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Properties of one-point completions

of a noncompact metrizable space

M. Henriksen, L. Janos, R.G. Woods

Abstract. If a metrizable space X is dense in a metrizable space Y , then Y is called a
metric extension of X. If T1 and T2 are metric extensions of X and there is a continuous
map of T2 into T1 keeping X pointwise fixed, we write T1 ≤ T2. If X is noncompact
and metrizable, then (M(X),≤) denotes the set of metric extensions of X, where T1
and T2 are identified if T1 ≤ T2 and T2 ≤ T1, i.e., if there is a homeomorphism of
T1 onto T2 keeping X pointwise fixed. (M(X),≤) is a large complicated poset studied
extensively by V. Bel’nov [The structure of the set of metric extensions of a noncompact
metrizable space, Trans. Moscow Math. Soc. 32 (1975), 1–30]. We study the poset
(E(X),≤) of one-point metric extensions of a locally compact metrizable space X. Each
such extension is a (Cauchy) completion of X with respect to a compatible metric. This
poset resembles the lattice of compactifications of a locally compact space if X is also
separable. For Tychonoff X, let X∗ = βX \X, and let Z(X) be the poset of zerosets of
X partially ordered by set inclusion.
Theorem If X and Y are locally compact separable metrizable spaces, then (E(X),≤)

and (E(Y ),≤) are order-isomorphic iff Z(X∗) and Z(Y ∗) are order-isomorphic, and iff
X∗ and Y ∗ are homeomorphic. We construct an order preserving bijection λ : E(X)→
Z(X∗) such that a one-point completion in E(X) is locally compact iff its image under
λ is clopen. We extend some results to the nonseparable case, but leave problems open.
In a concluding section, we show how to construct one-point completions geometrically
in some explicit cases.

Keywords: metrizable, metric extensions and completions, completely metrizable, one-
point metric extensions, extension traces, zerosets, clopen sets, Stone-Čech compactifi-
cation, βX \X, hedgehog

Classification: Primary 54E45, 54E50; Secondary 54E35, 54D35

1. Introduction

If X is a dense subspace of a Tychonoff space Y , then Y is called an extension
of X . Two extensions T1 and T2 of X are said to be equivalent if there is a home-
omorphism of T1 onto T2 that keeps X pointwise fixed. Clearly “equivalence” is
an equivalence relation on the set of (Tychonoff) extensions of X , and the set of
equivalence classes thus generated will be denoted by Ext(X). Such equivalence
classes will be identified with individual members when this causes no confusion.

The third author wishes to thank NSERC for supporting this research.
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Keeping this identification in mind, if T1 and T2 are in Ext(X) and there is a
continuous map of T2 into T1 that keeps X pointwise fixed, we will write T1 ≤ T2.
It is not difficult to see that (Ext(X),≤) is a partially ordered set (or poset).
A detailed discussion of this poset may be found in Section 4.1 of [PW87].
There have been extensive studies of the order structure of various subsets of

this poset, especially when the subset consists of compactifications. The work in
this paper was motivated initially by V.K. Bel’nov’s study of the poset (M(X),≤)
of all metric extensions of a noncompact metrizable spaceX . (In this case, Bel’nov
called the mappings used to define the partial order ≤ admissible; see [B74] and
especially [B75].) A few of Bel’nov’s results follow.

1.1. IfX is a locally compact noncompact metric space, then any two members of
M(X) have a common lower bound, but a finite number need not have a greatest
lower bound.

1.2. If X is a noncompact metric space, then any countable family inM(X) has
a supremum.

1.3. If X is a metric space that is not locally compact, there are two members
ofM(X) that have no common lower bound.

Bel’nov’s study of (M(X),≤) was much more extensive. The authors have
been unable to find any other discussions of the properties of this poset in the
research literature.
Others who have studied subsets of the poset ( Ext(X),≤) have focussed on

the relationship between their order structure and the topology of spaces related
to X . One of the earliest and most beautiful papers of this sort was written by
K. Magill [Ma68]. Let X denote a locally compact Tychonoff space, βX its Stone-
Čech compactification, X∗ = βX \ X , and let K(X) denote the set of compact
members of Ext(X). (See 1.5.) In [Ma68] Magill shows that:

1.4. If X and Y are locally compact, then (K(X),≤) and (K(Y ),≤) are lattices
and are order-isomorphic if and only if X∗ and Y ∗ are homeomorphic.

Similar results appear, for example, in [Ra73], [MRW72], [MRW74], and [W74],
among other places.
The purpose of this paper is to add to the body of such results by studying the

poset (E(X),≤), where E(X) denotes the family of one-point metric extensions of
a locally compact metrizable space X . Thus our subject matter is close to that of
Bel’nov. Our results, however, are similar in form to that of Magill cited above. It
comes as a surprise that the poset (E(X),≤) has so rich a structure and conveys
so much information.
In Section 4, we show that there is a one-one order reversing mapping λ from

the poset (E(X),≤) into the lattice Z(X∗) of zerosets of X∗ (partially ordered by
set inclusion). If X is also separable, then λ maps E(X) onto Z(X∗)\∅ and hence
is an anti-isomorphism. It follows that if X and Y are locally compact separable
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metrizable spaces, then (E(X),≤) and (E(Y ),≤) are order-isomorphic if and only
if Z(X∗) and Z(Y ∗) are order-isomorphic and if and only if X∗ and Y ∗ are are
homeomorphic. Furthermore, the clopen subsets of X∗ are precisely the images
under λ of the (equivalence classes of) locally compact members of E(X).
In the final sections of the paper, we present some partial results in the case

when the spaces considered are locally compact but not separable, and indicate
how some of our results could be described geometrically.
We now review briefly some of the notation and terminology used below and

some known facts from the theory of metric spaces and the Stone-Čech com-
pactification. If X is a metric space with metric d, x ∈ X and ǫ > 0, then
Sd(x, ǫ) = {y ∈ X : d(x, y) < ǫ} is called an open ball of radius ǫ centered at x.
A metrizable space (X, τ) is called completely metrizable if there is a metric d on
X such that the topology induced on X by d is τ (in which case d is said to be
compatible with τ) and (X, d) is complete; that is, every d-cauchy sequence con-
verges. Two metrics on X are called equivalent if they induce the same topology
on X . Topological terminology and theorems used herein come mostly from [E89]
and [PW87], and the ordering used on extensions from 4.1 of [PW87], [B74], and
[B75]. Additional information on metric extensions may be found in [FGO93]
and [V87]. We close this section with:

1.5 The Stone-Čech compactification and related topics. It is well-known
that every Tychonoff space X has a dense embedding into a compact space βX
such that if Y is any compactification of X , then there is a continuous map of βX
onto Y keeping X pointwise fixed. (For this and other background material on
βX , see [GJ76], especially Chapter 6, and Chapter 4 of [PW87].) Let C(X) denote
the algebra of continuous real-valued functions on X , and C∗(X) its subalgebra
of bounded elements. If f ∈ C(X), then Z(f) = {x ∈ X : f(x) = 0} is called the
zeroset of f , and the family of zerosets of X is denoted by Z(X). It is well-known
that this latter family is closed under finite union and countable intersection.
Also, Z(X) is the family of all closed subsets of X if X is metrizable. Use will be
made in what follows of the following properties of βX .

(i) If {Z1, . . . , Zn} is a finite collection of zerosets of X , then:

n⋂

i=1
[clβX Zi] = clβX [

n⋂

i=1
Zi].

(ii) IfX is locally compact, then βX\X is compact and {clβX Z\X : Z ∈ Z(X)}
is a base for the closed subsets of βX \ X .

2. When does a metrizable space have a one-point completion?

2.1 Theorem. Suppose Y ∈ M(X) is a metric extension of X such that K =
(Y \ X) is compact. If Y is completely metrizable, then so is X .
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Proof: Since X is the complement of K in Y , X is open and a fortiori a Gδ

in Y . Since Y is completely metrizable, so is X . �

The converse of 2.1 also holds.

2.2 Theorem. If X is completely metrizable, and Y ∈ M(X) is a metric exten-
sion of X such that (Y \ X) is compact, then Y is topologically complete.

Proof: If Z is a completion of Y , then X is dense in Z and is completely
metrizable. By 4.3.23 in [E89], X is a Gδ in Z; say X =

⋂
n<ω Vn where each

Vn is open in Z, and Vn+1 ⊂ Vn. Now (Y \ X) is compact and thus closed in
the metric space Z; so (Y \ X) =

⋂
n<ω Wn, where each Wn is open in Z and

Wn+1 ⊂ Wn. Hence

Y = X ∪ (Y \ X) = (
⋂

n<ω
Vn) ∪ (

⋂

j<ω

Wj) =
⋂
{(Vn ∪ Wj) : n < ω and j < ω}

because the Vns and Wjs are descending chains. Thus Y is a dense Gδ in the
completely metrizable space Z and hence is completely metrizable space by 4.3.23
in [E89]. �

2.3 Theorem. A metrizable space has a completion with a one-point remainder
if and only if it has one with a compact remainder.

Proof: If Y is a metric extension of X such that Y \X is compact, and T is the
quotient space obtained by collapsing Y \ X to a point and fixing X pointwise,
then because metrizability is preserved under perfect maps by 4.4.15 of [E89], it
is routine to verify that T is a one-point metric extension of X . �

3. Extension traces and regular sequences of open sets

3.1 Definitions. Let U = (Un)n<ω be a countable family of distinct nonempty
open subsets of a metrizable space X . Consider the following conditions:

(i) clUn+1 ⊂ Un for all n < ω, and
(ii)

⋂
n<ω Un = ∅.

If U satisfies (i), it is called a regular sequence of open sets of X .
If U satisfies both (i) and (ii), it is called an extension trace on X .

The motivation for these definitions comes from Lemmas 3.2, 3.3, and 4.3.

3.2 Lemma. If Y = X ∪ {p} is a one-point metric extension of a metrizable
space X and d is a compatible metric on Y , then {X ∩ Sd(p, 1n) : n < ω} is an
extension trace on X .

What is more interesting is the converse, which is a restatement of Theorem 2
in [A71].
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3.3 Theorem (Alexander). Suppose (X, τ) is metrizable, p /∈ X , Y = X ∪ {p},
and let U denote an extension trace on X . Define a family ς on Y as follows:

ς = τ ∪ {S ⊂ Y : p ∈ S, there is a U ∈ U such that U ⊂ S ∩ X , and S ∩ X ∈ τ}.

Then:

(a) (Y, ς) is a regular topological space containing (X, τ) as a dense subspace,
and

(b) (Y, ς) is metrizable and hence is a one-point metric extension of X .

If we are given an extension trace U on a metrizable space X , we will denote
by YU the one-point metric extension (Y, ς) described above. When we do this,
the unique point in Y \ X will be denoted by p(U). Thus YU = X ∪ {p(U)}, and
{{p(U)} ∪ U : U ∈ U} is a neighborhood base at p(U) in YU .
Thus we see that every extension trace on a metric space X generates a one-

point metric extension of X , and every one-point metric extension of a metric
space generates an extension trace on X .

3.4 Definition. Let U = (Un)n<ω and V = (Vn)n<ω denote two regular se-
quences of open sets on X . We say that U is finer than V and denote it by U ≤ V
if for each n < ω, there is a kn < ω such that Ukn

⊂ Vn.

3.5 Theorem. If U ,V , are two extension traces on X , and YU , and YV are
defined as above, then the following are equivalent.

(a) YU ≥ YV .
(b) U is finer than V .
(c) For each n < ω, there is a kn < ω such that clX Ukn

\ Vn is empty or

compact.

Proof: (a) implies (b). Define f : YU → YV by letting f(x) = x if x ∈ X , and
f(p(U)) = p(V). Clearly (a) holds if and only if f is continuous, and clearly this
latter holds at each point of X . If (a) holds, then f is continuous at p(U). Thus,
because for each n < ω, {p(V)} ∪ Vn is a neighborhood of p(V) in YV , there is a
neighborhood S of p(U) in YU such that S ⊂ f←[p(V) ∪ Vn] = {p(U)} ∪ Vn. But
there will be some kn < ω such that {p(U)} ∪ Ukn

⊂ S. Thus, Ukn
⊂ Vn and (b)

holds.
(b) implies (a). Suppose conversely that (b) holds. Then, for each n < ω, there

is a kn < ω such that Ukn
⊂ Vn. Therefore {p(U)} ∪ Ukn

is a neighborhood of
p(U) in YU that is mapped into the basic neighborhood {p(V)} ∪ Vn of p(V) in
YV by f . Thus f is continuous at p(U) and hence is continuous. So (a) holds.
(b) implies (c). By (b), given n < ω, there is a jn < ω such that Ujn

⊂ Vn.
So clX Ujn+1 \ Vn = ∅ and (c) follows.
(c) implies (b). Given n < ω, by (c) there is a jn < ω such that clX Ujn

\ Vn

is compact. Now
⋂

k<ω clX Uk = ∅ because (Uk)k<ω is an extension trace, so
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{(clX Ujn
\ Vn) ∩ clX Uk : k < ω} is a collection of closed subsets of a compact

space (clX Ujn
\ Vn) with empty intersection. Hence there is a finite subset G

of ω such that
⋂

k∈G(clX Ujn
\ Vn) ∩ clX Uk = ∅. If m = max(G ∪ {jn}), then

clX Um \ V n = ∅, so Um ⊂ Vn and m is the desired kn. �

3.6 Definition. If U = (Un)n<ω and V = (Vn)n<ω are two regular sequences
of open sets on X and each is finer than the other, we say that U and V are
equivalent and write U ≅ V .

3.7 Example. Let X = R, U = {(2n,∞) : n < ω}, and V = {(2n + 1,∞) :
n < ω}. Then U and V have no set in common, but since for all n < ω

(2n+ 2,∞) ⊂ (2n+ 1,∞) ⊂ (2n,∞),

each is finer than the other. Thus, U ≅ V . (R∪ p(U) = R∪ {+∞} ≅ (0, 1] in this
case.)

3.8 Definition. Let E(X) denote the set of equivalence classes [U ] of extension
traces on X and partially order it by letting

[U ] ≤ [V ] if V is finer than U .

It is easy to verify that (E(X),≤) is a partially ordered set.

The last result of this section is a restatement of Theorem 3.5.

3.9 Theorem. The poset (E(X),≤) of (equivalence classes of ) one-point metric
extensions of X is order-isomorphic to the poset (E(X),≤) of (equivalence classes
of ) extension traces of X .

4. The partially ordered set of (equivalence classes of) one-point
metric extensions of locally compact metric spaces

In this section, we will produce a one-one mapping λ from the poset (E(X),≤)
of one-point metrizable extensions of a locally compact metric space X into the
lattice (Z(βX \ X),⊂) of zerosets of βX \ X under set inclusion. We will show
that λ is an order anti-isomorphism onto its image and that the latter is closed
under finite unions and intersections. In Sections 5 and 6 respectively, we will
consider the cases when X is separable and nonseparable.

Notational conventions: If A ⊂ X , we let A∗ = clβX A \X , so X∗ = βX \X .
For any space Y , C(X, Y ) denotes the set of all continuous functions from X
to Y .
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4.1 Lemma. If U = (Un)n<ω is a regular sequence of open sets on a locally

compact metrizable space X , then

⋂

n<ω
(clX Un)

∗ ∈ Z(X∗).

Proof: For all n < ω, X \ Un and clUn+1 are disjoint closed subspaces of
the (normal) metrizable space X , so by Tietze’s extension theorem, there are
fn ∈ C(X, [0, 1]) such that fn[ clX Un+1] = {0} and fn[X \ Un] = {1}. If
Fn is the continuous extension of fn to C(βX, [0, 1]) and F =

∑
2−nFn, then

F ∈ C(βX, [0, 1]) and Z(F ) \ X ∈ Z(X∗). We will show next that:

Z(F ) \ X =
⋂

n<ω
(clX Un)

∗.

To see this, assume first that x ∈
⋂

n<ω(clX Un)
∗. Clearly x /∈ X . Because

x ∈ clβX(clX Un+1) for all n < ω, and since Fn is a closed continuous map,

Fn(x) ∈ Fn[clβX (clX Un+1)] = cl[0,1] Fn[clX Un+1] = cl[0,1] fn[clX Un+1] = {0}

since fn = Fn|X . Hence F (x) = {0}. Thus
⋂

n<ω(clX Un)
∗ ⊂ Z(F ) \ X . Now

suppose that x /∈
⋂

n<ω(clX Un)
∗. If x ∈ X , then x /∈ Z(f) \ X . If x /∈ X , then

x /∈ clβX(clX Uk) for some k < ω. Now clX Uk ∪ (X \ Uk) = X , so

clβX(clX Uk) ∪ clβX(X \ Uk) = βX.

Hence x ∈ clβX(X \ Uk). Therefore

Fk(x) ∈ Fk[clβX (X \ Uk] = cl[0,1] fk[X \ Uk] = {1}.

Thus F (x) ≥ 2−k > 0 and x /∈ Z[F ]. This completes the proof of the lemma. �

Lemma 4.1 shows how to associate each regular sequence of open sets of X
with a zeroset of X∗. The next lemma shows the converse.

4.2 Lemma. If X is a locally compact metric space, then whenever Z ∈ Z(X∗),
there is a regular sequence of open sets (Un)n<ω on X for which
Z =

⋂
n<ω(clX Un)

∗.

Proof: Because X is locally compact, X∗ is compact and hence C∗-embedded
in βX . So there is an f ∈ C(βX, [0, 1]) such that Z = Z(f) \X . For each n < ω,

let Un = X ∩ f←[(0, 1
n+1 )]. Clearly

clX Un+1 = clX(X ∩ f←[(0, 1
n+2 )]) ⊂ X ∩ f←[(0, 1

n+1 )] ⊂ Un,
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so (Un)n<ω is a regular sequence of open sets. We will show next that⋂
n<ω(clX Un)

∗ = Z.
If x ∈ Z = Z(f)\X , and V is a neighborhood of x in βX , then since f(x) = 0,

if n < ω, then V ∩ f←[[0, 1n )] is a βX-neighborhood of x that meets the dense
subspace X of βX . So

∅ 6= X ∩ V ∩ f←[(0, 1n )] = V ∩ Un.

Thus x ∈ clβX Un, and since n is arbitrary, Z ⊂
⋂

n<ω(clX Un)
∗.

Suppose conversely that x ∈
⋂

n<ω(clX Un)
∗. Thus x /∈ X , so to show that

x ∈ Z, it suffices to show that f(x) = 0. But for each n < ω, we have x ∈ clβX Un,

and so f(x) ∈ f [clβX Un] = clR f [Un] ⊂ [0,
1
n ). Thus f(x) = 0 and we are done.

�

Combining Lemmas 4.1 and 4.2 yields:

4.3 Corollary. If we let µ[(Un)n<ω] =
⋂

n<ω(clX Un)
∗, then µ is a well-defined

mapping from the set of regular sequences of open sets on X onto Z(X∗).

Next we show that if U and V are extension traces on X for which the cor-
responding one-point metric extensions YU , and YV are equivalent, then µ(U) =
µ(V).

4.4 Theorem. If U = (Un)n<ω and V = (Vn)n<ω are two equivalent extension

traces on X , then
⋂

n<ω(clX Un)
∗ =

⋂
n<ω(clX Vn)

∗.

Proof: By 3.8 and 3.5, we know that YU ≥ YV and YU ≤ YV . By the former, if
n < ω, there is a kn < ω such that Ukn

⊂ Vn. Then:

⋂

n<ω
(clX Un)

∗ ⊂
⋂

n<ω
(clX Ukn

)∗ ⊂
⋂

n<ω
(clX Vn)

∗,

and as YU ≥ YV , the opposite inclusions hold as well. The result follows. �

4.5 Definition. If U = (Un)n<ω is an extension trace on a locally compact metric
space X , let λ(YU ) =

⋂
n<ω(clX Un)

∗.

4.6 Theorem. If X is a locally compact metric space, then λ is a well-defined
mapping from E(X) into Z(X∗).

Proof: If YU and YV are equivalent one-point metric extensions, then λ(YU ) =
λ(YV ) by 4.4, so λ is defined unambiguously. By 4.1, λ(YU ) ∈ Z(X∗). �

4.7 Theorem. Under the hypotheses given above, λ is one-one.

Proof: If YU and YV are not equivalent, we may assume that YU ≯ YV . By
using the equivalence of (a) and (c) in Theorem 3.5 and the negation of (c); we
obtain

There is an no < ω such that for all j < ω, clX Uj \ Vno
is not compact.



Properties of one-point completions of a noncompact metrizable space 113

Suppose the family {(clX Uj)
∗∩ (X \Vno

)∗ : j < ω} of compact sets has empty
intersection. Then there would be a finite subsetG of ω such that

⋂
j∈G(clX Uj)

∗∩

(X \ Vno
)∗ = ∅, and if k = maxG, this implies that

(clX Uk)
∗ ∩ (X \ Vno

)∗ = ∅ = [(clX Uk) ∩ (X \ Vno
)]∗

by properties of the Stone-Čech compactification noted in 1.6(i). This implies
that clβX [(clX Uk)∩(X \Vno

)] ⊂ X ; that is (clX Uk)∩(X \Vno
) is compact. This

contradiction yields that
⋂

j<ω(clX Uj)
∗ ∩ (X \ Vno

)∗ 6= ∅.

But clX Vno+1 ⊂ Vno
, so clX Vno+1 ∩ (X \ Vno

) = ∅, whence

clβX (clX Vno+1) ∩ clβX(X \ Vno
) = ∅ = (clX Vno+1)

∗ ∩ (X \ Vno
)∗.

Therefore
⋂
(clX Vn)

∗ ∩ (X \ V0)
∗ = ∅, which combined with the above tells

us that
⋂

n<ω(clX Un)
∗ 6=

⋂
n<ω(clX Vn)

∗, i.e., that λ(YU ) 6= λ (YV). Thus λ is
one-one as claimed. �

4.8 Lemma. If YV ≥ YU , then λ(YU ) ⊃ λ(YV ).

Proof: By Theorem 2.5, if YV ≥ YU , then for all n < ω, there is a kn < ω such
that Vkn

⊂ Un. So
⋂

n<ω(clX Vn)
∗ ⊂

⋂
n<ω(clX Vkn

)∗ ⊂
⋂

n<ω(clX Un)
∗; i.e.,

λ(YU ) ⊃ λ(YV ). �

4.9 Lemma. If U and V are extension traces and λ(YU ) ⊂ λ(YV ), then YU ≥ YV .

Proof: If YU ≯ YV , then arguing exactly as in the proof of Lemma 4.7, we
conclude that there is a Vn0 ∈ V such that

⋂
j<ω(clX Uj)

∗∩ (X \Vno
)∗ 6= ∅, while

⋂

n<ω
(clX Vn)

∗ ⊂ (clX Vn0)
∗ ⊂ X∗ \ (X \ Vno

)∗,

so
⋂

n<ω(clX Un)
∗ *

⋂
n<ω(clX Vn)

∗, i.e., λ(YU ) * λ(YV ). �

Combining 4.7,4.8. and 4.9, we obtain:

4.10 Theorem. If X is a locally compact metric space, then λ : E(X)→ Z(X∗)
is an order anti-isomorphism onto its image.

5. The case when X is separable

The results obtained in Section 4 apply to one-point metric extensions of any
locally compact metric space X . We now consider what additional information
can be obtained if X is separable. Recall from 3.8C [E89] that a locally compact
separable metric space is σ-compact. Moreover, as noted also in 3.8C in [E89],
we have
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5.1 Proposition. A locally compact σ-compact noncompact Tychonoff space
may be written in the form X =

⋃
n<w Cn, where for each n < ω, Cn is a regular

open set, clX Cn ⊂ Cn+1, and clX Cn is compact.

Combining this with 4.2 yields:

5.2 Theorem. If X is a locally compact separable metric space and Z ∈ Z(X∗),
then there is an extension trace V = (Vn)n<ω on X such that λ(YV ) = Z.

Proof: By 4.2, there is a regular sequence of open sets (Un)n<ω on X for which
Z =

⋂
n<ω(clX Un)

∗. Using the notation in 5.1, let Vn = Un \ clX Cn. Then

clX Vn+1 ⊂ clX Un+1 ∩ clX(X \ clX Cn+1)

⊂ Un ∩ (X \ intX clX Cn+1) = Un ∩ (X \ Cn+1) ⊂ Un ∩ (X \ clX Cn) = Vn

since Cn+1 is a regular open set. So, (Vn)n<ω is a regular sequence of open sets.
Finally

⋂

n<ω
Vn =

⋂

n<ω
(Un \ clX Cn) = ∅

since
⋃

n<ω Cn = X . Thus V = (Vn)n<ω is an extension trace on X .

Because Vn ⊂ Un, it follows that
⋂

n<ω(clX Vn)
∗ ⊂

⋂
n<ω(clX Un)

∗. Con-
versely, it is clear that Un ⊂ Vn∪(clX Un)

∗, so (clX Un)
∗ ⊂ (clX Vn)

∗∪(clX Cn)
∗.

But (clX Cn)
∗ = ∅ since clX Cn is compact, so (clX Un)

∗ ⊂ (clX Vn)
∗. Thus⋂

n<ω(clX Un)
∗ ⊂

⋂
n<ω(clX Vn)

∗, and each is equal to Z. �

5.3 Theorem. If X is a locally compact separable metric space, then the map
λ : E(X)→ Z(X∗) defined in 4.5 is an order reversing bijection onto Z(X∗)\{∅}.

Proof: By 4.10, it suffices to show that λ maps E(X) onto Z(X∗) \ ∅. But if
Z ∈ Z(X∗) \ {∅}, by 5.2 there is an extension trace V = (Vn)n<ω on X such that
Z =

⋂
n<ω(clX Vn)

∗, and so YV ∈ E(X) and λ(YV ) = Z. �

The theorem that follows is similar to results proved by K. Magill in [Ma68].

5.4 Theorem. If X and Y are locally compact separable metrizable spaces, then
the following are equivalent.

(a) (E(X),≤) and (E(Y ),≤) are order-isomorphic.
(b) Z(X∗) and Z(Y ∗) are order-isomorphic.
(c) X∗ and Y ∗ are homeomorphic.

Proof: The equivalence of (a) and (b) follows from 5.3. Because X∗ and Y ∗ are
compact, their topology is determined by the order structure of their lattices of
zerosets. Hence (b) and (c) are equivalent. �
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5.5 Theorem. If X is a locally compact separable metric space, and Y = X∪{p}
is a one-point metric locally compact extension of X , then its image λ(Y ) is clopen
in X∗.

Proof: If d is a compatible metric on Y , then since X is locally compact, there
is an n0 < ω such that clY Sd(p, 1n0 ) is compact. For all n < ω, let Un =

X ∩ Sd(p, 1
n0+n), and observe that clY Un is compact. Then U = (Un)n<ω is an

extension trace on X , and clearly the one-point extension YU associated with U
is equivalent to Y .
If n < ω, then because clY Un = {p}∪clX Un and Sd(p, 1

n0+n+1 ) = Un+1∪{p},
we see that:

clX Un \ Un+1 = clY Un \ Sd(p, 1
n0+n+1 )

which is compact because it is a closed subspace of the compact set clY Un. Thus
clβX (clX Un \ Un+1) ⊂ X , so (clX Un \ Un+1)

∗ = ∅. Now, clX Un = clX Un+1 ∪
(clX Un \ Un+1), so

(clX Un)
∗ = (clX Un+1)

∗ ∪ (clX Un \ Un+1)
∗ = (clX Un+1)

∗.

Because this holds for all n < ω, we see that

λ(Y ) = λ(YU ) =
⋂

n<ω
(clX Un)

∗ = (clX U1)
∗ ∈ Z(X∗).

But by Lemma 2.1 of [Mi82], (clX U1)
∗ is a P -set of X∗. That is, any Gδ of X

∗

that contains (clX U1)
∗ is open in X∗. So, since (clX U1)

∗ is a zeroset of X∗, it
is clopen in X∗. �

5.6 Theorem. If X is a locally compact separable metric space, and Y = X∪{p}
is a one-point metric extension of X such that p has no compact neighborhood,
then λ(Y ) is not clopen.

Proof: We know that Y = YU for some extension trace U on X . Suppose
to the contrary λ(YU ) =

⋂
n<ω(clX Un)

∗ is clopen in X∗, where U = (Un)n<ω.
Then X∗ \

⋂
n<ω(clX Un)

∗ is also clopen in X∗ since X is locally compact. So
there is a zeroset A of X such that A∗ equals the latter. Thus

⋂
n<ω(clX Un)

∗ ∩
A∗ = ∅. Because X∗ is compact, there is a finite subset G ⊂ ω such that⋂

n∈G(clX Un)
∗ ∩ A∗ = ∅. If m = maxG, then by 1.6(i) (clX Um)

∗ ∩ A∗ = ∅.
Since

⋂
n<ω(clX Un)

∗ ⊂ (clX Um)
∗, by the above we obtain

⋂
n<ω(clX Un)

∗ =
(clX Um)

∗, and hence (clX Un)
∗ = (clX Um)

∗ if n ≥ m. If follows from Lemma 2.4
of [W71] that the inclusion of the first of these remainders in the second im-
plies clX (clX Um \ clX Un) is pseudocompact — and hence compact because X
is metrizable. Since U is an extension trace on X , (clX Um) ∪ {p} is a closed
neighborhood of p in Y .
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If C is an open cover of of {p}∪(clX Um), then there is a k < ω and C0 ∈ C such
that k ≥ m and {p}∪Uk ⊂ C0. It follows from the above that clX (clX Um\clX Uk)
is compact. Hence, clX Um \ intX (clX Uk) is compact. Because we could have
chosen the members of U to be regular open sets, we may assume that clX Um\Uk

is compact. Since it is covered by C, there are finitely many C1, . . . , Cs ∈ C such
that (clX Um \ Uk) ⊂

⋃s
i=1Ci. Thus, {p} ∪ (clX Um) ⊂

⋃s
i=0 Ci, and so C has a

finite subcover.
It follows that {p} ∪ (clX Um) is compact and YU is locally compact, so the

theorem is proved. �

For any space X , its Boolean algebra of clopen sets is denoted by B(X).
It follows that if X is a locally compact separable metric space for which X∗ is

zero-dimensional (i.e., has an open base of clopen sets), and we denote by EK(X)
the poset of (equivalence classes) of locally compact one-point extensions of X ,
then the topology of X∗ determines and is determined by the order structure of
EK(X). More precisely:

5.7 Theorem. If X and Y are locally compact separable metrizable spaces
whose Stone-Čech remainders are zero-dimensional, then the following are equiv-

alent.

(a) The posets EK(X) and EK(Y ) are order-isomorphic.
(b) The Boolean algebras B(X∗) and B(Y ∗) are isomorphic.
(c) X∗ and Y ∗ are homeomorphic.

Proof: This follows immediately from 5.4 and 5.5. �

Theorem 5.7 has some consequences whose validity depend on which set-
theoretic assumptions are made. For missing definitions or details in what follows,
see [DH99]. A Parovičenko space is a compact zero-dimensional space of weight
ω1 with no isolated points in which every nonempty Gδ has a nonempty interior.
It is known that every Parovičenko space is homeomorphic with ω∗ if and only if
the continuum hypothesis (CH) holds. Hence if CH holds and if X is a free union
of countably many copies of the Cantor set, then X∗ is homeomorphic to ω∗. On
the other hand, if the Open Coloring Axiom (which implies the negation of CH)
holds then it is not. So, by 5.7, whether or not (EK(X),≤) and (EK(ω),≤) are
order-isomorphic depends on which model of set theory is being used.

6. The case when X is not separable

The result that follows is an easily seen consequence of a theorem of Alexandroff
concerning locally separable spaces. See 4.4F in [E89].

6.1 Theorem. Every locally compact nonseparable metric space is a free union
⊕{Xi : i ∈ I} of uncountably many locally compact separable noncompact metric
spaces Xi.
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The subspace of βX introduced next plays a vital role in the study of one-point
metric extensions of locally compact nonseparable metrizable spaces.

6.2 Definition. For any nonseparable Tychonoff space X , let

σX = {x ∈ βX : x is in the closure in βX of a σ-compact subspace of X}.

The proof of the following lemma is an exercise.

6.3 Lemma. If X = ⊕{Xi : i ∈ I} is a free union of uncountably many locally
compact separable metric spaces Xi, then:

σX =
⋃
{clβX(

⋃
Xi : i ∈ J) : J a countable subset of I}.

Moreover, σX is an open subspace of βX , and σ(σX) = σX .

We know by 5.3 that when X is separable, then λ is an order isomorphism
from E(X) onto Z(X∗) \ {∅}. But λ will not map E(X) onto Z(X∗) \ {∅} when
X is not separable. Next, we investigate those zerosets Z that belong to λ[E(X)].

6.4 Lemma. Suppose X is a locally compact nonseparable metrizable space. We
will denote βX \ σX by cσ(X). If S ∈ Z(X∗) and ∅ 6= intcσ(X)(S \ σX), then

there is a T ∈ Z(X) such that

∅ 6= T ∗ \ σX ⊂ S \ σX.

Proof: Suppose x ∈ intcσ(X)(S \ σX). By 1.5(ii), there is an H ∈ Z(X) such

that x ∈ cσ(X) \ H∗ ⊂ S \ σX . Now {x} =
⋂
{Z∗ : x ∈ Z∗ and Z ∈ Z(X)}.

Because x /∈ H∗,
⋂
{Z∗ : x ∈ Z∗ and Z ∈ Z(X∗)} ∩ H∗ = ∅. Since X∗ is

compact, there is a finite subset {Z1, . . . , Zn} of Z(X) such that x ∈
⋂n

i=1 Z∗i
and

⋂n
i=1 Z∗i ∩ H∗ = ∅. Let T =

⋂n
i=1 Zi. Then

x ∈ T ∗ = (
n⋂

i=1
Zi)
∗ =

n⋂

i=1
Z∗i ⊂ X∗ \ H∗.

Because x ∈ T ∗ \ σX , it follows that ∅ 6= T ∗ \ σX ⊂ X∗ \ H∗ ⊂ Z \ σX . �

6.5 Lemma. If X is a locally compact metrizable space and (Un)n<ω is an

extension trace on X and Z =
⋂

n<ω(clX Un)
∗, then there does not exist S ∈

Z(X) such that ∅ 6= S∗ \ σX ⊂ Z \ σX .

Proof: Suppose the contrary; then there exists such an S with S∗ \ σX 6= ∅.
Now

⋂
n<ω Un = ∅, since (Un)n<ω is an extension trace. Hence

S = S \
⋂

n<ω
Un =

⋃

n<ω
(S \ Un).
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Using the notation of 6.1, suppose that for each n < ω, there is a countable subset
Jn ⊂ I such that

S \ Un ⊂
⋃

j∈Jn

Xj .

Let J =
⋃

n<ω Jn. Then J is countable and S ⊂
⋃

j∈J Xj , which is σ-compact.

Then clβX S ⊂ σX , so S∗ \ σX = ∅. This contradiction shows that there is a
k < ω such that {i ∈ I : (S\Uk)∩Xi 6= ∅} is an uncountable set L. For each i ∈ L,
choose yi ∈ (S \Uk)∩Xi. Then (yi)i∈L is an uncountable closed discrete subset
D of X contained in S \ Uk. Clearly D∗ \ σX 6= ∅, so (S \ Uk)

∗ \ σX 6= ∅. Since
(X \ Uk) ∩ clX Uk+1 = ∅ and (Uj)j<ω is an extension trace on X , it follows that
clβX (X \ Uk) ∩ clX Uk+1 = ∅. But (X \ Uk)

∗ ⊃ (S \ Uk)
∗ and Z ⊂ (clX Uk+1)

∗,
so we see that [(S \ Uk)

∗ \ σX ] ∩ Z = ∅. But ∅ 6= [(S \ Uk)
∗ \ σX ] ⊂ S∗ \ σX , so

(S∗ \ σX) \ (Z \ σX) 6= ∅, in contradiction to assumption. The lemma follows.
�

6.6 Lemma. If X is a locally compact metrizable space and Z ∈ λ[E(X)], then
intcσ(X)(Z \ σX) = ∅.

Proof: If Z ∈ λ[E(X)], then there is an extension trace U = (Un)n<ω on X for
which Z = λ(YU ) =

⋂
n<ω(clX Un)

∗. By 6.5, there does not exist T ∈ Z(X) such
that ∅ 6= T ∗ \ σX ⊂ Z \ σX . By 6.4, it follows that intcσ(X)(Z \ σX) = ∅. �

6.7 Theorem. If X is a locally compact metrizable space and Z ∈ Z(X∗), then
the following are equivalent.

(a) Z ∈ λ[E(X)].
(b) There does not exist S ∈ Z(X) such that ∅ 6= S∗ \ σX ⊂ Z \ σX .
(c) clβX [

⋂
n<ω(clX Un)] ⊂ σX , where (Un)n<ω is a regular sequence of open

sets for which Z =
⋂

n<ω(clX Un)
∗ (see 4.2).

(d)
⋂

n<ω(clX Un) is σ-compact (where (Un)n<ω is as in (c)).

Proof: (a) implies (b). If Z ∈ λ[E(X)], then there is an extension trace (Un)n<ω

on X such that Z =
⋂

n<ω(clX Un)
∗. This implication is now just a restatement

of 6.5.

(b) implies (c). If (c) fails, then
⋂

n<ω(clX Un)
∗ \ σX 6= ∅. But then (b) fails

(with
⋂

n<ω(clX Un) playing the role of S), because clearly

(
⋂

n<ω
clX Un)

∗ \ σX ⊂ [
⋂

n<ω
(clX Un)

∗] \ σX = Z \ σX.

(c) implies (a). By hypothesis (using the notation of 6.1):

clβX [
⋂

n<ω
clX Un] ⊂

⋃
{clβX(

⋃

i∈J

Xi) : J ⊂ I is countable}.
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Now
⋃

i∈J Xi is clopen in X , so clβX (
⋃

i∈J Xi) is clopen in βX for each countable

J ⊂ I. So by compactness, we can find a finite family (Ji)
k
i=1 of countable subsets

of I such that

clβX [
⋂

n<ω
clX Un] ⊂

⋃
{clβX(

⋃

j∈Ji

Xj) : 1 ≤ i ≤ k} = clβX(
⋃

i∈J0

Xi).

where J0 =
⋃k

i=1 Ji. Because
⋃

i∈J0
Xi is clopen in X , it follows that

⋂
n<ω clX Un ⊂

⋃
i∈J0

Xi = T . Because J0 is countable, T is a locally compact
σ-compact metric space.
Arguing as in the proof of 5.2 we see that there is a regular sequence of open sets

(Cj)j<ω in T such that clX Cj+1 ⊂ Cj and T =
⋃

j<ω Cj . Let Vn = Un \ clX Cn

for each n < ω. Arguing again as in the proof of 5.2, we see that (Vn)n<ω is an
extension trace V and Z =

⋂
n<ω(clX Vn)

∗. Then Z = λ(YV ) and so Z ∈ λ[E(X)].
Thus (a) holds.
Finally note that (c) holds if and only if

⋂
n<ω(clX Un) is contained in the

union of countably many of the Xi, which is easily seen to be equivalent to (d).
�

If the converse of Lemma 6.6 were valid, the following theorem would hold for
any locally compact nonseparable metric space.

6.8 Theorem. If D is an uncountable discrete space and Z ∈ Z(D∗), then the
following are equivalent:

(a) intcσ(X)(Z \ σD) = ∅;

(b) Z ∈ λ[E(D)].

Proof: (b) implies (a) is a special case of 6.6.
(a) implies (b). Since Z ∈ Z(D∗) is nonempty, there is a regular sequence of

open sets (An)n<ω such that Z =
⋂

n<ω A∗n. If
⋂

n<ω An is uncountable, then
by 6.3 (

⋂
n<ω An)

∗ \ σD 6= ∅ and this set is thus a nonempty open subset of D∗

contained in Z \ σD, contrary to our hypothesis. Thus
⋂

n<ω An is countable,
and so clβD(

⋂
n<ω An) ⊂ σD. It now follows from 6.7 that Z ⊂ λ[E(D)]. �

Next we show that the set Z \ σX can be chosen to be nonempty.

6.9 Theorem. If X is a nonseparable locally compact metrizable space, then
there is a Z ∈ λ[E(X)] such that Z \ σX 6= ∅.

Proof: Using the notation of 6.1, let {Ik : k < ω} partition I into countably
many uncountable subsets, let Jn =

⋃
{Ik : k ≥ n} for each n < ω, and let

An =
⋃

i∈Jn
Xi. Clearly

⋂
n<ω Jn = ∅, and it follows that (An)n<ω is a decreasing

sequence of clopen subsets of X for which
⋂

n<ω An = ∅. Thus A =(An)n<ω is
an extension trace on X , and so Z =

⋂
n<ω A∗n ∈ λ[E(X)] by 4.2. We will show

now that Z \ σX 6= ∅. For otherwise, (
⋂

n<ω A∗n) ∩ (βX \ σX) = ∅. Since both
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sets intersected are compact, it follows that there is a finite subset G of ω such
that (

⋂
n∈G A∗n) ∩ (βX \ σX) = ∅. If m = maxG, then A∗m ⊂ σX . But since Jm

is uncountable, Am meets uncountably many of the Xi, so A∗m \ σX 6= ∅. This
contradiction shows that Z \ σX 6= ∅. �

We conclude this section with a:

6.10 Question. To what extent can Theorem 6.8 be generalized? In particular,
can we replace D by any locally compact nonseparable metric space?

7. Finding one-point metric extensions geometrically

In this section, we provide some examples of ways of creating examples of one-
point completions of some locally compact metrizable spaces in a geometric way
more easy to visualize than the methods employing the Stone-Čech compactifica-
tion that were used above.

A valuable tool for this purpose will be presented next. Suppose M is an
infinite cardinal which we identify with its initial ordinal. (That is, M is the
cardinality of a well-ordered set.)

For each α < M, let [0, 1]α denote a copy of the closed interval [0, 1] with its
usual (Euclidean) metric. Let H(M) denote the set obtained from

⋃
α<M

[0, 1]α
by collapsing each of the left hand endpoints to a point that will be denoted by O,
and these intervals are called spines . We define a metric d on H(M) by letting
for x ∈ [0, 1]α and y ∈ [0, 1]β

d(x, y) = |x − y| if α = β, and d(x, y) = x+ y otherwise.

The resulting metric space is an example of what is called a hedgehog with M

spines and is known to be complete. See 4.15 and 4.3B in [E89].

It will be shown next how to obtain a one-point metric extension of an infinite
discrete space D from an extension trace A by injecting D into a hedgehog H
and taking the closure of this image in H . It will be shown also how to tell from
properties of the extension trace when the resulting one-point extension is locally
compact.

Suppose A = (An)n<ω is an extension trace on D. We will assume that D is
well-ordered of cardinalityM, and that A0 = D. Note thatD =

⋃
n<ω(An\An+1)

is the union of pairwise disjoint sets since
⋂

n<ω(An) = ∅. So, for each n < ω,
we may write (An \ An+1) = {a(n, α) : α < Mn} where Mn = card(An \ An+1)
is the cardinality of (An \ An+1). Next we define a function f : D → H(M) by

letting f [a(n, α)] be the point on [0, 1]α at distance
1

n+1 from O. It is clear that
the map f is one-one, and is continuous because D is a discrete space. By the
definition of extension trace and the completeness of hedgehogs, we have:
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7.1 Proposition. clH f [D] is (homeomorphic with) the one-point completion of
the discrete space D determined by the extension trace A; that is clH f [D] =
f [D] ∪ {p}, where p = p(A) is its unique nonisolated point.

We will call f [D] ∪ {p(A)} a one-point completion of D.

7.2 Proposition. The completion f [D]∪{p(A)} (where A = (An)n<ω) is locally
compact if and only if the sets An\An+1 are finite for all but finitely many n < ω.

Proof: Suppose m < ω is fixed and card(Am \ Am+1) = Mm. Then, by the
definition of distance in the hedgehog H(M) and the function f , there are Mm

points in f [Am \ Am+1] at distance
2

m+1 from each other; namely

{d(f [(m, α)], (f [(m, β)]) : α 6= β < Mm}. So, if {n < ω : An \ An+1 is not
finite} is infinite, then every neighborhood of p(A) in f [D] ∪ {p(A)} contains an
infinite closed discrete set, and we may conclude that f [D]∪{p(A)} is not locally
compact.

Next assume that the sets An \ An+1 are eventually finite; that is, there is an
m < ω such that if n ≥ m, then An \ An+1 is finite. Before proving the converse
implication, we introduce a definition and a lemma. If a ∈ D, let ϕ(a) = s + 1
if a ∈ As \ As+1. The proof of the following lemma is an exercise since D is the
union of the pairwise disjoint sets An \ An+1.

7.3 Lemma. If (ak) is a sequence of distinct elements of Am, then it has a

subsequence (ak(i)) such that ϕ(ak(i)) diverges to ∞.

We will show that any sequence (xk) of distinct elements from the set f [Am]
converges to O. Writing ak = f←(xk), we see that the sequence (ak) satisfies
the hypothesis of Lemma 7.3, so there is a subsequence (xk(i)) of (xk) defined by

xk(i) = f(ak(i)). Note that the distance from p to xk(i) is
1

ϕ(ak(i))
on any spine

of the hedgehog, we conclude that the subsequence xk(i) converges to p. This

completes the proof of Proposition 7.2. �

Whether use of the axiom of choice has been avoided in the above depends
on whether we are willing to assume that the set D given us at the beginning of
the construction comes to us with a well-ordering. For if D is well-ordered, so
are each or the sets An \ An+1, and the resulting geometric description of the
one-point completions is much easier to visualize than the ones constructed by
using the Stone-Čech compactification.

A well-known way of creating a one-point completion of the half-line [0,∞)
that is not locally compact is obtained by embedding [0,∞) as S = {(x, sin( 1x )) :

0 < x ≤ 1} in R2, taking its closure therein, and choosing one point, say (0, 0)
on the vertical axis to obtain S ∪ {(0, 0)}. This latter is a completion because
it is a Gδ in the complete metric space S ∪ {(0, y) : 0 ≤ |y| ≤ 1}. While this
looks constructive at first glance, the theorem that guarantees that a Gδ in the



122 M.Henriksen, L. Janos, R.G.Woods

complete metric space has a compatible metric with respect to which the Gδ is a
Cauchy completion of S is not constructive.

We will give a brief outline of how one may use the metric on the separable
Hilbert space ℓ2 of square summable sequences of real numbers to obtain one-point
completions of R that are not locally compact.
Let {en : 1 ≤ n < ∞} denote the usual basis of unit vectors in ℓ2. If x, y, z ∈ ℓ2,

let [x, y] = {tx + (1 − t)y : 0 ≤ t ≤ 1} denote the line segment joining x and y,
and let [x, y, z] = [x, y]∪ [y, z]. Consider the subset T of ℓ2 obtained by attaching

{te1 : t ≥ 1} to [e1,
1
2e2, e2], to · · · [en, 1

n+1en+1, en+1], · · · for n = 1, 2, . . . . It
is not difficult to subdivide R into successive intervals each meeting the next in
exactly one point, and use them to construct an order preserving homeomorphism
of R onto T . Then the Cauchy completion of T with respect to the metric of ℓ2
will be T ∪ {0}. We leave it to the reader to verify that T ∪ {0} is not locally
compact.

Constructing one-point metric completions geometrically with methods that
apply in more generality would appear to be a formidable task.
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