that we have instead
of (35):

either (ω + U) ∩ suppΦm = ∅ or (ω + U) ⊂ ωm + (Vm ∩ Um).

Then we follow the above proof and deduce (3◦) from the corresponding properties
of Rkrnω, §4: (18) and the item (3

◦). �

§7. Notations. Choose test functions ψα ∈ D(Kr rKr−1) (α ∈ N
d
0, 0 ≤ |α| ≤

Nk), fulfilling (like in [8, (22), (23)])
∫
ψα(ξ) · ξ

α dξ = 1

∫
ψα(ξ) · ξ

β dξ = 0 for β 6= α, 0 ≤ |β| ≤ Nk .

Let Λr : D(Kr+1) → D(Kr) be a continuous (hence smooth) linear mapping

defined (see end of §2, ϑr means ϑ
⊗d
r ):

Λrϕ := ϕ · ϑr−1 +
∑

0≤|α|≤Nk

cα ψα

with such constants cα depending on ϕ that

∀β ∈ N
d
0, 0 ≤ |β| ≤ Nk :

∫
Λr ϕ(ξ)ξ

β dξ =

∫
ϕ(ξ)ξβ dξ .

This means
∫
ϕ(ξ)ξβ dξ =

∫
ϑr−1(ξ)ϕ(ξ)ξ

β dξ+cβ , hence cβ are well determined;
Λr maps A0(Kr+1) into A0(Kr) and A(Kr+1) into A(Kr). Λr is identical on
D(Kr−1); for ϕ ∈ A0(Kr+1) and N ≤ Nk we have VN (Λrϕ) = VN (ϕ).

Definition of R′
krn. Let k, n ∈ N be given. For r ∈ N, we define the functions

R′
krn on A0(Kr−n)×R

d by induction as follows. R′
k1n = Rk1n. If R

′
krn is already

defined on A0(Kr−n)× R
d, we define

(37) R′
k,r+1,n(S2−nϕ, x) :=

Rk,r+1,n(S2−nϕ, x) +R′
krn

(
S2−n(Λrϕ), x

)
−Rk,r+1,n

(
S2−n(Λrϕ), x

)

for ϕ ∈ A0(Kr+1), x ∈ R
d .
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Properties of R′
krn. (1

◦) For every k, r, n ∈ N the function R′
krn is defined on

A0(Kr−n)× R
d and for ϕ ∈ A0(Kr−n−1) it is R

′
k,r,n(ϕ, x) = R

′
k,r+1,n(ϕ, x).

Moreover, for every ω′ ∈ A0(Kr) and L ∈ N0 there is an absolutely convex open
neighbourhood of zero U ′ ⊂ A(Kr) and a constant C

′
kr > 0, both independent

of n, such that for every n ∈ N, x ∈ R
d the following hold.

(2◦) If 1 ≤ L ≤ k, ℓ = 0, 1, . . . , L− 1, α ∈ N
d
0, |α| ≤ L, ϕ′ ∈ ω′ + U ′, 2−nNL−1 >

VNL
(ϕ′), ψ′

1, . . . , ψ
′
ℓ ∈ U ′, then ϕ′, x 7→ dℓψ′

1,...,ψ
′

ℓ

∂αR′
krn(S2−nϕ′, x) is con-

tinuous and

∣∣∣dℓψ′

1,...,ψ
′

ℓ
∂αR′

krn(S2−nϕ′, x)
∣∣∣ ≤ C′

kr 2
nNL ,(38)

∣∣∣∂αdℓψ′

1,...,ψ
′

ℓ

(
R′
krn(S2−nϕ′, x)−R(S2−nϕ′, x)

)∣∣∣ ≤ C′
kr 2

nNL · δkn .(39)

(3◦) R′
krn is C ∞ with respect to the first variable on its domain A0(Kr−n) and

∀ϕ′ ∈ ω′ + U ′, ψ′
ℓ ∈ U ′ (ℓ = 1, . . . , L), it is

∣∣dLψ′

1,...,ψ
′

L
R′
krn(S2−nϕ′, x)

∣∣ ≤ C′
kr 2

nN1 · δ−Lkn .

Proof of (38): (1◦) follows easily from the fact that Λr is identical onA0(Kr−1).
The other properties will be proved by induction. For r = 1 this is affirmed by
§6, Properties of Rkrn. Assuming that (38) is satisfied for un certain r, we
have to prove it for r + 1. So we have to prove that every one of the three
terms on the right-hand side of the defining equality (37) satisfies (38). This is
clear for Rk,r+1,n(S2−nϕ, x) due to Properties of Rkrn, (33). We are going to

prove it for R′
krn(S2−n(Λrϕ), x). Let, by the hypothesis, ω ∈ A0(Kr+1). Then

ω′ := Λr(ω) ∈ A0(Kr) and by the induction assumption we have U
′ ⊂ A(Kr)

and C′
kr > 0, both independent of n, fulfilling (2

◦). Now, U := Λ−1r U ′ is a neigh-
bourhood of zero in A(Kr+1). For ψj ∈ U (j = 1, . . . , ℓ) and ϕ ∈ ω+U we have
ψ′
j := Λr ψj ∈ U ′, ϕ′ := Λrϕ ∈ ω′ + U ′, hence (chain rule with the inner function

Λr linear)

∣∣∣dℓψ1,...,ψℓ
∂αR′

krn(S2−n(Λrϕ), x)
∣∣∣ =

∣∣∣dℓψ′

1,...,ψ
′

ℓ
∂αR′

krn(S2−nϕ′, x)
∣∣∣ ≤ C′

kr 2
nNL .

Exactly by the same way we deduce the same estimation for the last term in (37),
i.e. ∣∣∣dℓψ1,...,ψℓ

∂αRk,r+1,n(S2−n(Λrϕ), x)
∣∣∣ ≤ C 2nNL ,

only we have to start with (33) instead of the induction assumption. Thus (38)
is proved by induction. �
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Proof of (39): Taking (39) as the induction assumption, we get by the recurrent
definition (37) of R′

krn:

∣∣∣dℓψ1,...,ψℓ
∂α

(
R′
k,r+1,n(S2−nϕ, x)−R(S2−nϕ, x)

)∣∣∣

≤
∣∣∣dℓψ1,...,ψℓ

∂α
(
Rk,r+1,n(S2−nϕ, x) −R(S2−nϕ, x)

)∣∣∣

+
∣∣∣dℓψ1,...,ψℓ

∂α
[
R′
k,r,n(S2−n(Λrϕ), x)−R(S2−n(Λrϕ), x)

]

− dℓψ1,...,ψℓ
∂α

[
Rk,r+1,n(S2−n(Λrϕ), x) −R(S2−n(Λrϕ), x)

]∣∣∣.

As above, we estimate every one of these three terms using (34) and the induction
assumption. �

Proof of (3◦): by §6 (3◦) can be the same as the proof of (38). �

§8. Definition of R′
kn. We define

R′
kn(S2−nϕ, x) = lim

r→∞
R′
krn(S2−nϕ, x)

for ϕ ∈ A0(R
d) and x ∈ R

d. Every ϕ belongs to A0(Kr−1) for some r ∈ N; up
from this r the sequence

{
R′
krn

}
r is constant thanks to §7, Property 1

◦, so it is

R′
kn(S2−nϕ, x) = R′

krn(S2−nϕ, x).

Properties of R′
kn. (1

◦). For every k, n ∈ N the function R′
kn is defined on

A0(R
d)× R

d.

Moreover, if B ⋐ R
d, B a bounded set ⊂ A0(B) and L ∈ N0, then there is an

absolutely convex open neighbourhood of zero U ′ = U ′
k ⊂ A(B) and a constant

C′
k > 0, both independent of n, such that for every n ∈ N, x ∈ R

d the following
hold.

(2◦) If 1 ≤ L ≤ k, ℓ = 0, 1, . . . , L − 1, α ∈ N
d
0, |α| ≤ L, ϕ ∈ B, 2−nNL−1 >

VNL
(ϕ), ψ1, . . . , ψℓ ∈ U ′, then ϕ, x 7→ dℓψ′

1,...,ψ
′

ℓ

∂αR′
kn(S2−nϕ, x) is contin-

uous and

∣∣∣dℓψ1,...,ψℓ
∂αR′

kn(S2−nϕ, x)
∣∣∣ ≤ C′

k 2
nNL ,(40)

∣∣∣∂αdℓψ1,...,ψℓ

(
R′
kn(S2−nϕ, x)−R(S2−nϕ, x)

)∣∣∣ ≤ C′
k 2

nNL · δkn .(41)

(3◦) R′
kn is C ∞ with respect to the first variable and if ϕ ∈ B, ψℓ ∈ U ′

(ℓ = 1, . . . , L), then

(42)
∣∣dLψ1,...,ψL

R′
kn(S2−nϕ, x)

∣∣ ≤ C′
k 2

nN1 · δ−Lkn .
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Proof: We have R′
kn(S2−nϕ, x) = R′

krn(S2−nϕ, x) for ϕ ∈ A0(Kr−1) so by §7,
Property (3◦), R′

kn is smooth with respect to the first variable on everyA0(Kr−1).
As smoothness depends only on the behaviour of R′

kn on bounded sets, R
′
kn is

smooth on A0(R
d). For proving the estimations, we can assume without loss of

generality that B = Kr−1 for some r ∈ N. It is known that the bounded sets in
D are relatively compact; thus, for a given L, the set B can be covered with a
finite number of sets ω′m + U ′

m where U
′
m is assigned to ω

′
m by §7, Properties of

R′
krn. Putting U

′ =
⋂
U ′
m, we get the properties of R

′
kn from Properties of R

′
krn.

�

§9. Up to now, we have constructed functions that were C ∞ with respect to the
first variable. Now we are going to regularize the function R′

kn by convolution
with respect to the second variable to obtain a simultaneously C ∞ function.

Notation. The function ρδ is introduced in §2, Notation. If k, n are chosen, we
have still δ = δkn = 2

−n(k+1)Nk . Denote furthermore

ρ⊗d(x) := ρ(x1) · . . . · ρ(xd), ρ⊗dδ (x) := ρδ(x1) · . . . · ρδ(xd)

for x = (x1, . . . , xd) ∈ R
d .

Definition. We define a function R̃kn on A0(R
d)×R

d by convolution as follows.

R̃kn(ϕ, x) := R
′
kn(ϕ, x) ∗ ρ

⊗d
δ (x) =

∫
R′
kn(ϕ, y) ρ

⊗d
δ (x− y) dy.

Properties of R̃kn. For every k, n ∈ N, R̃kn is a C ∞ function on A0(R
d)×R

d.

That is: R̃kn ∈ E(Rd). Moreover, if B ⋐ R
d, B a bounded set ⊂ A0(B) and

L ∈ N, then there is an absolutely convex open neighbourhood of zero U = Uk ⊂

A(B) and a constant C̃k > 0, both independent of n, such that for every n ∈ N,

x ∈ R
d, ℓ = 0, 1, . . . , L, ψ1, . . . , ψℓ ∈ U , ϕ ∈ B, α ∈ N

d
0, |α| ≤ L, we have

(43)
∣∣∣dℓψ1,...,ψℓ

∂α R̃kn(S2−nϕ, x)
∣∣∣ ≤ C̃k 2

nN1 · δ−2Lkn .

If in addition L ≤ k, 2−nNL−1 > VNL
(ϕ) and ℓ ≤ L− 1, then

(44)
∣∣∣dℓψ1,...,ψℓ

∂α R̃kn(S2−nϕ, x)
∣∣∣ ≤ C̃k 2

nNL .

If in addition |α| ≤ L− 1, then

(45)
∣∣∣∂αdℓψ1,...,ψℓ

(
R̃kn(S2−nϕ, x)−R(S2−nϕ, x)

)∣∣∣ ≤ C̃k 2
nNL · δkn .
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Proof of (43):

∣∣∣∂αdℓψ1,...,ψℓ
R̃kn(S2−nϕ, x)

∣∣∣ =
∣∣∣∂αdℓψ1,...,ψℓ

(
R′
kn(S2−nϕ, x) ∗ ρ⊗dδ (x)

)∣∣∣

=
∣∣∣
(
dℓψ1,...,ψℓ

R′
kn(S2−nϕ, x)

)
∗ ∂αρ⊗dδ (x)

∣∣∣ .

By (42), this is

≤ C′
k 2

nN1 · δ−L ‖∂αρ⊗dδ ‖
L1
= C′

k 2
nN1 · δ−L δ−|α| ‖∂αρ⊗d‖

L1
.

As |α| ≤ L, we obtain (43).

We see that for given k, n the derivatives
∣∣dℓψ1,...,ψℓ

∂α R̃kn(S2−nϕ, x)
∣∣ are equi-

bounded if ϕ ∈ B, x ∈ R
d, hence they are continuous on B×R

d for any bounded
B ⊂ A0(B) × R

d (B ⋐ R
d). They are continuous on A0(B) × R

d because
they are continuous on convergent sequences in a metric space. Thus the order of

taking derivatives does not matter and R̃kn is smooth ([13, 1.11.5.(2
◦)]). �

Proof of (44):

∣∣∣∂αdℓψ1,...,ψℓ
R̃kn(S2−nϕ, x)

∣∣∣ =
∣∣∣∂αdℓψ1,...,ψℓ

(
R′
kn(S2−nϕ, x) ∗ ρ⊗dδ (x)

)∣∣∣

=
∣∣∣
(
∂αdℓψ1,...,ψℓ

R′
kn(S2−nϕ, x)

)
∗ ρ⊗dδ (x)

∣∣∣ .

Then we deduce easily (44) from (40). �

Proof of (45): We first estimate

∣∣∣∂αdℓψ1,...,ψℓ
R̃kn(S2−nϕ, x)− ∂αdℓψ1,...,ψℓ

R′
kn(S2−nϕ, x)

∣∣∣

=

∣∣∣∣
∫ (

∂αdℓψ1,...,ψℓ
R′
kn(S2−nϕ, y)− ∂αdℓψ1,...,ψℓ

R′
kn(S2−nϕ, x)

)
ρ⊗dδ (x− y) dy

∣∣∣∣

≤ sup
{∣∣∣∂αdℓψ1,...,ψℓ

R′
kn(S2−nϕ, y)− ∂αdℓψ1,...,ψℓ

R′
kn(S2−nϕ, x)

∣∣∣ ;

|x1 − y1| ≤ δ, . . . , |xd − yd| ≤ δ
}
≤ C′

k 2
nNL · d δ

because the function x 7→ ∂αdℓψ1,...,ψℓ
R′
kn(S2−nϕ, x) has its derivatives of order 1

estimated by (40). Then (45) follows from (41). �

§10. Lemma. LetB be a bounded set in D(Rd). Then there is a natural number

k such that V ′
Nk
(ϕ) ≥ 2−k for all ϕ ∈ B (V ′

N defined by §2, Notation).

As V ′
N is non-decreasing, this inequality holds for all sufficiently large k.
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Proof: If not, there would be a sequence {ϕk}
∞
k=1 ⊂ B such that V ′

Nk
(ϕk) < 2

−k

(∀ k). As B is a metrizable compact, a subsequence
{
ϕkn

}∞
n=1

is convergent in

A0, limϕkn
= ϕ ∈ A0. We have V

′
N (ϕk) ≤ V ′

Nk
(ϕk) < 2

−k for N ≤ Nk. As

Nk ր ∞ (see §3, Properties of R), we have 0 ≤ V ′
N (ϕ) ≤ lim 2

−k = 0 for all
N ∈ N, that is impossible. (Proof: If ϕ has all moments of order ≥ 1 equal to
0, then its Fourier transform has zero derivatives at origin; being holomorphic, it
must be constant). �

Notation. Denote ϑkn(ϕ) := ϑ(2
nNk+k+1 · V ′

Nk
(ϕ)) (ϑ by §2, Notation). ϑkn is

C ∞ on A0 and

ϑkn(ϕ) = 0 if 2nNk+k+1 · V ′
Nk
(ϕ) ≥ 2,

ϑkn(ϕ) = 1 if 2nNk+k+1 · V ′
Nk
(ϕ) ≤ 1.

Definition. We define

R̃n(ϕ, x) :=
∞∑

k=1

(
ϑkn(ϕ) − ϑk+1,n(ϕ)

)
· R̃kn(ϕ, x)(46)

=
∞∑

k=1

ϑkn(ϕ) ·
(
R̃kn(ϕ, x)− R̃k−1,n(ϕ, x)

)
(47)

if we set R̃0,n = 0.

Remark. For a given n and ϕ, at most two terms of the sum (46) are nonzero.
Only a finite number of terms of the sum (47) are nonzero: if k satisfies the above
lemma, then ϑkn(ϕ) = 0.

(48)

∞∑

k=1

(ϑkn(ϕ)− ϑk+1,n(ϕ)) = 1

is a smooth partition of unity on
{
ϕ ∈ A0; V

′
N1
(ϕ) < 2−nN1−2

}
. Indeed, the

sequence
{
2nNk+k+1V ′

Nk
(ϕ)

}

k
is non-decreasing and its first member is

2nN1+2V ′
N1
(ϕ) < 1. Thanks to Lemma, there is the greatest index k′ for which

2nNk′+k
′+1V ′

Nk′
(ϕ) ≤ 1. Then 2nNk′+1+k

′+2V ′
Nk′+1

(ϕ) > 1,

2nNk′+2+k
′+3V ′

Nk′+2
(ϕ) > 2, hence

(ϑk′,n(ϕ) − ϑk′+1,n(ϕ)) + (ϑk′+1,n(ϕ)− ϑk′+2,n(ϕ)) = 1

and the other terms of (48) are zero.
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Properties of R̃n. R̃n ∈ E(Rd). If B̃ ⋐ R
d, B̃ ⊂ A0(B̃) is a bounded set and

L ∈ N, then there is an absolutely convex open neighbourhood of zero Ũ ⊂ A(B̃)

and a constant C̃ > 0, both independent of n, such that for every n ∈ N, x ∈ R
d,

the following hold:

If α ∈ N
d
0, |α| ≤ L− 1, ℓ ∈ N0, ℓ ≤ L− 1, ϕ̃ ∈ B̃ with ‖ϕ̃‖

L2
≥ 1, ψ̃1, . . . , ψ̃ℓ ∈ Ũ ,

then

(49)
∣∣dℓeψ1,..., eψℓ

∂α R̃n(S2−n ϕ̃, x)
∣∣ ≤ C̃ 2nNL(L+1)(2L+1).

If (∀ q ∈ N) ϕ̃ ∈ B̃ ∩ ANq
with ‖ϕ̃‖

L2
≥ 1 q ∈ N, then

(50)
∣∣∣R̃n(S2−n ϕ̃, x)− R(S2−nϕ̃, x)

∣∣∣ ≤ C̃ 2−nq.

Proof of (49): For a nonzero term of (46) or (47), we have 2nNk+k+1 ·V ′
Nk
(ϕ̃) <

2, i.e. V ′
Nk
(ϕ̃) < 2−nNk−k. If ‖ϕ̃‖

L2
> 1, then (§2, Notation) VNk

(ϕ̃) ≤ V ′
Nk
(ϕ̃) <

2−nNk−k, so the hypothesis VNL
(ϕ̃) < 2−nNL−1 (L ≤ k) in §9, Properties of

R̃kn for (44) and (45) is always satisfied. By the Leibniz rule (formulated in

the proof of §6, Property (2◦)) applied to the definition (47) of R̃n (recall that
V ′
N (ϕ̃) = V

′
N (S2−n ϕ̃)), we have

(51) dℓeψ1,..., eψℓ

∂α R̃n(S2−n ϕ̃, x)

=

∞∑

k=1

∑

I1∪I2={1,...,ℓ}
disjoint

d
#I1eψI1

ϑkn(ϕ̃) · d
#I2eψI2

∂α
(
R̃kn(S2−n ϕ̃, x)− R̃k−1,n(S2−n ϕ̃, x)

)

(If I = (i1, . . . , i#I), then ψ̃I denotes (ψ̃i1 , . . . , ψ̃i#I
)). Due to Lemma, the sum

∞∑
k=1

can be replaced with
k0∑
k=1
with a number k0 depending on B̃ but not on

ϕ̃ ∈ B̃.
First we estimate

d
#IeψI

(
ϑkn(ϕ̃)

)
= d

#IeψI

ϑ
(
2nNk+k+1 · V ′

Nk
(ϕ̃)

)

=

#I∑

M=1

∑

I=I1∪···∪IM
6=∅, disjoint

(∂Mϑ)
(
2nNk+k+1 · V ′

Nk
(ϕ̃)

) M∏

m=1

d#Im
ψIm

(
2nNk+k+1 · V ′

Nk
(ϕ̃)

)

(chain rule [13, 1.8.3] or [8, Theorem 12], the summation is extended over all
decompositions I = I1 ∪ · · · ∪ IM on non-empty disjoint parts). Let us choose
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(by [9, §2, Proposition]) an absolutely convex open neighbourhood of zero Ũ ⊂

A(B̃) such that for every k = 1, . . . , k0, ℓ = 1, . . . , L, ϕ̃ ∈ B̃, ψ̃1, . . . , ψ̃ℓ ∈ Ũ , we
have |dℓeψ1,..., eψℓ

V ′
Nk
(ϕ̃)| ≤ 1. We obtain:

(52)
∣∣d#IeψI

(
ϑkn(ϕ̃)

)∣∣ ≤ Ck 2
nNk·#I ≤ Ck 2

nNk L

with a constant Ck depending only on ϑ, L and k, not on n.
We are going to estimate the second term in (51)

d
#I2eψI2

∂α
(
R̃kn(S2−n ϕ̃, x)− R̃k−1,n(S2−n ϕ̃, x)

)
.

We distinguish two cases. If L ≤ k − 1 then #I2 ≤ k − 1 and we can use the
estimation (45) as follows:

∣∣∣d#I2eψI2

∂α
(
R̃kn(S2−n ϕ̃, x)− R̃k−1,n(S2−n ϕ̃, x)

)∣∣∣

=
∣∣∣d#I2eψI2

∂α
((
R̃kn(S2−n ϕ̃, x) −R(S2−nϕ̃, x)

)

−
(
R̃k−1,n(S2−n ϕ̃, x)−R(S2−n ϕ̃, x)

))∣∣∣

≤ 2nNL · (C̃kδkn + C̃k−1δk−1,n) ≤ 2
nNL · (C̃k + C̃k−1) δk−1,n.

Together with (52), a term of the sum in (51) for L ≤ k − 1 fulfills

∣∣∣d#I1eψI1

ϑkn(ϕ̃) · d
#I2eψI2

∂α
(
R̃kn(S2−n ϕ̃, x)− R̃k−1,n(S2−n ϕ̃, x)

)∣∣∣

≤ Ck 2
nNk L · 2nNL (C̃k + C̃k−1) δk−1,n ≤ Ck (C̃k + C̃k−1)

(δ is defined in §9, Notation), that is a constant independent of n, however it
depends on B and the number of nonzero terms of the sum in (51) depends on
B, too.
If L ≥ k, we use the estimations (43) valid for all L and we obtain:

d
#I2eψI2

∂αR̃kn
(
S2−n ϕ̃, x) ≤ C̃k 2

nN1 · δ−2Lkn ≤ C̃k 2
nN1 · δ−2LLn .

Together with (52), a term of the sum in (51) for L ≥ k fulfills

∣∣∣d#I1eψI1

ϑkn(ϕ̃) · d
#I2eψI2

∂α
(
R̃kn(S2−n ϕ̃, x)− R̃k−1,n(S2−n ϕ̃, x)

)∣∣∣

≤ Ck 2
nNk L(C̃k + C̃k−1) 2

nN1 · δ−2LL,n ≤ Ck (C̃k + C̃k−1)2
nNL(2L+1)(L+1).
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So in both cases we can use the last estimation and (49) follows. �

Proof of (50): If ϕ̃ ∈ ANq
then V ′

Nq
(ϕ̃) = 0 and k ≥ q for all nonzero terms of

the sum in (46). In that case, it follows from the definition and (48)

∣∣∣R̃n(Sεϕ̃, x)−R(Sεϕ̃, x)
∣∣∣

=

∣∣∣∣∣∣

k0∑

k=q

(ϑkn(ϕ̃)− ϑk+1,n(ϕ̃)) · R̃kn(Sεϕ̃, x)−
k0∑

k=q

(ϑkn(ϕ̃)− ϑk+1,n(ϕ̃)) ·R(Sεϕ̃, x)

∣∣∣∣∣∣

≤
k0∑

k=q

(ϑkn(ϕ̃)− ϑk+1,n(ϕ̃)) ·
∣∣∣R̃kn(Sεϕ̃, x)−R(Sεϕ̃, x)

∣∣∣

≤
k0∑

k=q

C̃k 2
nN1δkn =

k0∑

k=q

C̃k 2
nN1−n(k+1)Nk ≤ C̃ 2−nq

by (45), as VN1(ϕ̃) = 0. �

§11. Now we have all tools for defining the desired representative R̃.

Definition of R̃. We define

R̃(ϕ, x) :=

∞∑

n=1

(
ϑn+1

(
‖ϕ‖

2/d
L2

)
− ϑn

(
‖ϕ‖

2/d
L2

))
R̃n(ϕ, x)

for ϕ ∈ A0(R
d) and x ∈ R

d (ϑ by §2, Notation).

Remark. Note that ϑn+1

(
‖ϕ‖

2/d
L2

)
− ϑn

(
‖ϕ‖

2/d
L2

)
6= 0 iff 2n < ‖ϕ‖

2/d
L2

< 2n+2

and, for a given ϕ, at most 2 terms of this sum are 6= 0.

∞∑

n=1

(
ϑn+1

(
‖ϕ‖

2/d
L2

)
− ϑn

(
‖ϕ‖

2/d
L2

))
= 1

is a smooth partition of unity on {ϕ ∈ D ; ‖ϕ‖
L2

> 4}.

Properties of R̃. R̃ ∈ E(Rd). If B ⋐ R
d, B a bounded set ⊂ A0(B) and L ∈ N,

then there is an absolutely convex open neighbourhood of zero U ⊂ A(B) and a
constant C > 0, such that for every x ∈ R

d the following hold.

(1◦) If ε ∈ ]0, 1], α ∈ N
d
0, |α| ≤ L− 1, ℓ ∈ N0, ℓ ≤ L − 1, ϕ ∈ B, ψ1, . . . , ψℓ ∈ U ,

then

(53)
∣∣dℓψ1,...,ψℓ

∂α R̃(Sεϕ, x)
∣∣ ≤ C ε−NL(2L+1)(L+1).
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Consequently, R̃ ∈ E dM .

(2◦) ∀ q ∈ N it holds: If ϕ ∈ B ∩ ANq
and 0 < ε < min

{
1, 14‖χB

‖
−2/d
L2

}
, then

(54)
∣∣∣R̃(Sεϕ, x)−R(Sεϕ, x)

∣∣∣ ≤ C · εq.

Due to [9, §8, (0◦)], we have R̃ −R ∈ N .

Proof of (53): We write simply ‖•‖ instead of ‖•‖
L2
and we assume B to be

convex and balanced. For proving (53), we calculate (see (2)):

(55)

R̃(Sεϕ, x) =
∞∑

n=1

(
ϑn+1

(
‖Sεϕ‖

2/d) − ϑn
(
‖Sεϕ‖

2/d))R̃n(Sεϕ, x)

=

∞∑

n=1

(
ϑ1

(
2−n‖Sεϕ‖

2/d) − ϑ0
(
2−n‖Sεϕ‖

2/d))R̃n
(
S2−n(S2nεϕ), x

)

=
∞∑

n=1

(
ϑ1

(
‖S2nεϕ‖

2/d) − ϑ0
(
‖S2nεϕ‖

2/d))R̃n
(
S2−n(S2nεϕ), x

)
.

By the definition of ϑ, a term of this sum can be nonzero only if

(56) 1 < ‖S2nεϕ‖
2/d < 4, i.e. 1 <

1

2n ε
‖ϕ‖2/d < 4.

B ⋐ A0(B), hence there are constants c1, c2 > 0 such that

c2 ≤ ‖ϕ‖2/d ≤ c1 (∀ϕ ∈ B).

Due to (56), it follows that for nonzero terms of the sum in (55), we have

(57) 1
4c2 < 2

nε < c1.

By the Leibniz rule (formulated in the proof of §6, Property 2◦) applied to (55),
we have

(58) dℓψ1,...,ψℓ
∂α R̃(Sεϕ, x)

=

∞∑

n=1

∑

I1∪I2={1,...,ℓ}
disjoint

d
#I1
ψI1

(
ϑ1

(
‖S2nεϕ‖

2/d) − ϑ0
(
‖S2nεϕ‖

2/d))

· d#I2
ψI2

∂αR̃n
(
S2−n(S2nεϕ), x

)
.
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The function ϕ 7→ ϑ1
(
‖S2nεϕ‖

2/d) − ϑ0
(
‖S2nεϕ‖

2/d) is composed of functions
[
t 7→ ϑ1

(
t1/d

)
− ϑ0

(
t1/d

)]
∈ D

([
(1, 4d

])
and

ϕ 7→ ‖S2nεϕ‖
2.

Hence, for proving that the term d
#I1
ψI1

(
ϑ1

(
‖S2nεϕ‖

2/d) − ϑ0
(
‖S2nεϕ‖

2/d)) in
(58) is equi-bounded under the hypotheses (1◦) (for a fixed L), it is sufficient to
prove the same for derivatives of ‖S2nεϕ‖

2 up to a certain order. We have

dψ‖S2nεϕ‖
2 = dψ(S2nεϕ, S2nεϕ) = 2ℜ(S2nεϕ, S2nεψ),

d2ψ1,ψ2‖S2nεϕ‖
2 = 2ℜ(S2nεψ1, S2nεψ2)

and the higher derivatives are zero. So we have using the Hölder inequality

∣∣∣dψ‖S2nεϕ‖2
∣∣∣ =

∣∣∣∣2ℜ
∫
S2nεϕ · S2nεψ

∣∣∣∣ ≤ ‖S2nεϕ‖ ‖S2nεψ‖ =
1

(2nε)d
‖ϕ‖‖ψ‖.

Thanks to (57), this will be equi-bounded if U ⊂ {ψ; ‖ψ‖ < 1}, ψ ∈ U , ϕ ∈ B, as
the bounded set B is absorbed by U . The same can be deduced for the second
derivative.
Now, we have to estimate the term d

#I2
ψI2

∂α R̃n
(
S2−n(S2nεϕ), x

)
in (58). We

apply §10, Properties of R̃n, namely the estimation (49), to the bounded set

B̃ :=
{
Sη ϕ; ϕ ∈ B, 14c2 ≤ η ≤ c1

}
.

The supports of the functions ϕ̃ ∈ B̃ are contained in B̃ := c1B (for B convex

and balanced). Thanks to (57) we have S2nεϕ ∈ B̃ for ϕ ∈ B. Thus we get Ũ

and C̃ by §10, Properties of R̃n. Let

U :=
{
ϕ ∈ A(B); Sη ϕ ∈ Ũ ∀ η with 1

4c2 ≤ η ≤ c1

}
.

U is a neighbourhood of zero in A(B) because it absorbs bounded sets in a metric

vector space. If ϕ ∈ B, ψ1, . . . , ψℓ ∈ U , then ϕ̃ := S2nεϕ ∈ B̃ and ψ̃j :=

S2nεψj ∈ Ũ (j = 1, . . . , ℓ) due to (57). If ‖ϕ̃‖ = ‖S2nεϕ‖ < 1, then (by (56))

the term d
#I2
ψI2

∂αR̃n
(
S2−n(S2nεϕ), x

)
in (58) is multiplied by zero, so we have to

estimate this term only if ‖ϕ̃‖ ≥ 1, hence we can use (49). It follows using the
chain rule for the inner function S2nε linear:

∣∣d#I2ψI2
∂αR̃n

(
S2−n(S2nεϕ), x

)∣∣ =
∣∣d#I2eψI2

∂αR̃n
(
S2−n ϕ̃, x

)∣∣

≤ C̃ · 2nNL(2L+1)(L+1) ≤ C̃ c
NL(2L+1)(L+1)
1 · ε−NL(2L+1)(L+1)
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due to (57). From (58) we deduce (53). �

Proof of (54): By (9), ‖ϕ‖ ≥ ‖χ
B
‖−1 (norms in L 2). If ε < 1

4‖χB
‖−2/d, then

‖Sεϕ‖
2/d = ‖ϕ‖2/d · ε−1 > ‖ϕ‖2/d · 4 ‖χ

B
‖2/d ≥ 4.

Under this hypothesis we have by §11, Remark similarly to (55):

R(Sε ϕ, x) =

∞∑

n=1

(
ϑn+1

(
‖Sεϕ‖

2/d
)
− ϑn

(
‖Sεϕ‖

2/d
))
R(Sε ϕ, x)

=

∞∑

n=1

(
ϑ1

(
‖S2nεϕ‖

2/d) − ϑ0
(
‖S2nεϕ‖

2/d))R
(
S2−n(S2nεϕ), x

)
.

With (55) it gives

∣∣∣R̃(Sεϕ, x) −R(Sεϕ, x)
∣∣∣

≤
∞∑

n=1

(
ϑ1

(
‖S2nεϕ‖

2/d) − ϑ0
(
‖S2nεϕ‖

2/d))

·
∣∣∣R̃n

(
S2−n(S2nεϕ), x

)
−R

(
S2−n(S2nεϕ), x

)∣∣∣.

If ϕ ∈ B ∩ ANq
then ϕ̃ := S2nεϕ) ∈ B̃ ∩ ANq

. By (50) this is ≤ C̃ · 2−nq and

by (57) this is ≤ C̃ ·
(
4
c2

)q
εq. By the above lemma, B ∩ ANq

= ∅ for sufficiently

large q, so the constant in our estimation can be independent of q. Hence, (54) is
proved. �
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1982.

[2] Colombeau J.F., New Generalized Functions and Multiplication of Distributions, North
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