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On the points of non-differentiability of convex functions

David Pavlica

Abstract. We characterize sets of non-differentiability points of convex functions on R
n.

This completes (in R
n) the result by Zaj́ıček [2] which gives a characterization of the

magnitude of these sets.
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In the present paper we give a complete characterization of sets of non-diffe-
rentiability points of convex functions on R

n. For a convex function f on R
n, 0 ≤

k ≤ n, Sk(f) is the set of all x ∈ R
n for which dim ∂f(x) ≥ n− k (∂f(x) denotes

the subdifferential of f at the point x). In [2] the following characterization of
the magnitude of Sk(f) is given.

Definition 1. A set S ⊂ R
n is called a δ-convex surface of dimension k (k =

1, . . . , n−1) if there exists a permutation π of the numbers 1, 2, . . . , n and 2n−2k
convex functions fk+1, gk+1, . . . , fn, gn defined on the whole space R

k such that

S = {(x1, . . . , xn) ∈ R
n : xπ(j) = fj(xπ(1), . . . , xπ(k))− gj(xπ(1), . . . , xπ(k))

for j = k + 1, . . . , n}.

Theorem Z. A set M ⊂ R
n is a subset of the set Sk(f) (1 ≤ k ≤ n − 1) for

some convex function f defined on R
n iff M can be covered by countably many

δ-convex surfaces of dimension k.

It is known that, for any convex function f : R
n → R, Sk(f) is a Fσ-set. We

shall prove the following theorem.

Theorem. Let 1 ≤ k ≤ n − 1, P be an Fσ-subset of a countable union of δ-
convex surfaces of dimension k. Then there exists a convex function f : Rn → R

such that Sk(f) = P and f is differentiable at all points of R
n \ P .

In the proof we shall use the notion of a dual convex function.
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Definition. Let f : R
n → R ∪ {+∞} be a convex function. The dual function

f∗ of the function f is defined on (Rn)∗ by

f∗(x∗) = sup
x∈Rn

(〈x, x∗〉 − f(x)) , x∗ ∈ (Rn)∗.

It follows immediately from the definition that if f, g : R
n → R are convex

functions, f ≤ g and f∗ is finite everywhere then g∗ is finite everywhere.
As usual, we identify the dual space (Rn)∗ with R

n and 〈·, ·〉 denotes both
duality and scalar product.

Facts. If f : Rn → R is a convex function then

(1) (f∗)∗ = f ,
(2) x∗ ∈ ∂f(x)⇔ x ∈ ∂f∗(x∗),
(3) if f∗ is finite on R

n, then the epigraph of f contains no non-vertical
halflines.

The statement (1) can be found in [1, Theorem 12.2], (2) in [1, Theorem 23.5]
and (3) in [1, Corollary 13.3.1].

Fact (4). A closed convex set in R
n containing no halflines is bounded.

Fact (4) can be easily proved by a compactness argument.

Fact (5). If f∗ is finite on R
n, then for each affine functional π, the set {x ∈

R
n : f(x) ≤ π(x)} is bounded.

Fact (5) is a consequence of Facts (3) and (4).
If a convex function f : R

n → R is not differentiable at some point x then
there exist x∗ 6= y∗, x∗, y∗ ∈ ∂f(x), and therefore, by the fact (2), x ∈ ∂f∗(x∗) ∩
∂f∗(y∗). Consequently there is a line segment on the graph of f∗ with endpoints
(x∗, f∗(x∗)), (y∗, f∗(y∗)). Conversely, if there is a line segment on the graph of
f∗ with a supporting linear functional 〈x, ·〉 (it means that for some α ∈ R the
graph of 〈x, ·〉 + α contains this line segment and 〈x, ·〉 + α ≤ f∗) then f is not
differentiable at x.
In particular, the dual function of a strictly convex function is differentiable

everywhere.
In the proof of our theorem we need the following simple lemma.

Lemma 1. Let T be a compact convex set in R
n with a non-empty interior,

h : T → R a convex function, h|∂T ≡ 0 and h(x) < 0 for some x ∈ T . Then there
exists a convex function h̄ : T → R such that h̄|∂T ≡ 0, h̄ ≥ h on T and h̄ is affine
on no line segment in intT .

Proof: For a compact convex set C in R
n such that 0 ∈ intC, denote

γ(y|C) := inf{µ ≥ 0 : y ∈ µC}, y ∈ R
n.
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By [1, §15] γ(·|C) is a convex function (therefore it is continuous), obviously it is
positively homogenous and equal to 1 on ∂C.

Let us denote for x ∈ intT

hx(z) := −h(x) (γ(z − x|T − x)− 1) , z ∈ R
n.

For x 6= z denote rx(z) the point of intersection of ∂T and the halfline starting
at x and containing z. It is easy to check that

rz(y) = z +
y − z

γ(y − z|T − z)
, z ∈ intT, y ∈ R

n \ {z}.

For y = 2z − x we get

rx(z) = rz(y) = z +
z − x

γ(z − x|T − z)
, x, z ∈ intT, x 6= z.

Hence, for z ∈ intT , g(x) = rx(z) is a continuous mapping on intT \ {z}.
Clearly hx is convex, hx ≡ 0 on ∂T , hx < 0 on intT , hx ≥ h on T , and hx is

affine on every halfline starting at the point x.

If y 6= x 6= z and hx is affine on conv{y, z} then it is affine on
conv{x, rx(y), rx(z)} and therefore conv{rx(y), rx(z)} ⊂ ∂T .

We choose a countable dense set x1, x2, . . . ∈ intT and set

h̄ :=

∞
∑

i=1

hxi

2i
.

Then obviously h̄ ≥ h on T and h̄|∂T ≡ 0.
For a contradiction let us suppose h̄ is affine on some line segment conv{y, z},

y 6= z, y, z ∈ intT . Then, for each i, hxi is affine on conv{y, z}. We choose a

sequence
{

xki

}

such that xki
→ y+z

2 for i → ∞. Then we have

conv
{

rxki
(y), rxki

(z)
}

⊂ ∂T.

Letting i → ∞ we get (since g(x) = rx(z) is a continuous mapping)

conv
{

r y+z

2

(y), r y+z

2

(z)
}

⊂ ∂T,

a contradiction. �
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Lemma 2. Assume F ⊂ R
n is a closed subset of a δ-convex surface S of dimen-

sion k, 0 < k < n. Then there exists a convex function H : Rn → R such that H
is differentiable at all points of R

n \ F and Sk(H) = F .

Proof: By Theorem Z there is a convex function f : R
n → R such that S ⊂

Sk(f). We may assume that f is strictly convex and f∗ is finite everywhere since
otherwise we take f(x)+ ‖x‖2 (there exists an affine functional p such that p ≤ f
and since (p(x)+ ‖x‖2)∗ is finite everywhere we have that (f(x)+ ‖x‖2)∗ is finite
everywhere too).
Therefore f∗ is differentiable everywhere. Let us denote

F ∗ := {x ∈ R
n : ∇(f∗)(x) ∈ F} .

Since the mapping ∇(f∗) is continuous, F ∗ is closed. For x ∈ R
n denote by

px(z) = 〈z, x〉+ αx

the supporting affine functional to f∗ (it exists for all x since (f∗)∗ = f is finite
everywhere). For ε > 0 let us denote

Ux,ε := {z ∈ R
n : f∗(z) < px(z) + ε},

Tx,ε := {z ∈ R
n : f∗(z) ≤ px(z) + ε}.

By the fact (5) applied to f∗, the set Tx,ε is compact and clearly it is convex.
The set Ux,ε is open.

Claim. For each x ∈ R
n \ F ,

lim
ε→0+

dist(Tx,ε, F
∗) > 0

holds.

Proof of Claim: Let us denote

Wx := {z ∈ R
n : f∗(z) = px(z)} =

⋂

ε>0

Tx,ε.

Clearly Wx ∩ F ∗ =
⋂

ε>0(Tx,ε ∩ F ∗) = ∅. Since Tx,ε ∩ F ∗ are compact, for some
ε0 > 0 we have Tx,ε0 ∩ F ∗ = ∅. Thus dist(Tx,ε0, F

∗) > 0 and consequently, since
g(ε) = dist(Tx,ε, F

∗) is a non-increasing function, our Claim is proved. �

By above Claim we can, for every x ∈ R
n \ F , fix 0 < εx < 1 such that

[

dist(Tx,εx , F ∗)
]2

≥ εx.
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We have
R

n \ F ∗ =
⋃

x∈Rn\F

Ux,εx ,

since, for x∗ ∈ R
n \ F ∗, we have x∗ ∈ Wx ⊂ Ux for x = ∇f∗(x∗) /∈ F . Therefore

there exist points x1, x2, . . . ∈ R
n \ F such that

R
n \ F ∗ =

∞
⋃

i=1

Uxi,εxi
.

According to Lemma 1, choose for each i ∈ N a convex function hi : Txi,εxi
→ R

such that
hi|∂Txi,εxi

≡ 0,

hi is affine on no line segment in Uxi,εxi
and hi ≥ f∗ − pxi − εxi . Let us define

h̃i : R
n → R,

h̃i = hi + pxi + εxi on Txi,εxi
,

= f∗ on R
n \ Txi,εxi

.

Then f∗ ≤ h̃i ≤ f∗ + εxi .

Observation. If h is a convex function on R
n, h̄ is a convex function on a

compact convex set T ⊂ R
n and h̄|∂T ≡ h|∂T , h̄ ≥ h on T , then the function

h̃ = h on R
n \ T ;

h̃ = h̄ on T

is convex.

Proof of Observation: For n = 1 it is elementary and the higher dimensional
case is an immediate consequence of the 1-dimensional one. �

By this Observation functions h̃i are convex. Set

h̃ :=
∞
∑

i=1

h̃i

2i
.

Clearly h̃ = f∗ on F ∗, and 0 ≤ h̃ − f∗ ≤ 1. Hence h̃ < +∞. Moreover h̃ is affine
on no line segment in R

n \ F ∗. Now we shall prove that H := (h̃)∗ fulfills the

assertion of the lemma. The function H is finite everywhere since h̃ ≥ f∗ and
(f∗)∗ is finite everywhere.
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Let x ∈ F . There exist affine independent yi ∈ ∂f(x), i = 1, . . . , n − k + 1.
By Fact (2) we have x ∈ ∂f∗(yi) and so yi ∈ F ∗, i = 1, . . . , n − k + 1. Thus

h̃(yi) = f∗(yi) and consequently, since h̃ ≥ f∗, we have x ∈ ∂h̃(yi). Therefore
yi ∈ ∂H(x), and so x ∈ Sk(H).
Let us suppose for a contradiction that H is not differentiable at a point x /∈ F .

Then there exist z1 6= z2, z1, z2 ∈ ∂H(x). Thus x ∈ ∂h̃(z1) ∩ ∂h̃(z2). Further, h̃
is affine on no line segment in R

n \ F ∗, therefore z1, z2 ∈ F ∗.

For each i ∈ N we have f∗ ≤ h̃i ≤ f∗ + εxi and

εxi ≤
[

dist(z1, Txi,εxi
)
]2

.

Therefore
|f∗(z)− h̃i(z)| ≤ εxi ≤ ‖z − z1‖

2 for z ∈ Txi,εxi
.

Since also f∗(z) = h̃i(z) for z /∈ Txi,εxi
, we have for all z

|f∗(z)− h̃(z)| =

∣

∣

∣

∣

∣

∞
∑

i=1

1

2i
(f∗(z)− h̃i(z))

∣

∣

∣

∣

∣

≤
∞
∑

i=1

1

2i
‖z − z1‖

2 ≤ ‖z − z1‖
2.

This easily implies ∂h̃(z1) = ∂f∗(z1), a contradiction with x ∈ ∂h̃(z1), ∂f∗(z1) ⊂
F .

Lemma 3. If 1 ≤ k ≤ n− 1 and fi : R
n → R, i = 1, 2, . . . , are convex functions,

each differentiable at all points of R
n \Sk(fi), then there exists a convex function

f : Rn → R such that

Sk(f) =

∞
⋃

i=1

Sk(fi)

and f is differentiable at all points of R
n \ Sk(f).

Proof: Let us denote B(0, r) := {z : ‖z‖ ≤ r}.
Choose ci > 0, i = 1, 2, . . . , such that

|cifi| ≤
1

2i
on B(0, i),

cifi is Lipschitz with the constant
1

2i
on B(0, i).

Set f :=
∑∞

i=1 cifi. Clearly Sk(f) ⊇
⋃∞

i=1 Sk(fi). Let us suppose for a con-
tradiction f is not differentiable at some x ∈ R

n and all fi are differentiable
at x.
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There exists v ∈ R
n such that ‖v‖ = 1 and

d := d+f(x)(v) + d+f(x)(−v) > 0,

where d+f(x)(v) := limλ→0+
f(x+λv)−f(x)

λ .

Find j ∈ N such that 2−j+1 < d and x ∈ B(0, j). Since
∑j

i=1 cifi is differen-
tiable at x,

d+
( j

∑

i=1

cifi

)

(x)(v) + d+
( j

∑

i=1

cifi

)

(x)(−v) = 0.

Further,
∑∞

i=j+1 cifi is Lipschitz with the constant
1
2j
onB(0, j+1), and therefore

d+
( ∞

∑

i=j+1

cifi

)

(x)(v) ≤
1

2j
,

d+
( ∞

∑

i=j+1

cifi

)

(x)(−v) ≤
1

2j
.

Thus we have d+f(x)(v) + d+f(x)(−v) ≤ 1
2j
+ 1
2j

< d, a contradiction. �

Proof of Theorem: Let P =
⋃∞

i=1 Fi ⊂
⋃∞

i=1 Si, where Fi is closed, Si is a
δ-convex surface of dimension k for all i ∈ N. We have P =

⋃∞
i,j=1(Fi ∩ Sj) and,

since Sj are closed sets, we get by Lemma 2 functions fi,j differentiable at all
points of R

n \ (Fi ∩ Sj) such that Sk(fi,j) = Fi ∩ Sj . By Lemma 3 we then get a
convex function f differentiable at all points of Rn \ P such that Sk(f) = P . �

Corollary. Let F ⊂ R
n, 1 ≤ k ≤ n− 1. Then F = Sk(f) holds for some convex

function f on R
n iff F is an Fσ-subset of a countable union of δ-convex surfaces

of dimension k.

Proof: By our Theorem, for every Fσ-subset P of a countable union of δ-convex
surfaces of dimension k, there exists a convex function f : R

n → R such that
Sk(f) = P .

Conversely, for a convex function f : Rn → R, according to Theorem Z, Sk(f)
can be covered by countably many δ-convex surfaces of dimension k. And it is
known that Sk(f) is an Fσ-set. Since I do not know any reference to this simple
result, I shall sketch the proof. Let Sk,j(f) be the set of all points x such that
there exist u0, . . . , uk ∈ ∂f(x) such that (ui −u0) · (uj −u0) = 0, ‖ui −u0‖ = 1/j
for all i, j ∈ {1, . . . , k}. Then we have Sk(f) =

⋃∞
j=1 Sk,j(f) and Sk,j(f) are

closed sets. Thus we are done. �
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