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Property D and pseudonormality in first countable spaces

Alan Dow

Abstract. In answer to a question of M. Reed, E. van Douwen and M. Wage [vDW79]
constructed an example of a Moore space which had property D but was not pseudonor-

mal. Their construction used the Martin’s Axiom type principle P (c). We show that
there is no such space in the usual Cohen model of the failure of CH.

Keywords: property D, pseudonormal, first countable, Cohen model

Classification: Primary 54A35, 54E30

1. Introduction

A space is pseudonormal if any pair of disjoint closed sets, one of which is
countable, can be separated by disjoint open sets. A family of subsets of a space
X is said to be discrete, if the sets have pairwise disjoint closures and the family is
locally finite. A space has property D if every countable closed discrete set can be
separated by a discrete family of open sets. It is easy to see that every Hausdorff
pseudonormal (hence regular) space will have property D. As mentioned above,
van Douwen and Wage [vDW79] showed that it is consistent that there is a Moore
space with property D which is not pseudonormal. John Porter and P. Nyikos
have shown that there are ZFC examples of spaces which have property D and
which are not pseudonormal. They have asked if there can be a first countable
such example. We establish in this paper that there is no such example in the
Cohen model. The reader is referred to Kunen’s book [Kun83] for the necessary
background on Cohen forcing.

2. First countable spaces with property D in the Cohen model

We will need many well-known facts about reflection and forcing with Cohen
reals. Most of them can be found in Kunen’s book [kunen] and for other facts
we refer the reader to the survey [Dow92]. The proof is a somewhat standard
reflection and forcing style argument.
The Cohen forcing poset for adding ω2 Cohen reals is denoted as Fn(ω2, ω) and

consists of all finite functions into ω with domain contained in ω2. In general,
Fn(I, ω) consists of all finite functions into ω with domain contained in I. The
elements are ordered by p ≤ q if p ⊇ q.
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Recall that if J ⊂ I, then the poset Fn(I, ω) is forcing isomorphic to the
iteration (or product) Fn(J, ω) ∗Fn(I \ J, ω). Therefore if G is a generic filter for
Fn(ω2, ω) over the model V , and J ⊂ ω2, then the model V [G] is equal to the
model obtained by forcing with Fn(ω2\J, ω) over the inner model V [G∩Fn(J, ω)].

Theorem 1. It is consistent that every first countable regular space with pro-

perty D is pseudonormal.

Proof: Let V be a model of CH and let G be Fn(ω2, ω)-generic over V . In V [G]
assume that X is a first countable space and that Q is a countable closed subset
of X . Let F denote a closed subset of X which is disjoint from Q and we will
show that Q and F can be separated by disjoint open sets.
For each x ∈ X , let {U(x, n) : n ∈ ω} denote a countable base of open sets for

x in the topology on X . For each q ∈ Q, we may assume that the intersection
of U(q, 0) and F is empty and that U(q, 1) ⊂ U(q, 0). Let {qn : n ∈ ω} be an
enumeration of Q, and for each n ∈ ω, let Wn =

⋃
k≤n U(qk, 1). If there is an

n ∈ ω such that Q ⊂ Wn, then it follows that Q and F can be separated. So we
may assume that An = Q \ Wn is infinite for each n ∈ ω. If f : ω 7→ Q is any
function such that f(n) ∈ An for each n, i.e. f ∈ ΠnAn, thenDf = {f(n) : n ∈ ω}
is a closed discrete subset of X . Therefore there is a function hf from ω to ω \ 2
such that the family

{U(f(n), hf (n)) : n ∈ ω}

is a discrete family. In particular, F ∩
⋃

n U(f(n), hf (n)) is empty.
There is no loss of generality if we assume that the base set for X is some set

in V (e.g. an ordinal). In addition, we may assume that the indexing {qn : n ∈ ω}
for Q is an element of V .
Working in V now, we may choose Fn(ω2, ω)-names for each of F , {Wn : n ∈ ω}

and the collection U = {{U(x, n) : n ∈ ω} : x ∈ X} and let p′ ∈ G ⊂ Fn(ω2, ω)
be any condition which forces the relations outlined in the previous paragraphs
will hold. Let M be an elementary submodel of H(θ) for a suitably large θ so
that p′ and each of these names are elements ofM . Since CH holds in V , we may
choose M so that Mω ⊂ M and |M | = ω1. With these assumptions it follows
that M ∩ ω2 will be some ordinal λ with cofinality ω1. Let Gλ denote the set
G ∩ Fn(λ, ω) = G ∩ M .
It is well known that for each x ∈ X ∩ M and each integer n, there is a

Fn(λ, ω)-name U̇ ′(x, n) such that for each y ∈ X ∩ M

y ∈ valGλ
(U̇ ′(x, n)) iff y ∈ valG(U̇(x, n)).

Similarly, there are Fn(λ, ω)-names, Ḟ ′ and Ẇ ′
n (n ∈ ω), so that for each

y ∈ X ∩ M ,

y ∈ valGλ
(Ḟ ′) iff y ∈ valG(Ḟ )
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and
y ∈ valGλ

Ẇ ′
n iff y ∈ valG(Ẇn).

We now work in the model V [Gλ] and consider the forcing Fn(ω2 \λ, ω). Note
that since G is a coherent family of functions from ω2 into ω, we will have that⋃

G is a function from ω2 into ω. The function g : ω 7→ ω which is defined by
g(n) =

⋃
G (λ + n) is usually thought of as the “λ-th” Cohen real added by G.

For each n, the set Q\W ′
n = An is a member of V [Gλ] and can be enumerated as

{a(n, m) : m ∈ ω}. We let ḟ denote the canonical name of the element of ΠnAn

which satisfies ḟ(n) = a(n, g(n)) for each n. Recall that there is also a name ḣf

which satisfies that, in V [G],

F ∩
⋃

n

U(f(n), hf (n)) = ∅.

We may assume that for each p ∈ Fn(ω2 \ λ, ω),

p 
 Ḟ ∩
⋃

n

U̇(f(n), hf (n)) = ∅.

For each p ∈ Fn(ω2 \ λ, ω), let

Up =
⋃

{U ′(q, m) : (∃ q ≤ p, ∃n ∈ ω) q 
 f(n) = q and hf (n) = m}.

For each p ∈ Fn(ω2 \ λ, ω), there is some np = n such that dom(p) ∩ [λ, λ+ ω) ⊂
[λ, λ+ n]. It follows then, that for each p ∈ Fn(ω2 \ λ, ω), Q ⊂ Wnp ∪ Up.

For each x ∈ F ′ and p ∈ Fn(ω2 \ λ, ω), there are px ≤ p ∈ Fn(ω2 \ λ, ω) and

nx ∈ ω such that px 
 U̇(x, nx) ∩
⋃

n U̇(ḟ(n), ḣf (n)) is empty since 1 
 x /∈
⋃

n U̇(ḟ(n), ḣf (n)).
Since Fn(ω2 \ λ, ω) is ccc, there is a countable subset J of ω2 \ λ such that for

each p ∈ Fn(ω2 \ J, ω), each q ∈ Q, and integers n, m, if

p 
 ḟ(n) = q and ḣf (n) = m iff p ↾ J 
 ḟ(n) = q and ḣf (n) = m.

Let {pn : n ∈ ω} enumerate Fn(J, ω) and for each n, let h(n) be a large enough
integer such that the closure of U(qn, h(n)) is contained in Wnpk

∪ Upk
for each

k ≤ n. Therefore the function h is in V [Gλ] and, since Mω ⊂ M , there is a

name, ḣ, for h such that ḣ is in M . Furthermore, h is a member of M [Gλ].
By [Dow92, 4.5], M [Gλ] is an elementary submodel of H(θ)[G]. Observe that
H(θ)[G] |= F ∩ M [Gλ] = F ′ and that F ∈ M [Gλ].
The proof will finish, in V [G], by showing that

M [Gλ] |= F ∩
⋃

n

U(qn, h(n)) = ∅
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and concluding, by elementarity, that

H(θ)[G] |= F ∩
⋃

n

U(qn, h(n)) = ∅.

To show this, consider any x ∈ F ′ and work in V [Gλ]. By our assumptions we
know there is some px ∈ Fn(ω2\λ, ω) such that x is not in the closure of Upx . Since

the definition of Upx only depends on ḣf , it follows that we may assume that px ∈
Fn(J, ω). Therefore there is some k such that px = pk. Since U(qn, h(n)) ⊂ Upx

for all n > k, it follows that x is not in the closure of
⋃
{U ′(qn, h(n)) : n > k}. In

addition, x is not in the closure of U ′(qm, h(m)) form ≤ k since h(m) > 0. Fix any
m such that U ′(x, m)∩

⋃
{U ′(qn, h(n)) : n ∈ ω} is empty and recall that it follows

then that M [Gλ] |= U(x, m) ∩
⋃
{U(qn, h(n)) : n ∈ ω} is empty. Since this holds

for each x ∈ F ∩ M , we have proven that M [Gλ] |= F ∩
⋃
{U(qn, h(n)) : n ∈ ω}

is empty and finished the proof. �
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