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A semifilter approach to selection principles

LUBOMYR ZDOMSKY

Abstract. In this paper we develop the semifilter approach to the classical Menger and
Hurewicz properties and show that the small cardinal g is a lower bound of the additivity
number of the o-ideal generated by Menger subspaces of the Baire space, and under u < g
every subset X of the real line with the property Split(A, A) is Hurewicz, and thus it is
consistent with ZFC that the property Split(A, A) is preserved by unions of less than b
subsets of the real line.

Keywords: Menger property, Hurewicz property, property Split(A, A), semifilter, multi-
function, small cardinals, additivity number

Classification: 03A, 03E17, 03E35, 54D20

Introduction

In this paper we shall present two directions of applications of semifilters in
selection principles on topological spaces. First, we shall consider preservation by
unions of the Menger property.

Trying to describe the o-compactness in terms of open covers, K. Menger in-
troduced in [15] the following property, called the Menger property: a topological
space X is said to have this property if for every sequence (up)new of open cov-
ers of X there exists a sequence (v )new such that each vy, is a finite subfamily
of up, and the collection {{Jv, : n € w} is a cover of X. The class of Menger
topological spaces, i.e. spaces having the Menger property appeared to be much
wider than the class of o-compact spaces (see [5], [7], [10] and many others), but
it has interesting properties itself and poses a number of open questions. One of
them, namely the question about the value of additivity of corresponding o-ideal,
will be discussed in this paper. Let us recall that a collection Z of subsets of a
set X is called a o-ideal if it is closed under taking subsets and countable unions.
Therefore, the union | J belongs to Z for every countable subfamily 7 of Z. In
light of this property of o-ideals it is interesting to find the smallest cardinality 7
such that the union |JJ is not in Z for some J C Z with |J|=7. T JZ =X
and X ¢ 7 such a cardinality obviously exists and we denote it by add(Z). It is
easy to prove (see, for example, [10]) that the collection M (X) of subspaces of
a topological space X contained in subspaces with the Menger property form a
o-ideal, so one can ask about the value of add(M(X)). According to [4], for the
Baire space N¥ this additivity number is situated between cardinals b and cf(2),
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where b and 9 are well-known bounding and dominating numbers respectively,
see [25]. It was also asked in [4] whether add(M (X)) = b, see Problem 2.4 there.
We shall prove here that another small cardinal, namely g, is a lower bound of
add(M (X)) for each hereditarily Lindelof topological space X. Since there are
models of ZFC with b < g (see [25]), this answers the above mentioned problem in
negativel. Concerning topological spaces which contain non-Lindelf subspaces,
the straightforward proof of the fact that this additivity equals Ny is left to the
reader.

Another direction is devoted to splittability of open covers. Following [8] and
[10] we say that a family u of subsets of a set X is

e a large cover of X, if every z € X belongs to infinitely many U € u;

o an w-cover, if for every finite subset K of X the family {U € u: K C U}
is infinite;
o a y-cover, if for every x € X the family {U € u: x ¢ U} is finite.

From now on we denote by A(X) (resp. Q(X), I'(X)) the family of all large
(resp. w-, v-) covers of X. A topological space X satisfies the selection hypothesis
Split(A, A), if for every u € A(X) there are vy,vy € A(X) such that v1 Nwvg =0
and v1 Uvg C u. The class Split(A, A) contains all Hurewicz spaces and all spaces
with the Rothberger property, see [17, Corollary 29, Theorem 15]. Recall, that a
topological space X has the Hurewicz property, if for every sequence (up)pew of
open covers of X there exists a y-cover {By, : n € w} of X such that each By is
un-bounded, which means that By, C |Jv for some finite v C uy,. Substituting “v”
for “w” in the above sentence, we obtain the definition of the property (g, (T, €2),
which will be referred in this paper as the property of Scheepers. If, additionally,
each vy, in the definition of the Menger property contains only one element of wuy,
we obtain the definition of the Rothberger property.

The following problem is open.

Problem 1 (20, Issue 9, Problem 4.1], [24, Problem 6.7]). Is the property
Split(A, A) preserved by unions of subsets of R?

We shall show that under additional strong set-theoretic assumption u < g
every Lindel6f paracompact topological space X is Hurewicz provided it has the
property Split(A, A), which implies that the positive answer to the above problem
is consistent. In particular, this implies that under u < g every Rothberger space
is Hurewicz. It is worth to mention here, that under CH there are so called Luzin
subsets of the Baire space N*, which have the Rothberger property but fail be
Hurewicz, see [10] for details. Therefore the statement “the family of Hurewicz
subspaces and the family of subspaces with the property Split(A, A) of the real
line coincide” is independent of ZFC.

1See Remark 3 for further explanation



A semifilter approach to selection principles

The reason why such different results of these two parts are unified in one paper
is that both of them are proved with the use of semifilters.

Semifilters

To begin with, let us recall from [25] the definition of the small cardinal g.
Let C be a countable set. A family D C [C]N0 is said to be open, if X € D
provided X C* Y for some Y € D (here and subsequently X C* Y means
that the complement X \ Y is finite, and [A]0 (A<N0) denotes the set of all
countable infinite (finite) subsets of a set A). A family D is called groupwise
dense, if for every infinite collection II of finite pairwise disjoint subsets of C
there exists an infinite H C II such that |JH € D. By definition, g equals
the smallest cardinality of a collection of groupwise dense families with empty
intersection. Given an arbitrary groupwise dense family D, consider the family
F ={C\ D : D e D}UFr(C), where §r(C) denotes the Fréchet filter on
C consisting of cofinite subsets. From the above it follows that F satisfies the
following conditions:

(1) G € F provided F C* G for some F € F;

(2) every collection IT of pairwise disjoint finite subsets of C' contains an infi-
nite subset H such that C'\ |JH belongs to F.

Following [6], we call a family F of infinite subsets of C' a semdfilter, if it satisfies
the above mentioned condition (1).

However, another approach to the definition of groupwise dense families is not
the purpose of introduction of semifilters. Quite the contrary, semifilters seem
to constitute some rather interesting area of Set Theory, see [6]. In particular,
they inherited many useful properties of filters, for example the following classical
theorem due to Talagrand holds, see [18] or [6].

Theorem 1. Let F be a semifilter on a countable set C. Then F fails to be
meager if and only if it satisfies the above mentioned condition (2).

(Since every semifilter F on a countable set C is a subset of the powerset
P(C), which can be identified with the product {0,1}¢, we can speak about
topological properties of semifilters. Since C' is countable, P(C) and [C]R0 are
nothing else but homeomorphic copies of the Cantor and Baire space respectively.
For example, the base of the topology on [C’]NO consists of subsets of the form
G(s,t) = {A € [C]" : AN s = t}, where s and t are finite subset of C.)

Theorem 1 implies the following characterization of groupwise dense families:
a family D C [C]M° is groupwise dense if and only if the family {C'\ D : D € D}U
$r(C) is a nonmeager semifilter. Therefore g is equal to the smallest cardinality
of a collection F of nonmeager semifilters such that (|F = §r(C). We shall prove
a bit more.
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Observation 1. The cardinal g is equal to the smallest cardinality of a family F
of semifilters on a countable set C' such that [\ F is meager.

PROOF: Let F be a family of semifilters such that (| F is meager. The only thing
to be proved is that |F| > g. For this aim let us fix a sequence (I, )new of pairwise
disjoint finite subsets of C' such that each member of (F meets all but finitely
many Ip,. Without loss of generality, | J,,c., In = C. For each F € F let us make
the notation Gr = {G C w: U,,eq In € F}. Now, it suffices to observe that each
Gr is a nonmeager semifilter on w and (\rcp G7 = §7(w). O

The family of all semifilters on a set C' is evidently closed under taking unions
and intersections of arbitrary subfamilies. In addition to these operations there
is another unary one. Given any semifilter F, let 7+ = {G c C : VF € F(F N
G # 0)}. (For a filter F the family F1 is nothing else but F+ in notations of
C. Laflamme, see [14]). It is clear that F is a semifilter too. In other words,
FL =P()\{C\ F:F e F}. Consequently (F1)- = F and F is comeager
if and only if F is meager. Let us also observe that ((\F)~ = (Jzcp F© for an
arbitrary collection of semifilters F. Thus we obtain another characterization of
the cardinal g: it is the smallest size of a family F of non comeager semifilters
on a countable set C' such that JF is comeager. In what follows we shall simply
write §r in place of Fr(w).

Next, similarly to [3], for every semifilter F on w we shall define a cardinal
characteristic b(F). Its definition involves a special relation <z on N“:

(Tn)new <F Wn)new ff {n€w:my, <yn} e F.

Now, b(F) stands for the smallest size of unbounded subset of N* with respect
to <z. When F = Fr, then <r is nothing else but the well-known eventual
dominance preorder <*. For example, b(§7+) = 0 and b(Fr) = b. Almost literal
repetition of the proof of Theorem 16 from [3] gives us the following

Proposition 1. b(F) > g for each nonmeager semifilter F on w.

Next, in what follows we shall intensively use set-valued maps. By a set-valued
map ® from a set X into a set ¥ we understand a map from X into P(Y) and
write ® : X = Y (here P(Y) denotes the set of all subsets of Y). For a subset
A of X we put ®(A) = J,cq ®(x) CY. When the sets X and Y are endowed
with some topologies, it is interesting to consider set-valued maps with certain
topological properties. The set-valued map ® between topological spaces X and
Y is said to be

e compact-valued, if ®(z) is compact for every z € X;

e upper semicontinuous, if for every open subset V' of Y the set <I>EI(V) =
{r e X :®(x) CV}isopenin X.
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Lemma 1. Let ® : X = Y be a compact-valued upper semicontinuous map
between topological spaces X and Y such that ®(X) =Y. Then Y is Menger
(Hurewicz) provided so is X .

PROOF: Let us fix an arbitrary sequence (wy,)new of open covers of Y. For every
n € w consider the family u, = {‘I’El(U v) 1 v € [wy]<N0}. Since ® is upper
semicontinuous and compact-valued, each u,, is an open cover of X. The Menger
property of X implies the existence of a sequence (cp)new, where each ¢, is a
finite subset of uy, such that {{Jec, : n € w} is a (7-) cover of X. From the
above it follows that for every n € w we can find a finite subset vy, of w, with
@(|Jcn) € Jopn. Therefore {{Jvp, : n € w} is a (y-) cover of Y, consequently Y is
Menger (Hurewicz). O

The main idea of this paper is to assign to a topological space X the collection
UX) = {U(u,X) : u € Ay(X)} of semifilters on countable sets, where Ay (X)
denotes the family of all countable large open covers of X and U(u, X) is the
smallest semifilter on u containing the family {I(z,u, X)={U €u:2€U}:z €
X}. It is clear that U(u, X) can be represented in the form Uve[u]<N0 Uzex Tv
I(x,u, X), where for a subsets A and B of a set Z we denote by 74 B the family
{C CZ:C>B\A}. When A = (), we shall simply write T in place of 1 4. When
X (and u) are clear from the context, we shall write U(u) and I(xz,u) (I(z))
instead of U (u, X) and I(z,u, X).

We are in a position now to present a characterization of the properties of
Menger and Hurewicz in terms of topological properties of semifilters, which im-
plies the results mentioned in Introduction.

Theorem 2. Let X be a Lindeléf topological space. Then X is Menger (Hure-
wicz) if and only if so is each U(u) € U(X). Moreover, if X is paracompact, then
it is Hurewicz provided each semifilter U(u) € U(X) is meager.

Remark 1. 1. Every Hurewicz semifilter on a countable set C' is meager. Indeed,
[10, Theorem 5.7] implies that each Hurewicz semifilter F on C' is contained in
a o-compact subset of [C]NO, and each o-compact subset of the Baire space is
meager.

2. The “meager” part of the characterization of the Hurewicz property from
Theorem 2 was independently proven by B. Tsaban for zero-dimensional metriz-
able spaces, see [22, Theorem 4]. O

We shall divide the proof of Theorem 2 into a sequence of lemmas.

Lemma 2. Let X be a topological space and u € A, (X). Then the set-valued
map ® : X = P(w), ®: x —1 I(z), is compact-valued and upper semicontinuous.

PROOF: It is clear that ® is compact-valued, because ®(z) =1 I(x) is a closed
and precompact subspace of P(u). Let us show that ® is upper semicontinuous.
For this aim let us consider arbitrary z € X and an open subset G of P(u)
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containing ®(z). For every v € ®(z) we can find s, € [u] <0 such that G(sy, 5, N
v) C G. Since ®(z) is compact, we can find a finite family v C ®(x) such that
®(z) € U{G(sv,s0Nv) : v € v}. Put s = J{sy : v € v}, c = sN I(x) and
U =(\ec. It is clear that 2 € U and U is open. Thus the upper semicontinuity
of ® will be proven as soon as we show that ®(U) C G. For this purpose let us
fix an arbitrary x; € U and observe that I(x1) Ns D ¢ = I(z) N s, consequently
@(z1) C U{G(s,vNs):v e P(z)} =G, and finally ®(U) C G, which implies the
upper semicontinuity of ®. (I

Corollary 1. Let X be a Menger (Hurewicz) topological space and u € Ay, (X).
Then the semifilter U(u, X) is Menger (Hurewicz).

PROOF: Given any v € [u]<N0, consider the set-valued map @, : X = P(u),
®, : x —Ty I(z,u). Let us observe, that ®, is a composition ¥y o Wy, where
Uy X = Pu\v), 1 :z—7I(z,u\v), and g : P(u\v) = P(u), U2 : w —T w.
It is clear that ¥ is compact-valued upper semicontinuous, while ¥y is so by
Lemma 2. Now, Lemma 1 implies that (J,cx Tv I(z,u) = ®4(X) is Menger
(Hurewicz). Since the property of Menger (Hurewicz) is preserved by countable
unions, the semifilter U (u) = Uve[u}<N0 ®,(X) is Menger (Hurewicz). O

Lemma 3. Let X be a Lindelof topological space which fails to be Menger
(Hurewicz). Then there exists u € Ay, (X) such that the semifilter U(u) is not
Menger (Hurewicz).

PROOF: Assuming that X is not Menger (Hurewicz), we can find a sequence
(un)new of countable open large covers of X such that there is no sequence
(vn)new such that each vy, is a finite subset of uy, and the family {{Jv, : n € w}
is a (y-)cover of X. Let us denote by u the union | J{un : n € w}.

We claim that the semifilter ¢/ (u) is not Menger (Hurewicz). Indeed, consider
the sequence (op)new of countable families of open subsets of P(u), where o, =
{{w € P(u) : U € w} : U € up}. Since each uy, is a large cover of X, every op
covers U(u). It suffices to show that there is no sequence (¢n)new such that every
¢p, is a finite subset of o, and {{Jep, : n € w} is a large (7-) cover of U(u), see
[17, Corollary 5]. Assume, to the contrary, that such a sequence (cp)ne, exists.
Then for every n € w we can find a finite subset vy, of uy such that ¢, = {{w €
Pw):w>U}:U € vp}. Forevery w € U(u) set Jy = {ncw:we e} =
{n €w:wnNuvy # 0}. From the above it follows that J = {Jy : w € U(u)}
consists of infinite (cofinite) subsets of w. From the above it follows that the
family {J;(; ) : @ € X} consists of infinite (cofinite) subsets of w too. But

I () z{nEw:I(x,u)ﬂUn#Q}z{nEw:IEUUH},

consequently {{Juvp, : n € w} is a (-) cover of X, which contradicts our choice of
the sequence (up)necw- O
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Let u be a family of a set X and B C X. From now on St(B,u) denotes the
set J{U € u:UNB # 0}.

Lemma 4. Let X be a paracompact Lindel6f topological space. Then X is
Hurewicz provided each semifilter U(u) € U(X) is meager.

PROOF: Assuming that X is not Hurewicz, we shall show that X possess a
countable large open cover u such that the semifilter /(u) is not meager. Let
(un)new be a sequence of open covers of X such that {{Jvy, : n € w} is a y-cover
of X for no sequence (vy, )new such that each vy, is a finite subcollection of uy,. Now,
it is a simple exercise to construct a sequence (wn, )new of open covers of X, where
wp, = {Up i, : k € N} is a refinement of uy,, such that U,  C (U{Up, ;: 1 < k} for
all ng > n1 and St(B,wy) is wp-bounded for every wp-bounded subset B of X.
From the above it follows that for every n € w there exists a sequence (p(n, k))gece
of natural numbers such that (J{Up,; : i < k,n <m}NJ{Up; i > p(n,k)} = 0.
Without loss of generality, u, = wy,.

Denote by u the union (J{un : n € w}. Let v:u — w, v : Uy, +— my be
a bijective enumeration of u. Let us write w in the form w = U,e,2y, where
Qp = {my 1 : k € N}. We claim that the semifilter ¢/(u) fails to be meager. For
this aim we shall show that the image F = v(U(u)) of U(u) is not meager in P(w).
Otherwise, by Theorem 1 there exists a sequence (m;);¢,, of natural numbers such
that every F' € F (and, in particular, v(I(z,u)) for every € X) meets all but
finitely many half-intervals [m;, m;41). Passing to a subsequence, if necessary,
we may assume that myy1 > max{m,, ,m, k) @ Mgk < M, [0,my] N Qpy # 0}
Consider a function ¢ : w — w such that p~1(1) = [my,my,q) for all | € w and
denote by B; the union J{r~1(m) : m € ¢~1(1)}. Then for every = € X there
exists n € w such that (pov)(I(z,u)) D [n,+00). From the above it follows that

X = U ﬂ v=i(m) c
zeX mev(I(z,u))
C U m U v tm) C U mBi.

z€X l€(pov)(I(z,u)) mep—1(l) new i>n

A crucial observation here is that the intersection ();c 4 B; is up-bounded for
every n € w and all infinite subsets A of w. Before proving this observation, let
us note, that we can limit ourselves to subsets A such that |l — 2] > 1 for all
I1,l2 € A. Given arbitrary [ € w, denote by K, ; the intersection Qy, N [my, mi41).
Equipped with these notations, we can write

Ne=-NU U ~m-nU U m

leA lEA NE€W me[my,myy1)Nn €A n€w meK,,

Set B,; = U{r=t(m) : m € Ky} Then (MNieaBr = MieaUnew Brg =
U.ena Niea B2y~ By our choice of the sequence (1m;);e,, and the subset A
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of w we have B,y N B,(,), = 0 provided z(l3) < z(l1) for some I1,l3 € A
with I > [1. Consequently

NB=U NBw= U Bu

leA SENTA l€A lEA n>|AN0,1)]

where NT4 = {2 € N4 : z(l3) > z(ly) for all Iy > [;}. Since the union
Un>|an0,1)| Bn,1 18 4 aqjo,1-Pounded and |[AN[0,1)] — 400, I — 400, the above
intersection is up-bounded for all n € w (recall, that each wu,i-bounded subset
of X is up-bounded). Therefore there exists a sequence (vp)new, Where vy, is
a finite subset of uy,, such that Jv, O Up<, Ni>k Bi, consequently the family
{Uwvn : n € w} is a y-cover of X, which contradicts our choice of the sequence
(Un)nEw' O

ProOOF OF THEOREM 2: Follows from Lemmas 1, 3, 4, Corollary 1, and the
remark after the formulation of Theorem 2. O

The following statement is of great importance in evaluation of additivity of
the family of subspaces with the Menger property of a topological space X.

Proposition 2. No comeager semifilter F on w is Menger.

PROOF: If F is comeager in the space [w]¥0, which is homeomorphic to the Baire
space N¥, there exists a dense G subset G of [w]*° such that G C F. Thus G is
an analytic and not o-compact subset of [w]NO, consequently it contains a closed
in [w]N0 subset D homeomorphic to N¥, see [12, Theorem 29.3]. But N¥ simply
fails to be Menger, consequently so is F, a contradiction. O

Theorem 2 and Proposition 2 enable us to introduce a new class of topological
spaces. A topological space X is defined to be almost Menger, if the semifilter
U(u) is not comeager for every u € Ay, (X). Theorem 2 implies that every Lindelof
Menger space is almost Menger.

Problem 2. Is every (metrizable separable) Lindelof almost Menger space
Menger?

Sometimes it is more convenient to use a modification of Theorem 2. Let
X CY and u = (Up)new be a sequence of subsets of Y. For every z € X let
Ii(z,u,X) = {n € w:z € Up}. If every Is(z,u,X) is infinite, then we shall
denote by Us(u, X) the smallest semifilter on w containing all Is(x,u, X) (the
letter s comes from “sequence”). In what follows we shall denote by As(X) the set
of all sequences u = (Up)new of open nonempty subsets of a topological space X
such that all I;(z,uX) are infinite. Again, we shall often simplify these notations
by writing Us(u) and Is(z,u) or Is(z) in place of Us(u, X) and Is(x,u, X).
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Theorem 3. Let X be a Lindeléf topological space. Then X is Menger (Hure-
wicz) if and only if for every sequence uw = (Up)new € As(X) the semifilter
Us(xz,u) is Menger (Hurewicz). In addition, if X is paracompact, then it is
Hurewicz provided Us(u) is meager for every u € As(X).

PROOF: Assuming that X is Menger (Hurewicz), let us fix any sequence u =
(Un)new € As(X) and denote by Y the product X x N. The space Y is Menger
(Hurewicz) being a countable union of its Menger (Hurewicz) subspaces. Consider
the cover w = {Wy, : n € w} of Y, where W,, = Uy, x {1,... ,n}, and observe that
w € A, (Y). Applying Theorem 2, we conclude that U(w) is a Menger (Hurewicz)
subspace of P(w). Now, it suffices to observe that Us(u) is a continuous image of
U(w) under the map f:w — w, f: Wy, +— n.

Next, assume that the semifilter Us(u) is Menger (resp. Hurewicz, meager)
for all u € Ag(X) and fix any w € Ayp(X). Let w = {W,, : n € w} be a
bijective enumeration of w and u be a sequence (Wy, )new. Then f(Us(u)) = U(w),
where f : n+— W), is a bijection. Therefore the semifilter U (w) is Menger (resp.
Hurewicz, meager). Now, it suffices to apply Theorem 2. ([

Additivity of the Menger property

As we have already said in Introduction, one of the main result of this paper
is the following

Theorem 4. Let X a hereditarily Lindelof space. Then
add(M (X)) > add(M(N*)) > g.

PROOF: Let Y be a subfamily of M(X) of size |Y| < add(M(N¥)) and v =
(Un)new € As(lIJY). Then the semifilter Us(u,|JY) is equal to the union

Uy ey Us(u,Y). Theorem 3 implies that every Us(u,Y’) is Menger, consequently
so is their union Us(u,|JY) by our choice of ). Applying Theorem 3 once again,
we conclude that (J) is Menger, which implies the inequality add(M (X)) >
add(M (N¥)).

Next, we shall show that add(M (X)) > g. Let (wn)new be a sequence of
open covers of | J). Since X is hereditarily Lindel6f, we can assume that every
wp, is a countable cover of (JY of the form w, = {W,, ; : k € w}. For every
Y € Y let us find a sequence (kn(Y))new of natural numbers such that the
sequence uy = (Bn(Y))new, where Bn(Y) = Up<g, (v) Wa,k, belongs to As(Y).
Now, Theorem 3 and Proposition 2 imply that the semifilter Us(uy,Y) fails to
be comeager. Since |Y| < g, the semifilter 7 = Jy ¢y Us(uy,Y’) is not comeager
too, consequently F fails to be meager. Using |V| < g < b(F™), we can find
a sequence (kp)new such that (kn(Y))new <zi (kn)new for every Y € Y. Let
us make the following notation: By, = (J{U, : k < kn}. We claim that {B), :
n € w} is a cover of | J). Indeed, let us fix arbitrary Y € Y and y € Y. Since
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(kn(Y))new <Fi (nk)kew, the set A ={n € w: ky > ky(Y)} belongs to FL and
thus there exists m € AN Is(y,uy,Y). It suffices to observe that y € By,. O

Problem 3. Is the equation add(M (X)) = add(M (N¥)) true for every heredi-
tarily Lindel6f topological space?

Additivity of the property Split(A, A)

Throughout this paragraph, which is devoted to the property Split(A, A), every
topological space is hereditarily Lindelof. Since every large open cover of a space
X contains a countable large subcover (see [21, Proposition 1.1]), we can restrict
ourselves to countable ones.

Theorem 5. Under u < g every paracompact space X with the property
Split(A, A) is Hurewicz.

In our proof of Theorem 5 we shall use the following straightforward conse-
quence of a fundamental result of C. Laflamme. A semifilter F on a countable
set C is said to be bi-Baire, if it is neither meager nor comeager.

Theorem 6 ([1, Theorem 9.22], [13]). Let C' be a countable set and F be a
semifilter on C. If F is comeager (u < g and F is bi-Baire), then there exists
a sequence (Ky)ney of pairwise disjoint finite subsets of C' such that the set
U={{ncw: FNK,#0}:Fc F} equals Fr' (is an ultrafilter on w).

Remark 2. Let us observe, that if a sequence (Ky)ney is such as in Theorem 6,
then for every increasing sequence (mp)new of natural numbers the sequence
(K] = UmE[mn,Mn+1) Km)new satisfies the condition of this theorem too. O

PROOF OF THEOREM 5: In light of Corollary 29 from [17] asserting that each
Hurewicz space has the property Split(A, A), the only step to be proven is the
inverse implication under u < g. Suppose that the paracompact space X is not
Hurewicz. Then Theorem 2 supplies us with a cover u € A, (X) such that the
semifilter U (u) is not meager. Therefore there exists a finite subset v of u such
that no finite subset v1 of u \ v is a cover of X, because otherwise we can simply
construct by induction a sequence (v )new of pairwise disjoint finite subsets of u
such that each w € U(u) meets all but finitely many vy, and thus U (u) is meager
by Theorem 1. Two cases are possible.

1. U(u) is comeager. Then we can find a sequence (vy, )neyw of finite subsets of u
as in Theorem 6. Let ng € w be such that no finite subset of Unzno vp, covers X.
Since every w € U(u) meets ug = >y, vn, We conclude that ug € Ay (X).
From the above it follows that there exists an increasing sequence (mpy)new of
natural numbers such that mg > ng and Uy, # Uy, for all ny # ng, where Uy, =
Unelmmmng) Uvm, 7 € w. Let us denote by v, the union U,,cim,, my,,) Um
and observe that the sequence (v),)new satisfies the condition of Theorem 6.
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It is clear that the family v’ = {Up, = Jv], : n € w} is a large cover of X.
We claim that «’ is not splittable. Assuming the converse, we would find two
disjoint infinite subsets A and B of w such that both of uy = {Uy, : n € A} and
up = {Uyp : n € B} are large covers of X. Since the sequence (v}, )nc. satisfies the
condition of Theorem 6, there exists w € U(u) such that {n € w : wNv], # 0} = A.
By the definition of the semifilter U (u), I(z,u) C* w for some z € X. Therefore
the set {n € B : x € Uy} is a subset of a finite set {n € B : (I(z,u)\w)Nv}, # 0},
and thus up is not a large cover of X, a contradiction.

2. U(u) is not comeager. Then the same argument as in the first case implies
that there exists a sequence (vp)new of finite subsets of u with the following
properties:

(1) it satisfies the conditions of Theorem 6;

(2) no finite subset of | J,,c., vn covers X;

(3) Uvn #UJvm, n # m, and the family v’ = {{Jvn : n € w} is a large cover
of X.

We claim that v is not splittable. Assume, to the contrary, that there are infinite
disjoint subsets A and B of w such that uy,ug € Ay, (X), where uy and up
are defined as above. Enlarging A, if necessary, we can additionally assume that
AUB = w. Since the family F = {{n € w : wNuvy, # 0} : w € U(u)} is an
ultrafilter, either A € F or B € F. Without loss of generality, A € F, which
means that there exists z € X such that {n € w: I(x,u) Nvy, # 0} C* A, and

thus {n € B: I(z,u)Nuvp #0} ={n € B:x € |Jup} is finite, a contradiction.
O

Other applications of Theorem 2

Here we shall show that we cannot restrict ourselves to w-covers in Theorem 2,
and thus the family U(X) of semifilters cannot be reduced to the family {/(u) :
u € Q(X)} of filters corresponding to w-covers of a space X. Thus Theorems 2
and 3 are “purely semifilter statements”.

Proposition 3. Let u be an w-cover of N¥. Then U(u) is meager. Moreover, the
smallest filter V containing U(u) is meager.

PROOF: Since u is an w-cover, the semifilter U (u) is centered and the filter V is
free. As it was shown in the proof of Corollary 1, there exists a sequence (P, )necw
of compact-valued upper semicontinuos multifunctions from N* into P(u) such
that U(u) = U,e,, Pn(N¥). Each ®,(N¥) is an image of N“ under a compact-
valued upper semicontinuous set-valued map (= ®,(N¥) is K-analytic). Since
every K-analytic metrizable space X is analytic (see [11]), so is the semifilter
U(u) being a countable union of analytic spaces, see [12, 25.A]. Let us note, that
V = Upnew Un, where Uy = U(u) and Upy1 is a continuous image of U2 under
the map (Uy,Usz) — Uy NUsy. From the above it follows that V is analytic too,
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consequently by [19, Theorem 1, p. 30] it has the Baire property in P(u), and thus
is meager by [19, Theorem 1, p. 32]. O

Reformulating the above proposition in other terms, we obtain the subsequent
result proved in [16].

Theorem 7. Every w-cover of N“ is w-groupable.
Proposition 2 and Theorem 6 imply the subsequent
Corollary 2. Under u < g every Menger space is Scheepers (= has the property

Uﬁn(r7 Q))

PROOF: Let (un)new be a sequence of open covers of X such that upy1 is a
refinement of u, for all n € w. Since X is Menger, there exists a sequence
(vn)new such that each vy, is a finite subset of uy, and w = (|J vn)new belongs to
As(X). Applying Theorem 3 and Proposition 2, we conclude that the semifilter
Us(w) is not comeager.

If Us(w) is meager, then Theorem 1 gives us an increasing sequence (mp)necw
of natural numbers such that each A € Us(w) meets all but finitely many half-
intervals [mn, mn+1). Let Bn = Uelmn, mpir) Uvm, n € w. From the above
it follows that each By, is up-bounded and the family {By, : n € w} is a y-cover
of X.

If Us(w) is bi-Baire, then by Theorem 6 there exists a sequence (Kp)new of
finite subsets of w such that the family F = {{n € w : ANK, # 0} : A €
Us(w)} is an ultrafilter on w. Let (mp)new be an increasing sequence of natural
numbers with the property min | J{Kp, : m € [mp42, mp43)} > max|J{Km :m €
[Mn, Mp41)}. Since F is an ultrafilter, either Feven = U{[mn, Mn+1) : n is even}
or Foqq = U{[mn, Mn+1) : nis odd} belongs to F. Without loss of generality, F' =
Feven € F. For every n € w denote by By, the set Ume[m2n7m2n+l) UkeKm Uvg
and note that By, is up-bounded. We claim that {By, : n € w} is an w-cover of X.
Indeed, given any finite subset S of X, for every x € S denote by F) the set
{n € w: Is(z,w) N Ky # 0} and note that F, € F. Since F is centered, there
exists m € F'N(\,cqFs. Let n € w be such that m € [may,, map41). We claim
that S C Bp. Indeed, for every z € S there exists k € Ky, N Is(x,w), and thus
x € |Jvg C By, which finishes our proof. O

Another application of Theorem 2 takes its origin in the classical paper [9] of
W. Hurewicz, where it was shown that a metrizable separable space X is Menger
if and only if for every continuous function f : X — R the image f(X) is not
dominating with respect to the eventual dominance preorder. When X is zero
dimensional, the same assertion holds for continuous functions f : X — N@.
Trying to generalize the above result outside of metrizable separable spaces, all
one can hope is the realm of Lindelof spaces (every Menger topological space X
is obviously Lindel6f). However, this obstacle may be overcome by restriction to
countable covers in the definitions of the Menger property.
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Definition 1. A topological space X has the property E}, if for every sequence
(un)new of countable open covers of X there exists a sequence (vp)ne, such that
every vy, is a finite subset of u, and UnEw Uon = X.

It is clear that a topological space X is Menger if and only if it has the property
E} and is Lindeldf, and every countably compact noncompact space has the
property EY but fails to be Menger. The ideas of Hurewicz still work for perfectly
normal spaces: a perfectly normal space X has the property EJ if and only if
there is no continuous function f : X — R such that f(X) is dominating,
see [2]. However, because of topological spaces X such that every continuous
function f : X — R is constant the above characterization of the property E is
not true for all topological spaces. For example, consider the topological space
Z = (R, 7), where 7 = {(—00,a) : a € R}. It is a simple exercise to show that
Z% is Lindel6f and not Menger, but every continuous function f : Z¥ — R is
constant.

Theorem 2 enables us to prove a general characterization of the property E
involving compact-valued upper semicontinuous maps.

Theorem 8. A topological space X has the property E if and only if ®(X) #
N“ for every compact-valued upper semicontinuous function ® : X = N¥.

PRrROOF: The “only if” part follows from Lemma 1, which remains valid for the
property EY. To prove the “if” part, we have to find an upper semicontinu-
ous compact-valued surjective map ® : X = N provided X does not have the
property EY. A literal repetition of the proof of Lemma 3 gives us a semifilter
U € U(X) which fails to be Menger. As it was shown in the proof of Corollary 1,
there exists a sequence (®p,)necw of compact-valued upper semicontinuous maps
from X into [w]R0 such that U = Unew ®n(X). Since the union of countably
many spaces with the Menger property is Menger, there exists ® € {®), : n € w}
such that the topological space ®(X) does not have the Menger property. Us-
ing the already mentioned result of Hurewicz, we can find a continuous map
f: ®(X) — N¥ such that T = f(®(X)) is dominating in N* with respect to
<*. Next, we shall find a continuous map ¢ : T — N“ such that ¢(T") is dom-
inating in the following stronger sense: for every x € N“ there exists y € ¢g(7T)
such that y, > x, for all n € w. To find such a map g it suffices to note, that
if none of the maps ¢; : T 3 (¥n)new — (Tn+i)new has this property, then T'
fails to be dominating. And finally, consider the set-valued map ¥ : g(T) = N¥|
U:g(T)dz— {yeN“:Vn e wlyy, <zp)}. A direct verification shows that ¥
is compact-valued and upper semicontinuous and (¥ ogo fo®)(X)=Nv. O

Remark 3. The additivity number add(Z) is well-defined for an arbitrary family
T of subsets of a set X such that |JZ ¢ 7 and stands for the smallest size 7 of a
subfamily J of Z with the property | JJ ¢ Z. B. Tsaban noted that the authors
considered in [4] the family (g, (O, O) of all Menger subspaces of the Baire space,
while M (N¥) is the smallest o-ideal generated by (Jg, (O, O). In light of this the
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following question naturally arises: does Theorem 4 really answer Problem 2.4
from [4] in negative? The answer is “yes”. In order to show this we shall simply
prove that add(M(N¥)) = add(Ug,(0,0)). It is a simple exercise to prove
that add({g, (O, 0)) < add(M(N¥)). To show the inverse inequality, consider
a family J C Ug, (O, O) of size add(| g, (O, 0)) with UJT ¢ Ug, (O, O). Then
Theorem 8 supplies us with a compact-valued upper semicontinuous surjective
map & : |JJ = N¥. Applying Lemma 1, we conclude that ®(J) € (Jg,(O,0) C
M(N¥) for all J € J, consequently N* ¢ M (N“) is a union of add(|Jg, (O, O))-
many Menger subspaces, which means add(M (N*)) < add(Jg, (O, O)). O
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