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Countable 
hains of distributive latti
es as maximalsemilatti
e quotients of positive 
ones of dimension groupsPavel R�u�zi�
kaAbstra
t. We 
onstru
t a 
ountable 
hain of Boolean semilatti
es, with all in
lusionmaps preserving the join and the bounds, whose union 
annot be represented as themaximal semilatti
e quotient of the positive 
one of any dimension group. We also
onstru
t a similar example with a 
ountable 
hain of strongly distributive boundedsemilatti
es. This solves a problem of F. Wehrung.Keywords: semilatti
e, latti
e, distributive, dimension group, dire
t limitClassi�
ation: 06A12, 06B15, 06D05, 06F20, 20K25Introdu
tionFor a ring R, we denote by FP(R) the 
lass of all �nitely generated proje
tiveright R modules. We denote by [A℄ the isomorphism 
lass of a module A ∈ FP(R)and by V (R) the monoid of all isomorphism 
lasses of modules from FP(R),with the operation of addition de�ned by [A℄ + [B℄ = [A ⊕ B℄. If the ring R isvon Neumann regular, then the monoid V (R) satis�es the re�nement property andthe semilatti
e Idc(R) of �nitely generated two-sided ideals of R is isomorphi
 tothe maximal semilatti
e quotient of V (R) ([10, Proposition 4.6℄). Modules A, B ∈FP(R) are stably equivalent , if there exists C ∈ FP(R) su
h that A⊕C ≃ B ⊕C.We denote by [A℄s the stable equivalen
e 
lass of A ∈ FP(R), and by Vs(R)the quotient {[A℄s | A ∈ FP(R)} of V (R) modulo the stable equivalen
e. We set

K0(R) = {[A℄s−[B℄s | A, B ∈ FP(R)} and we de�ne ([A℄s−[B℄s)+([C℄s−[D℄s) =[A ⊕ C℄s − [B ⊕ D℄s. Then K0(R) is an abelian group equipped with a preorderdetermined by the positive 
one Vs(R).If the ring R is unit-regular, then the equivalen
e and the stable equivalen
eof modules from FP(R) 
oin
ide, V (R) = Vs(R), K0(R) is a partially orderedabelian group, and Idc(R) is isomorphi
 to the maximal semilatti
e quotient ofits positive 
one V (R). The monoid V (R) satis�es the re�nement property andit generates K0(R). If R is a dire
t limit of von Neumann regular rings whoseprimitive fa
tors are artinian, in parti
ular, if R is a lo
ally matri
ial algebra (overThe work is a part of the resear
h proje
t MSM 0021620839 �nan
ed by M�SMT and partlysupported by INTAS proje
t 03-51-4110, the grant GAUK 448/2004/B-MAT, and the post-do
toral grant GA�CR 201/03/P140.



12 P.R�u�zi�
kaa �eld), then K0(R) is also unperforated ([3, Theorem 15.12℄), that is, K0(R) isa dimension group (see [4℄, [2℄).Our study of representations of distributive (∨, 0)-semilatti
es in maximal semi-latti
e quotients of dimension groups is motivated by the study of representationsof distributive (∨, 0)-semilatti
es as semilatti
es of two-sided ideals of lo
ally ma-tri
ial algebras. G.M. Bergman [1℄ proved that every 
ountable distributive (∨, 0)-semilatti
e is isomorphi
 to the join-semilatti
e of �nitely generated ideals of somelo
ally matri
ial algebra. By [5, Theorem 1.1℄, a dimension group of size at most
ℵ1 is isomorphi
 to K0(R) of some lo
ally matri
ial algebra. It follows that a dis-tributive (∨, 0)-semilatti
es of size ℵ1 is isomorphi
 to the semilatti
e of �nitelygenerated ideals of a lo
ally matri
ial algebra if and only if it is isomorphi
 to themaximal semilatti
e quotient of the positive 
one of some dimension group (su
ha group, if it exists, 
an be always taken of size at most ℵ1).It follows from a dire
t 
onstru
tion in [11℄ that a distributive (∨, 0)-semilatti
eis isomorphi
 to the semilatti
e of two sided ideals of a von Neumann regular ring.However the 
onstru
tion of F. Wehrung [12℄ gives an example of a distributive(∨, 0)-semilatti
e of size ℵ1 not isomorphi
 to the maximal semilatti
e quotientof the positive 
one of any dimension group, and therefore not isomorphi
 to thesemilatti
e of �nitely generated two-sided ideals of any lo
ally matri
ial algebra.The key idea of his 
onstru
tion 
onsists of the formulation of a semilatti
e prop-erty, denoted by URPsr ([12, De�nition 4.2℄), that is satis�ed by the maximalsemilatti
e quotient of the positive 
one of any dimension group, and the 
on-stru
tion of a distributive (∨, 0)-semilatti
e Sω1 of size ℵ1 that does not satisfythis property. Further, he proved [12, Se
tion 7℄ that a dire
t limit of a 
ount-able 
hain of distributive latti
es and join-homomorphisms satis�es URPsr andformulated the following problem ([12, Problem 1℄):Problem 1. Let S = lim−→n<ω Dn with all Dn-s being distributive latti
es withzero and all transition maps being (∨, 0)-homomorphisms. Does there exists adimension group G su
h that S ≃ ∇(G+)?We solve this problem by 
onstru
ting a union of a 
ountable 
hain of Booleansemilatti
es, resp. strongly distributive (∨, 0, 1)-semilatti
es (su
h that all in
lu-sions are (∨, 0, 1)-homomorphisms), not isomorphi
 to the maximal semilatti
equotient of any Riesz monoid in whi
h every nonzero element is anti-idempotent,and therefore not isomorphi
 to the maximal semilatti
e quotient of the positive
one of any dimension group.Basi
 
on
eptsAll monoids are written additively. A 
ommutative monoid M is equippedwith the algebrai
 preordering : for all a, b ∈ M , a ≤ b if b = a+ c for some c ∈ M .We say that an element e of a 
ommutative monoid is anti-idempotent providedthat 2ne 6≤ ne (equivalently, (n+ 1)e 6≤ ne), for every n ∈ N.



Distributive semilatti
es and dimension groups 13The 
lass of all (∨, 0)-semilatti
es 
oin
ides with the 
lass of all 
ommutativemonoids in whi
h every element is idempotent. On the other hand, for every
ommutative monoid M , there exists a least 
ongruen
e ≍ on M su
h that M/≍is a (∨, 0)-semilatti
e (see [6℄). The quotient M/≍, denoted by∇(M), is 
alled themaximal semilatti
e quotient of M . The 
orresponden
e M → ∇(M) naturallyextends to a dire
t limits preserving fun
tor from the 
ategory of all 
ommutativemonoids to the 
ategory of all (∨, 0)-semilatti
es ([6℄). Given an element a of M ,we denote by a the 
orresponding element in ∇(M).A 
ommutative monoid M satis�es the re�nement property provided that forevery a0, a1, b0, b1 ∈ M , the equality a0 + a1 = b0 + b1 implies that there exist
cij , i, j = 0, 1, in M satisfying ai = ci0 + ci1 for every i = 0, 1, and bj = c0j + c1jfor every j = 0, 1. We say that a 
ommutative monoid M is a Riesz monoidprovided that for every a, b, c ∈ M with a ≤ b + c, there exist b′ ≤ b and c′ ≤ cin M with a = b′ + c′. Every 
ommutative monoid satisfying the re�nementproperty is a Riesz monoid while the 
onverse is not true in general. However,for join-semilatti
es, i.e., monoids in whi
h every element is an idempotent, thesetwo properties 
oin
ide. A (∨, 0)-semilatti
e satisfying the re�nement property is
alled distributive (see [7, Se
tion II.5℄).A nonzero element x of a join-semilatti
e S is join-irredu
ible if x = y ∨ zimplies that x = y or x = z for every y, z ∈ S. We denote by J(S) the partiallyordered set of all join-irredu
ible elements of a join-semilatti
e S. A distributivejoin-semilatti
e in whi
h every element is a �nite join of join-irredu
ible elementsis 
alled strongly distributive.A hereditary subset of a partially ordered set P is a subset H of P satisfying:
p ∈ H and q ≤ p implies that q ∈ H as well. We denote by H(P ) the distributivelatti
e of all hereditary subsets of P . Noti
e that a (∨, 0)-semilatti
e is stronglydistributive if and only if it is isomorphi
 to Hc(P ), the (∨, 0)-semilatti
e of
ompa
t elements of H(P ), for some partially ordered set P . A subset P of a(∨, 0)-semilatti
e S is dense, if 0 /∈ P and for every nonzero a ∈ S, there is p ∈ Pwith p ≤ a.We denote by G+ the positive 
one of a partially ordered abelian group G, thatis, G+ = {a ∈ G | 0 ≤ a}. A partially ordered abelian group G is unperforatedif na ≥ 0 implies a ≥ 0 for all a ∈ G and every positive integer n. It is dire
ted ,if ea
h of its element is the di�eren
e of two elements from G+. It is easy to seethat a partially ordered abelian group is dire
ted if and only if it is dire
ted asa partially ordered set. A partially ordered abelian group G is an interpolationgroup if for every a0, a1, b0, and b1 ∈ G with ai ≤ bj , i, j = 0, 1, there exists
c ∈ G su
h that ai ≤ c ≤ bj , for every i, j = 0, 1. A partially ordered abeliangroup G is an interpolation group if and only if its positive 
one is a re�nementmonoid ([4, Proposition 2.1℄). A dimension group is an unperforated, dire
ted,interpolation group.An ordered ve
tor spa
e is a partially ordered ve
tor spa
e over the �eld of ra-



14 P.R�u�zi�
kational numbers su
h that the multipli
ation by positive s
alars is order-preserving.A dimension ve
tor spa
e is an ordered ve
tor spa
e whi
h is, as a partially or-dered abelian group, a dimension group.We denote the �rst in�nite ordinal by ω, its su

essor 
ardinal by ω1. Given aset X , we denote by P(X) the set of all subsets of X and by [X ℄<ω the set of all�nite subsets of X . Given a Boolean algebra B and an element x ∈ B, we denoteby B↾x the Boolean algebra {y ∈ B | y ≤ x}. If x, y are elements of a partiallyordered set P su
h that there is no element of P smaller both than x and y, wewrite x ⊥ y.The 
onstru
tionLet B be a Boolean algebra, let F be a �lter of B, and let I be the dual idealof the �lter F . Given a distributive (∨, 0)-semilatti
e S, we denote by S ×F Bthe subsemilatti
e
S ×F B = ((S r {0})× F ) ∪ ({0} × I)of S ×B (see [8℄ and [12℄). It 
ould be proved similarly as [8, Lemma 3.3℄ that if

S is a distributive (∨, 0)-semilatti
e, then S ×F B is distributive. Here, we provethis fa
t alternatively, by presenting the (∨, 0)-semilatti
e S ×F B as a union ofa dire
t system of its distributive (∨, 0)-subsemilatti
es.Lemma 1. Let B be a Boolean algebra, let F be a �lter of B, and let I be thedual ideal of the �lter F . Let S be a distributive (∨, 0)-semilatti
e. Then the(∨, 0)-semilatti
e S ×F B is distributive.Proof: Let X be a basis of the ideal I. For all x ∈ X , set
Sx = {(0, u) | u ∈ B↾x} ∪ {(a, u ∨ (−x)) | a ∈ S r {0} and u ∈ B↾x}.It is easy to see that Sx is a (∨, 0)-subsemilatti
e of S ×F B isomorphi
 to

S × (B↾x).We will prove that S ×F B is a dire
ted union of the distributive (∨, 0)-semi-latti
es Sx. Trivially we have that {0}×I ⊆
⋃

x∈X Sx. Let a be a nonzero elementof S and let u ∈ F . Then for some x ∈ X , −x ≤ u, when
e (u ∧ x) ∨ (−x) = u,and so (a, u) ∈ Sx. Therefore (S r{0})×F ⊆
⋃

x∈X Sx, and we have proved that
S×F B = ⋃

x∈X Sx. It is obvious from the de�nition that x ≤ y implies Sx ⊆ Sy,whi
h implies that the union is dire
ted. This 
ompletes the proof. �Remark 2. Let F denote the Fr�e
het �lter on P(ω). Then
S ×F P(ω) = lim−→

n∈ω

(

S × P(n+ 1)),



Distributive semilatti
es and dimension groups 15with the transition maps being the one-to-one (∨, 0)-embeddings de�ned by
fn,m(a, F ) = { (a, F ∪ {n+ 1, . . . , m}) : a > 0,(a, F ) : a = 0,where n < m are natural numbers, a ∈ S, and F ⊆ {0, . . . , n}. In parti
ular, if

S is a Boolean join-semilatti
e or a strongly distributive (∨, 0)-semilatti
e, then
S ×FP(ω) is a dire
ted union of a 
ountable 
hain of Boolean join-semilatti
es orstrongly distributive (∨, 0)-semilatti
es, respe
tively. Moreover, if S has a greatestelement, then the transition maps are (∨, 0, 1)-homomorphisms.We modify some notation from [8℄. Let a, b be elements of a monoid M . ThenQ(a/b) = {n/m | n, m ∈ N and ∃ k ∈ N : knb ≤ kma}is a lower interval in Q+. Indeed, if n′/m′ ≤ n/m and n/m ∈ Q(a/b), then
knb ≤ kma for some natural number k, when
e (kn)n′b ≤ kmn′a ≤ (kn)m′a. Wede�ne (a/b) = supQ(a/b).Lemma 3. Let a, b and c be elements of a monoid M . Then the following hold.(i) (na/b) = n(a/b) for every positive integer n.(ii) (a + b/c) ≥ (a/c) + (b/c).(iii) Suppose that M is a Riesz monoid and that b ∧ c = 0. Then c ≤ a + bimplies c ≤ a. In parti
ular, we have that (a + b/c) = (a/c) (
ompare to[8, Corollary 2.5℄).Proof: (i) Observe that n′/nm ∈ Q(a/b) i� n′/m ∈ Q(na/b), for all n′, m ∈ N.(ii) It is obvious that if k/n ∈ Q(a/c) and l/n ∈ Q(b/c), then k/n + l/n ∈Q(a+ b, c).(iii) Let c ≤ a + b. Sin
e M is a Riesz monoid, there are a′ ≤ a, b′ ≤ b with
c = a′ + b′. From b ∧ c = 0 it follows that b′ = 0, when
e c ≤ a. For theequality (a + b/c) = (a/c), it suÆ
es to 
he
k that (a + b/c) ≤ (a/c). But if
kmc ≤ kn(a + b) = kna + knb for some k, m, n ∈ N, then we have just provedthat kmc ≤ kna. �We denote by (R+)ω , resp. (R+)(ω) the monoid of all maps from ω to R+,resp. the monoid of all maps from ω to R+ with �nite support. We denote by
R the quotient (R+)ω/(R+)(ω), and for all f ∈ (R+)ω, we denote by f the
orresponding element of ∇(R).Let S be a (∨, 0)-semilatti
e, M a monoid, and let ι : S×FP(ω) → ∇(M) be anisomorphism. Fix a set E = {ei | i ∈ ω} of elements of M su
h that ei = ι(0, {i}),for every i ∈ ω. For all a ∈ M and all i ∈ ω, de�ne fa(i) = (a/ei).



16 P.R�u�zi�
kaLemma 4. Let M be a Riesz monoid and ei, i ∈ ω, anti-idempotent elementsof M . Then (a/ei) < ∞, for all i ∈ ω and a ∈ M , that is, fa is a map from ω to
R+, for every a ∈ M .Proof: Fix i ∈ ω, a ∈ M . Let (x, A) ∈ S×FP(ω) be su
h that a = ι(x, A). Pi
k
b ∈ M satisfying b = ι(x, Ar {i}). Then a ≤ b∨ei, hen
e a ≤ nb+nei, for somepositive integer n. Suppose that 2n < (a/ei). Then 2nkei ≤ ka, for some k ∈ N.It follows that 2nkei ≤ knb + knei. Sin
e b ∧ ei = 0, we have, by Lemma 3(iii),that 2nkei ≤ knei, whi
h 
ontradi
ts the assumption that ei is anti-idempotent.Therefore (a/ei) ≤ 2n. �Lemma 5. If a = ι(x, A) and b = ι(x, B), then fa = fb, for every a, b ∈ M .Proof: There exists a �nite subset F of ω su
h that A∪F = B∪F . Pi
k c ∈ Msatisfying c = ι(0, F ). Then a ≤ b ∨ c, whi
h means that a ≤ n(b + c) for some
n ∈ N. For every i ∈ ω r F , c∧ei = 0, and so, by Lemma 3, fa(i) ≤ fn(b+c)(i) =(nb+ nc/ei) = n(b/ei) = nfb(i). It follows that fa ≤ fb. Similarly we prove that
fb ≤ fa. �Lemma 4 and Lemma 5 entitle us to de�ne a monotone map µι,E :S → ∇(R)as follows: Given x ∈ S, we pi
k A ∈ P(ω) su
h that (x, A) ∈ S ×F P(ω), we put
a = ι(x, A), and we de�ne µι,E(x) = fa.Lemma 6. Let M be a Riesz monoid, let S be a distributive (∨, 0)-semilatti
e,and let ι : S ×F P(ω) → ∇(M) be an isomorphism. Let E = {ei | i ∈ ω} bea set of anti-idempotent elements of M satisfying ei = ι(0, {i}) for all i ∈ ω.Finally, let x ∈ S r {0}, and let {yα | α ∈ 
} be an un
ountable set of elementsof S r {0} su
h that x ≥ yα for every α ∈ 
 and yα ∧ yβ = 0 for every α 6= β in 
(we will 
all su
h a set a de
omposition under x). Then there exists α ∈ 
 with
µι,E(x) > µι,E(yα).Proof: Let a, and bα, α ∈ 
 be elements of M satisfying a = ι(x, ω) and
bα = ι(yα, ω). Sin
e a ≥ bα, for every α ∈ 
, there are positive integers mαsu
h that mαa ≥ bα, α ∈ 
. Sin
e the set 
 is un
ountable, there are a positiveinteger m and an un
ountable subset U of 
 su
h that mα = m, for every α ∈ U .We 
an repla
e a with ma, and so we 
an without loss of generality suppose that
m = 1.The map µι,E is monotone, and so µι,E(x) ≥ µι,E(yα), for every α ∈ U .Toward a 
ontradi
tion, suppose that µι,E(x) = µι,E(yα), for every α ∈ U . Thenthere are positive integers nα and �nite subsets Fα of ω su
h that nαfbα

(j) ≥
fa(j), for every j ∈ ω r Fα. Sin
e U is un
ountable, there are n ∈ N and anin�nite subset V of U su
h that nα = n, for all α ∈ V . Pi
k distin
t elements
α0, . . . , αn from V . By [12, Lemma 2.3℄, there exist a �nite subset F of ω and an



Distributive semilatti
es and dimension groups 17element eF ∈ M with eF = ι(0, F ) satisfying
n

∑

i=0 bαi
≤ a+ eF .A

ording to Lemma 3(ii), ∑n

i=0(bαi
/ej) ≤ (

∑n
i=0 bαi

/ej

), hen
e
n

∑

i=0 fbαi
(j) ≤ fa+eF

(j),for every j ∈ ω. If j ∈ ω r F , the equality (a + eF /ej) = (a/ej) holds byLemma 3(iii), when
e
n

∑

i=0 fbαi
(j) ≤ fa(j).Pi
k a natural number j /∈ (⋃n

i=0 Fαi
) ∪ F . Then

nfa(j) ≥ n
n

∑

i=0 fbαi
(j) = n

∑

i=0 nfbαi
(j) ≥ (n + 1)fa(j),hen
e fa(j) = 0, when
e (a/ej) = 0, a 
ontradi
tion as (0, {j}) ≤ (x, ω). �De�nition 1. Let κ be an in�nite 
ardinal. We de�ne the following propertiesof a partially ordered set P .(Aκ) Every de
reasing sequen
e of elements of P of length at most κ has anonzero lower bound.(B) Under every x ∈ P , there exists an un
ountable set {yα | α ∈ 
} ofelements of P su
h that yα ⊥ yβ , for every α 6= β in 
.Lemma 7. For every in�nite 
ardinal κ, there exists a Boolean algebra Bκ ofsize 2κ su
h that Bκ r {0} satis�es both (Aκ) and (B).Proof: For an ordinal number α, denote by ωα the set of all maps from α to ω,and set

Pκ = ⋃

κ≤α<κ
+ ωα.Order the set Pκ by reverse in
lusion, that is, f ≤ g, if f is an extension of g,for every f , g ∈ Pκ. Observe that Pκ is a tree of 
ardinality 2κ satisfying both(Aκ) and (B). Denote by Lκ the sublatti
e of H(Pκ) generated by Pκ. Denoteby Bκ the Boolean algebra R-generated by Lκ [7, II.4. De�nition 2℄. Observethat for every a 6≥ b in Lκ, there is p ∈ Pκ su
h that p ≤ b and p ∧ a = 0. By[7, II.4. Lemma 3℄, there are a < b in Lκ su
h that b − a ≤ c, for every nonzeroelement c ∈ Lκ. Pi
k p ∈ Pκ with p ≤ b and p∧ a = 0. Then p ≤ c, and so Pκ isa dense subset of Bκ. It follows that Bκ r {0} satis�es both (Aκ) and (B). It isstraightforward that the 
ardinality of Bκ is 2κ. �
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kaProposition 8. Let κ be an in�nite 
ardinal. Let S be a distributive (∨, 0)-se-milatti
e su
h that the partially ordered set S r {0} satis�es both (Aκ) and (B).Suppose that S ×F P(ω) is isomorphi
, via an isomorphism ι, to ∇(M) for someRiesz monoid M and that there are anti-idempotent elements ei, i ∈ ω with
ei = ι(0, {i}). Then ∇(R) 
ontains a stri
tly de
reasing sequen
e of length κ+.Proof: By trans�nite indu
tion up to κ+, we de�ne a sequen
e {xα | α < κ+} ofelements of S r {0} indu
ing a stri
tly de
reasing sequen
e {µι,E(xα) | α < κ+}of elements of ∇(R). Let x0 be any nonzero element of S. Suppose that thesequen
e {xα | α ≤ β} is de�ned for some β ≤ κ+. Sin
e S r {0} satis�esproperty (B), there is a de
omposition {yγ | γ < 
} under xβ . By Lemma 6,
µι,E(xβ) > µι,E(yγ), for some γ ∈ 
, and so we 
an de�ne xβ+1 = yγ . Let
β < κ+ be a limit ordinal and suppose that we have already de�ned the sequen
e
{xα | α < β} su
h that the sequen
e {µι,E(xα) | α < β} in ∇(R) is stri
tlyde
reasing. By (Aκ), there is a lower bound xβ of {xα | α < β} in S r {0}. Sin
ethe map µι,E is monotone, we obtain that µι,E(xα) > µι,E(xα+1) ≥ µι,E(xβ),for every α < β. �Denote by e the supremum of the lengths of all stri
tly de
reasing sequen
esin ∇(R).Theorem 9. There is a dire
ted union D of a 
ountable 
hain of Boolean join-semilatti
es (with (∨, 0, 1)-preserving in
lusion maps) whi
h is not isomorphi
 to
∇(M) for any Riesz monoid M in whi
h every nonzero element is anti-idempotent.The 
ardinality of D is 2e.Proof: The (∨, 0, 1)-semilatti
e D = Be ×F P(ω) is a dire
t limit of a 
ountable
hain of Boolean latti
es and one-to-one (∨, 0, 1)-preserving transition maps (Re-mark 2). Sin
e, by Lemma 7, Be r {0} satis�es both (Ae) and (B), and M is aRiesz monoid in whi
h every nonzero element is anti-idempotent, the assertionfollows from Proposition 8. The 
ardinality of Be ×F P(ω) is 
learly 2e. �Remark 10. This result 
ontrasts with the answer to the analogue of Problem 1 forsemilatti
es of 
ompa
t 
ongruen
es of latti
es: Every dire
t limit of a 
ountablesequen
e of distributive latti
es with zero and (∨, 0)-homomorphisms is isomor-phi
 to the semilatti
e Con
 L of 
ompa
t 
ongruen
es of some relatively 
omple-mented latti
e L with zero ([13, Corollary 21.3℄).Theorem 11. There is a union H of a 
ountable 
hain of strongly distributive(∨, 0, 1)-semilatti
es (with (∨, 0, 1)-preserving in
lusion maps) whi
h is not iso-morphi
 to the maximal semilatti
e quotient of any Riesz monoid in whi
h everynonzero element is anti-idempotent.Proof: As in the proof of Theorem 9, H = Hc(Pe) ×F P(ω) is a dire
t limitof a 
ountable 
hain of strongly distributive (∨, 0, 1)-semilatti
es and one-to-one



Distributive semilatti
es and dimension groups 19(∨, 0, 1)-preserving transition maps (Remark 2). Now argue as in the proof ofTheorem 9. �A 
ommutative monoid M is 
oni
al if a ≤ 0 implies that a = 0 for all a ∈ M .Sin
e 2ne + x = ne implies 2(ne + x) = ne + x, the 
oni
al monoids withoutnonzero idempotent elements are exa
tly 
oni
al monoids with all elements anti-idempotent. The positive 
one of any dimension group forms a 
oni
al monoidwithout nonzero idempotent elements whi
h satisfy the re�nement property.Corollary 12. There is a union of a 
ountable 
hain of Boolean algebras,resp. strongly distributive (∨, 0, 1)-semilatti
es (with (∨, 0, 1)-preserving in
lusionmaps) whi
h is not isomorphi
 to ∇(M) for any 
oni
al Riesz monoid M withoutnonzero-idempotent elements. In parti
ular, it is not isomorphi
 to ∇(G+) forany dimension group G.Re
all [12℄ that a 
ommutative monoid M is strongly separative if a + b = 2bimplies a = b for every a, b ∈ M . An element e of a 
ommutative monoid M has�nite stable rank if there is k ∈ N su
h that ke + a ≤ e + b implies a ≤ b, for all
a, b ∈ M . It is straightforward that every element of a strongly separative monoidhas �nite stable rank. In a 
oni
al monoid, every nonzero idempotent element hasin�nite stable rank. Therefore, we 
an repla
e the assumption that the monoid Mhas no nonzero idempotent elements by any of the following requirements: everyelement of M has �nite stable rank, M is strongly separative (
ompare to [12,Corollary 5.3℄). We 
ould derive from Corollary 12 similar 
onsequen
es to theones obtained from [12, Corollary 5.3℄ in [12, Se
tion 6℄. In parti
ular, neitherthe (∨, 0, 1)-semilatti
e D nor the (∨, 0, 1)-semilatti
e H are isomorphi
 to thejoin-semilatti
e of �nitely generated ideals of any strongly separative von Neu-mann regular ring, resp. the join-semilatti
e Con
 L of all 
ompa
t 
ongruen
esof any modular latti
e L of lo
ally �nite length.Remark 13. Observe that every element f ∈ ∇(R) is represented by a map withrational values. It follows that the 
ardinality of ∇(R) is 2ℵ0 , and so we have theestimate ℵ1 ≤ e ≤ 2ℵ0 . Of 
ourse, if 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2, then 2e = ℵ2. Onthe other hand, ℵ2 < 2ℵ1 implies that ℵ2 < 2e.A
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