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A note on operators extending partial ultrametrics

E.D. Tymchatyn, M. Zarichnyi

Abstract. We consider the question of simultaneous extension of partial ultrametrics,
i.e. continuous ultrametrics defined on nonempty closed subsets of a compact zero-
dimensional metrizable space. The main result states that there exists a continuous
extension operator that preserves the maximum operation. This extension can also be
chosen so that it preserves the Assouad dimension.
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1. Introduction

C. Bessaga [6], [7] formulated a general problem of linear extensions of conti-
nuous (pseudo)metrics defined on a closed subset of a metrizable space and gave
a partial solution of it. A complete solution was first obtained by T. Banakh [3],
[4]; see also [5], [19], [23] for related results.
Recently, the authors [21] considered a problem of simultaneous linear exten-

sion of metrics with variable domains in a compact space. The obtained result
on existence of linear extension operators is in some sense parallel to the corre-
sponding result due to Künzi and Shapiro [11] on simultaneous linear extensions
of partial functions. In the present paper we consider a problem of simultaneous
extension of partial ultrametrics, i.e. ultrametrics defined on the nonempty closed
subsets of a zero-dimensional compact metrizable space.
Recall that a metric ̺ on a set X is called an ultrametric (or non-Archimedean

metric) if ̺(x, y) ≤ max{̺(x, z), ̺(z, y)} for all x, y, z ∈ X . It is well-known (see,
e.g. [10]) that a metrizable space X admits an ultrametric compatible with its
topology if and only if dimX = 0. Obviously, in the case of ultrametrics, one
cannot speak about linear extension operators, because the set of all ultrametrics
is not, in general, closed with respect to linear operations (the sum of two ultra-
metrics need not be an ultrametric). However, the set of all ultrametrics is closed
under the operation of pointwise maximum.
Identifying every ultrametric with its graph, one can topologize the set of all

partial ultrametrics with the hyperspace topology. We show that there exists
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a continuous extension operator of partial ultrametrics that preserves the ope-
ration of maximum of two ultrametrics. In addition, the constructed operators
preserve the so-called Assouad dimension of the ultrametric spaces. The results
on bi-Lipschitz embeddings of ultrametric spaces ([14], [16]) allow us to derive
from this that the extended ultrametric space is bi-Lipschitzely embeddable into
R

n if so is the initial ultrametric space.

2. Preliminaries

2.1 Space of partial ultrametrics. By expX we denote the hyperspace of X ,
i.e. the set of all nonempty compact subsets of X endowed with the Vietoris
topology. A base of this topology consists of the sets of the form

〈U1, . . . , Uk〉 = {A ∈ expX | A ⊂
k
⋃

i=1

Ui, A ∩ Ui 6= ∅ for all i},

where {U1, . . . , Uk} run over all finite families of open subsets in X .
If d is a compatible metric on X , then the Vietoris topology is generated by

the Hausdorff metric dH ,

dH (A, B) = inf{ε > 0 | A ⊂ Oε(B), B ⊂ Oε(A)}.

Given a nonempty compact subset A of X , we denote by UM(A) the set of
continuous ultrametrics on A. Set

UM =
⋃

{UM(A) | A ∈ expX, |A| ≥ 2}.

Identifying every ultrametric d ∈ UM with its graph, which is a compact
subset of X × X × R, we consider the set UM as a subset of exp(X × X × R)
and endow UM with the subspace topology. Note that such a topologization of
functional spaces traces back to Kuratowski [12], [13] and is extensively used in
the topological theory of differential equations (see e.g. [9]).
If ̺ ∈ UM, then dom ̺ = A means ̺ ∈ UM(A). Note that the map

dom:UM → expX , being the restriction of the projection onto the first coor-
dinate, is continuous. For ̺ ∈ UM let ‖̺‖ = max{̺(x, y) | x, y ∈ dom ̺}.
For every A ∈ expX the set UM(A) is a continuous ∨-semilattice with respect

to the operation ̺∨ ̺′ = max{̺, ̺′}. Also, the set UM is closed under pointwise
multiplication by positive numbers.

2.2 Assouad dimension. Let c, s ≥ 0. We say that a (pseudo)metric space
(X, ̺) is (c, s)-homogeneous if the inequality |X0| ≤ c(b/a)s holds for a > 0, b > 0
and X0 ⊂ X provided that b ≥ a and that a ≤ ̺(x, y) ≤ b holds for every pair of
distinct points x and y of X0.
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The space (X, ̺) is s-homogeneous if it is (c, s)-homogeneous for some c ≥ 0.
The Assouad dimension, dimA(X, ̺) of a (pseudo)metric space (X, ̺) is defined

as follows:
dimA(X, ̺) = inf{s ≥ 0 | (X, ̺) is s-homogeneous}

(see [1], [2]).

Proposition 2.1. Let ̺, ̺1, ̺2 be (pseudo)metrics on a set X and ̺ = ̺1 ∨ ̺2.
Then dimA(X, ̺) ≤ dimA(X, ̺1) + dimA(X, ̺2).

Proof: Let m denote the max-(pseudo)metric on (X, ̺1)× (X, ̺2), i.e.

m((x, y), (x′, y′)) = max{̺1(x, x′), ̺2(y, y′)}.

It is proved in [15] (see Theorem 5.A therein; note that this theorem is formu-
lated for metric spaces, its extension onto pseudometric spaces is straightforward)
that dimA(X × X, m) ≤ dimA(X, ̺1) + dimA(X, ̺2). Since the diagonal map
∆: (X, ̺)→ (X ×X, m) is an isometric embedding and the Assouad dimension is
monotonic, the result follows. �

Proposition 2.2. Let (X, ̺) be a compact (pseudo)metric space and c > 0. For
the truncated (pseudo)metric ̺′, ̺′(x, y) = min{̺(x, y), c}, we have dimA(X, ̺) =
dimA(X, ̺′).

Proof: The result follows from the fact that (X, ̺) and (X, ̺′) are Lipschitz
equivalent and from Theorem 5.A. (1) in [15]. �

Proposition 2.3. Let f :X → Y be a map into a metric space (Y, ̺). De-
note by f∗(̺) the pseudometric on X defined by the formula f∗(̺)(x1, x2) =
̺(f(x1), f(x2)). Then dimA(X, f∗(̺)) ≤ dimA(Y, ̺).

Proof: The result follows from the fact that, for any a, b, 0 < a < b, and any
subset X0 ⊂ X satisfying a ≤ f∗(̺)(x1, x2) ≤ b whenever x1, x2 ∈ X0, x1 6= x2,
the set f(X0) satisfies the property: a ≤ ̺(y1, y2) ≤ b whenever y1, y2 ∈ f(X0),
y1 6= y2. �

Proposition 2.4. There exists an ultrametric d on the Cantor set C with the
following properties:

(i) d takes only binary rational values;
(ii) dimA(C, d) = 0.

Proof: Identify C with the set 2N and define d by the formula

d((xi), (yi)) = sup{2
−2j | xj 6= yj}, (xi), (yi) ∈ 2

N, (xi) 6= (yi).

Obviously, d is an ultrametric on C that takes only binary-rational values.
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We are going to show that dimA(C, d) = 0. Let s > 0. We have to demonstrate
that C is s-homogeneous.
Given a, b, 0 < a ≤ b, find the minimal natural number m and the maximal

natural number n such that a ≤ 2−2
n
≤ 2−2

m
≤ b (without loss of generality we

may suppose that such m, n exist). Suppose that X0 ⊂ C has the property that
a ≤ d(x, y) ≤ b, for every x, y ∈ X0, x 6= y. Then

(2.1) 2−2
n

≤ d(x, y) ≤ 2−2
m

for every x, y ∈ X0, x 6= y. Suppose that x = (xi) ∈ X0. For arbitrary y = (yi) ∈
X0, x 6= y, it easily follows from condition (2.1) and the definition of the metric
d, that

{i | xi 6= yi} ∩ {m, m+ 1, . . . , n} 6= ∅.

Therefore, the projection map pr: 2N → 2{m,m+1,...,n} separates the points of the
set X0. We conclude that |X0| ≤ 2

n−m+1.
There exists N ∈ N such that for every p > N we have p ≤ 2p−1s. Let

c = 2N+1. If n = m, then |X0| = 2 ≤ c(b/a)s.

Suppose now that n > m. If n ≤ N , then |X0| ≤ 2
N+1 ≤ c(b/a)s.

If n > N , then

log2(c(b/a)s) ≥ N + s log2(b/a) ≥ N + s(2n − 2m) ≥ N + s2n−1

≥ n ≥ n − m+ 1 ≥ log2 |X0|

i.e. |X0| ≤ c(b/a)s.
Since C is s-homogeneous for every s > 0, we conclude that dimA C = 0. �

3. Extension of partial ultrametrics

The following is the main result of this note.

Theorem 3.1. Let X be a zero-dimensional compact metrizable space. There
exists a map u:UM → UM(X) that satisfies the following properties for every
̺, ̺′ ∈ UM:

(1) u is continuous;
(2) u(̺) is an extension of ̺ for every ̺ ∈ UM;
(3) ‖u(̺)‖ = ‖̺‖;
(4) u(̺ ∨ ̺′) = u(̺) ∨ u(̺′);
(5) if ̺ ∈ UM takes only (binary) rational values then so does u(̺);
(6) dimA(X, u(̺)) = dimA(dom ̺, ̺).

Proof: The set K = {(x, A) ∈ X × expX | x ∈ A} is closed in the space X ×
expX . Since the spaceX is zero-dimensional compact metrizable, so is expX and
thereforeX×expX (see, e.g. [18]) as well as the quotient space (X×expX)/K. By
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the classical embedding theorem, there exists an embedding f ′: (X×expX)/K →
C into the standard Cantor set C (see, e.g. [8, Theorem 6.2.16]) and, as C is
topologically homogeneous, one may additionally assume that f ′(K) = 0 ∈ C.
Let f = f ′q:X × expX → C, where q:X × expX → (X × expX)/K is the
quotient map. Then f(K) = {0} and f |((X × expX) \ K) is an embedding.
Define a multivalued map F :X × expX → X by the formula

F (x, A) =

{

A if x /∈ A,

{x} if x ∈ A.

We show that the map F is lower semicontinuous, i.e. the set U ♯ = {(x, A) ∈
X × expX | F (x, A) ∩ U 6= ∅} is open for every open subset U of X . Let

(x0, A0) ∈ U ♯.

Case 1). x0 /∈ A0. Then F (x0, A0) = A0 and A0 ∩ U 6= ∅. There exist disjoint
neighborhoods V of x0 and W of A in X respectively. Then for every (x, A) ∈
〈W, W ∩U〉 we have x /∈ A and thus F (x, A) = A. Since A∩ (W ∩U) 6= ∅, we see
that (x, A) ∈ U ♯.

Case 2). x0 ∈ A0. Then F (x0, A0) = {x0} and x0 ∈ U . Obviously, U×〈X, U〉 is a
neighborhood of (x0, A0) and for every (x, A) ∈ U×〈X, U〉 we have F (x, A)∩U 6=
∅, i.e. (x, A) ∈ U ♯.

As we already remarked, the space X × expX is a zero-dimensional compact
metrizable space. We can apply the zero-dimensional Michael Selection Theorem
[17] to find a continuous selection of F , i.e. a continuous map g:X × expX → X
such that g(x, A) ∈ A for every (x, A) ∈ X × expX .
Let d be an ultrametric on C generating its topology. We may suppose, by

Proposition 2.4, that d takes only binary rational values and dimA(C, d) = 0.
Define the map u:UM → UM(X) by the formula

(3.1)
u(̺)(x, y) = max

{

̺(g(x, dom ̺), g(y, dom ̺)),

min{d(f(x, dom ̺), f(y, dom ̺)), ‖̺‖}
}

for all x, y ∈ X .
As the maximum of two continuous ultrapseudometrics, u(̺) is a continuous

ultrapseudometric on X for every ultrametric ̺ ∈ UM. Since ‖̺‖ > 0 due to our
assumptions, one can easily see that u(̺) is in fact an ultrametric.
We are going to verify properties (1)–(6).

(1) We show that the map u is continuous. Let (̺n) be a sequence in UM that
converges to ̺ ∈ UM. Then, obviously, dom̺n → dom̺. As we have remarked,
there exists a continuous ultrametric ˜̺ on X that extends ̺ over X × X (take,
e.g., ˜̺ = u(̺)). Let ˜̺n = ˜̺|(dom ̺n × dom ̺n). Arguing like in the proof of
Lemma 3 in [11], we can show that ˜̺n → ̺ in UM.
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Fix ε > 0. There is N ∈ N such that for every n ≥ N we have

(a) ‖̺n − ˜̺n‖ < ε/2;
(b) |d(f(x, dom ̺), f(y, dom̺))− d(f(x, dom ̺n), f(y, dom̺n))| < ε for every

x, y ∈ X × X (this is a consequence of uniform continuity of the maps f
and d and compactness of X);

(c) |̺(g(x, dom ̺), g(y, dom ̺)) − ˜̺(g(x, dom ̺n), g(y, dom̺n))| < ε/2 for ev-
ery x, y ∈ X × X .

Then for every n ≥ N we have

(3.2)

|̺(g(x, dom ̺), g(y, dom̺))− ̺n(g(x, dom ̺n), g(y, dom̺n))|

≤ |̺(g(x, dom ̺), g(y, dom ̺))− ˜̺(g(x, dom ̺n), g(y, dom̺n))|

+ | ˜̺(g(x, dom ̺n), g(y, dom̺n))− ̺n(g(x, dom ̺n), g(y, dom ̺n))|

≤
ε

2
+

ε

2
= ε

for every x, y ∈ X × X .
Inequalities (b) and (3.2) together imply |u(̺)(x, y)−u(̺n)(x, y)| < ε for every

n ≥ N and every x, y ∈ X × X . This means that the sequence (u(̺n)) converges
to u(̺) in UM. Because of arbitrariness of (̺n), the map u is continuous.

(2) If x, y ∈ dom̺, then f(x, dom̺) = f(y, dom̺), g(x, dom ̺) = x, g(y, dom̺)
= y and hence u(̺)(x, y) = ̺(x, y), i.e. u is an extension operator.

(3) Let c = ‖̺‖. Then

u(̺)(x, y) ≤ max{c,min{d(f(x, dom ̺), f(y, dom̺)), c}} = c

for every x, y ∈ X , i.e. ‖u(̺)‖ ≤ c. Since u(̺) is an extension of ̺, we see that
‖u(̺)‖ = c.

(4) If ̺ = ̺1 ∨ ̺2, then dom ̺1 = dom̺2 and so

(u(̺1) ∨ u(̺2))(x, y) = max
{

max{̺1(g(x, dom ̺1), g(y, dom̺1)),

min{d(f(x, dom ̺1), f(y, dom̺1)), ‖̺1‖}},

max{̺2(g(x, dom ̺2), g(y, dom̺2)),

min{d(f(x, dom ̺2), f(y, dom̺2)), ‖̺2‖}}
}

= max
{

̺1(g(x, dom ̺1), g(y, dom ̺1)), ̺2(g(x, dom ̺2), g(y, dom ̺2)),

min{d(f(x, dom ̺1), f(y, dom̺1)), ‖̺1‖},

min{d(f(x, dom ̺2), f(y, dom̺2)), ‖̺2‖}
}

= max{(̺1 ∨ ̺2)(g(x, dom ̺1), g(y, dom̺1)),

min{d(f(x, dom ̺1), f(y, dom̺1)),max{‖̺1‖, ‖̺2‖}}}

= max
{

(̺1 ∨ ̺2)(g(x, dom ̺1), g(y, dom ̺1)),

min{d(f(x, dom ̺1), f(y, dom̺1)), ‖̺1 ∨ ̺2‖}
}

= u(̺1 ∨ ̺2)(x, y),



A note on operators extending partial ultrametrics 521

i.e. u is a homomorphism of ∨-semilattices.

(5) Follows from formula (3.1).

(6) Note that the formula ̺′(x, y) = min{d(f(x, dom ̺), f(y, dom̺)), ‖̺‖} de-
termines a pseudometric ̺′ on X . It follows from Proposition 2.4 (applied to the
truncated metric min(d, ‖̺‖)), Proposition 2.3, and the properties of the space
(C, d) that dimA(X, ̺′) = dimA(C, d) = 0. Similarly, the formula ̺′′(x, y) =
̺(g(x, dom ̺), g(y, dom ̺)) determines a pseudometric ̺′′ on X . By Proposi-
tion 2.3, dimA(X, ̺′′) = dimA(dom ̺, ̺).
By the definition, u(̺) = ̺′′ ∨ ̺′, whence, by Proposition 2.1 applied to the

pseudometrics ̺′′ and ̺′, we see that

dimA(X, u(̺)) ≤ dimA(X, ̺′′) + dimA(X, ̺′)

= dimA(dom ̺, ̺) + dimA(C, d) = dimA(dom ̺, ̺).
�

Corollary 3.2. The operator u from Theorem 3.1 has the following property: if
̺ ∈ UM and the space (dom ̺, ̺) can be bi-Lipschitz embedded into the Euclidean
space R

n, for some n, then (X, u(̺)) can also be bi-Lipschitz embedded into R
n.

Proof: It is proved in [14] that if an ultrametric space can be bi-Lipschitz em-
bedded in R

n, then its Assouad dimension is less than n. Since dimA(X, u(̺)) =
dimA(dom ̺, ̺) < n, it follows from [16, Theorem 3.8] that (X, u(̺)) can also be
bi-Lipschitz embedded into R

n. �

4. Remarks and open questions

4.1 Homogeneous extension operators. Let X be a zero-dimensional com-
pact metrizable space. A map u:UM → UM(X) is said to be homogeneous if
u(c̺) = cu(̺), for any ̺ ∈ UM.

Question 4.1. In the assumptions of Theorem 3.1, is there a homogeneous map
u:UM → UM(X) satisfying conditions (1)–(6) of this theorem?

Quite recently, I. Stasyuk constructed a homogeneous map u:UM → UM(X)
that satisfies conditions (1)–(5) of Theorem 3.1.

4.2 Generalized ultrametric spaces. One can consider an extension problem
also for generalized ultrametric spaces.
Let (Γ,≤) be a partially ordered set with smallest element, denoted by 0. Let

X be a non-empty set and d : X × X → Γ be a mapping satisfying the following
conditions:

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x);
(3) if d(x, y) ≤ γ and d(x, z) ≤ γ, then d(y, z) ≤ γ.
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The pair (X, d,Γ) is then called a (generalized) ultrametric space ([22]). We
leave to the reader the precise formulation of the problem of extension for partial
generalized ultrametrics.

4.3 Extension of partial metrics with n-dimensional Nagata property.
A metric space (X, d) satisfies the n-dimensional Nagata property if for every
r > 0, every x ∈ X , and every collection of elements y1, . . . , yn+2 of the set

{y ∈ X | there exists z ∈ X with d(x, z) < r, d(y, z) < 2r}

there exist i, j, i 6= j such that d(yi, yj) < 2r. It is proved in [1] that a separable
metric space X admits a compatible metric with n-dimensional Nagata property
if and only if dimX ≤ n. For every A ∈ expX denote by PnM(A) the set of
all compatible metrics on A with n-dimensional Nagata property. Set PnM =
⋃

{PnM(A) | A ∈ expX}.
The set of metrics with 0-dimensional Nagata property is easily seen to coincide

with the set of all ultrametrics. Therefore, the set P0M(A) is closed under the
operation max. There is no counterpart of this property for the spaces PnM(A)
if n ≥ 1. However, the sets PnM(A) are closed under multiplication by positive
real numbers.

Question 4.2. Let X be an n-dimensional compact metrizable space, n ≥ 1. Is
there a continuous (homogeneous) extension operator PnM → PnM(X)?

A version of this question can be formulated about the existence of a continuous
extension operator PnM → PnM(X) that preserves the partial order relation ≤
on PnM.

4.4 Non-metrizable case. If we replace the axiom ̺(x, y) = 0 ⇔ x = y by
x = y ⇒ ̺(x, y) = 0, we obtain the notion of ultrapseudometric. One can similarly
formulate the problem of simultaneous extension of partial ultrapseudometrics.
Denote by UPM(A) the set of all continuous ultrapseudometrics defined on a
nonempty closed subset A of a compact zero-dimensional Hausdorff space X . Let
UPM =

⋃

{UPM(A) | A ∈ expX}. As in [21], one can prove the following
result.

Theorem 4.3. For a compact zero-dimensional Hausdorff space X the following
are equivalent:

(1) there exists a continuous extension operator u:UPM → UPM(X);
(2) there exists a continuous map Ψ: (X × X) \ ∆X → UPM(X), (x, y) 7→
Ψ(x,y), with Ψ(x,y)(x, y) 6= 0 for all (x, y) ∈ X2 \∆X ;

(3) X is metrizable.

Proof: The argument coincides with that of the proof of [21, Theorem 6.1]. It
is noted in [21] that implication (2) ⇒ (3) is based on a result of Stepanova [20]
on extension of partial continuous functions. �
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