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Gδ-modi�ation of ompata and ardinal invariantsA.V. Arhangel'skiiAbstrat. Given a spae X, its Gδ-subsets form a basis of a new spae Xω , alled the

Gδ-modi�ation of X. We study how the assumption that the Gδ-modi�ation Xω ishomogeneous inuenes properties of X. If X is �rst ountable, then Xω is disreteand, hene, homogeneous. Thus, Xω is muh more often homogeneous than X itself.We prove that if X is a ompat Hausdor� spae of ountable tightness suh that the
Gδ-modi�ation of X is homogeneous, then the weight w(X) of X does not exeed 2ω(Theorem 1). We also establish that if a ompat Hausdor� spae of ountable tightnessis overed by a family of Gδ-subspaes of the weight ≤ c = 2ω , then the weight of X isnot greater than 2ω (Theorem 4). Several other related results are obtained, a few newopen questions are formulated. Fedorhuk's hereditarily separable ompatum of theardinality greater than c = 2ω is shown to be Gδ-homogeneous under CH. Of ourse,it is not homogeneous when given its own topology.Keywords: weight, tightness, Gδ-modi�ation, harater, Lindel�of degree, homogeneousspaeClassi�ation: 54A25, 54B10Let T be a topology on a set X . Then the family of all Gδ-subsets of X isa base of a new topology on X , denoted by Tω and alled the Gδ-modi�ationof T . The spae (X, Tω) is also denoted by Xω and is alled the Gδ-modi�ationof the spae (X, T ). Clearly, the Gδ-modi�ation Xω of any topologial spae isa P -spae, that is, every Gδ-subset of Xω is open in Xω .In general, the spae (X, Tω) is very di�erent from the spae (X, T ). Manyproperties of (X, T ), suh as ompatness, Lindel�ofness, paraompatness areeasily lost under Gδ-modi�ations. On the other hand, properties of the spae angreatly improve under the operation of Gδ-modi�ation. For example, if (X, T )is �rst ountable, then the spae (X, Tω) is disrete. Thus, no matter whih �rstountable spae (X, T ) we take, the resulting spae (X, Tω) will be metrizable,zero-dimensional, �Ceh-omplete and homogeneous! We see that the di�erene inproperties between the spaes (X, T ) and (X, Tω) an indeed be tremendous!Some interesting fats on Gδ-modi�ations and on P -spaes were establishedin [12℄, where also a survey of what is known in this diretion is given. Seealso [11℄.Researh partially supported by National Siene Foundation grant DMS-0506063.



96 A.V.Arhangel'skiiIt is our goal in this artile to show that homogeneity of Gδ-modi�ation has adeep inuene on the struture of the spae itself and on the relationship betweenits ardinal invariants. Our main result in this diretion (Theorem 1 below) isinspired by R. de la Vega's reent result that the weight of any homogeneousompat Hausdor� spae of ountable tightness is ≤ 2ω. We generalize de laVega's theorem as follows:Theorem 1. Let X be a ompat Hausdor� spae of ountable tightness suhthat the Gδ-modi�ation Xω of X is homogeneous. Then the weight w(X) of X ,as well as the weight of Xω, is not greater than 2ω.Proof: We laim that there is a non-empty open subspae U of Xω suh that
w(U) ≤ 2ω. Indeed, sine X is a non-empty ompat Hausdor� spae of ountabletightness, there exists a non-empty Gδ-subset U of X suh that the weight of thesubspae U of X is not greater than 2ω ([2℄, [1℄). Then U is an open subspae of
Xω and the weight of the subspae U of Xω is also not greater than 2ω. Sine
Xω is homogeneous, it follows that every point in Xω has an open neighbourhood
Ox in Xω suh that w(Ox) ≤ 2ω.Aording to a result of E.G. Pytkeev [14℄, the Lindel�of degree of the Gδ-modi�ation of any ompat Hausdor� spae of ountable tightness does not ex-eed 2ω (see Theorem 4 in [14℄). Therefore, l(Xω) ≤ 2ω. Sine the loal weight of
Xω does not exeed 2ω, it follows that there exists an open overing γ of Xω suhthat w(U) ≤ 2ω, for eah U ∈ γ, and |γ| ≤ 2ω. Fixing a base of ardinality ≤ 2ωin eah U ∈ γ, and taking the union of these bases, we obtain a base of ardinality
≤ 2ω in Xω. Thus, w(Xω) ≤ 2ω. Sine, X is a ontinuous image of Xω, we have
nw(X) ≤ w(Xω) ≤ 2ω. However, sine X is ompat, w(X) = nw(X) ≤ 2ω ([9℄).

�This theorem immediately implies that the ardinality of every �rst ountableompat Hausdor� spae does not exeed 2ω [Arh2℄. Indeed, the tightness of �rstountable spaes is ountable, and, obviously, if the weight of a �rst ountableHausdor� spae is ≤ 2ω, then the ardinality of X is also not greater than 2ω.Theorem 1 also implies de la Vega's result that the weight of any homogeneousompat Hausdor� spae of ountable tightness is ≤ 2ω, sine the Gδ-modi�ationof a homogeneous spae is homogeneous.A spae Y is power-homogeneous if Y τ is homogeneous, for some τ > 0 (see [4℄).Weakening one of the assumptions in Theorem 1, we arrive at a weaker onlusion:Theorem 2. Let X be a ompat Hausdor� spae of ountable tightness suhthat the Gδ-modi�ation of X is power-homogeneous. Then the harater of Xis not greater than 2ω.Proof: Take any non-empty Gδ-subset Y of X . There exists a non-empty Gδ-subset U of Y suh that the weight of the subspae U of the spae X is notgreater than 2ω ([2℄, [1℄). Then U is an open subspae of Xω and the weight



Gδ-modi�ation of ompata and ardinal invariants 97of the subspae U of Xω is also not greater than 2ω. It follows that the set Zof all x ∈ X suh that the harater of x in Xω is not greater than 2ω is densein the spae Xω. Sine Xω is power-homogeneous and Z 6= ∅, it follows fromTheorem 7 in [4℄ that the set M of all Gc-points in Xω is losed. Obviously,
Z ⊂ M . Therefore, M = X ; thus, eah x ∈ X is a Gc-point in Xω.Fix an arbitrary a ∈ X . Aording to Pytkeev's theorem (see the proof ofTheorem 1), the Lindel�of degree of Xω is not greater than c = 2ω. Put A =
X \ {a}. Sine a is a Gc-point in Xω, it follows that l(A) ≤ 2ω, where A isonsidered as a subspae of Xω. Sine the identity mapping of Xω onto X isontinuous, we onlude that the Lindel�of degree of A, onsidered as a subspaeof X , does not exeed 2ω as well. This implies that a is a Gc-point in X . Sine
X is ompat and Hausdor�, it follows that the harater of X at a is not greaterthan 2ω ([9℄). �Theorem 3. Let X be a sequential Hausdor� ompat spae suh that the Gδ-modi�ation of X is power-homogeneous. Then |X | ≤ 2ω.Proof: It follows from Theorem 2 that χ(X) ≤ 2ω. However, the ardinality ofevery sequential Hausdor� ompat spae suh that χ(X) ≤ 2ω does not exeed 2ω(see [2℄). �The last result generalizes Corollary 3.8 in [5℄ and an earlier result on theardinality of homogeneous ompat sequential spaes in [2℄.The tehnique of Gδ-modi�ation an be used to obtain some addition theoremsfor the weight that do not involve the assumption of homogeneity. In partiular,we have:Theorem 4. Let X be a ompat Hausdor� spae of ountable tightness, andsuppose that X is overed by a family γ of Gδ-subsets suh that the weight of
P is not greater than 2ω, for eah P ∈ γ. Then the weight of X is not greaterthan 2ω.Proof: The proof is lose to the proof of Theorem 1. Consider the Gδ-modi�-ation Xω of X . The family γ is an open overing of Xω , and the weight of eah
P ∈ γ, interpreted as a subspae of Xω, is not greater than 2ω. By Pytkeev'stheorem (see the proof of Theorem 1), the Lindel�of degree of Xω is not greater than
c = 2ω. Therefore, the weight of Xω is not greater than 2ω (to get an appropriatebase of Xω , just take the union of the bases of ardinality ≤ 2ω of elements of γ).Sine X is a ontinuous image of Xω, we have nw(X) ≤ w(Xω) ≤ 2ω. However,
X is ompat. Hene, w(X) = nw(X) ≤ 2ω. �For some results related to Theorem 4 see [15℄ and [6℄.The assumption of ountable tightness in the last statement an be replaedby some other onditions.



98 A.V.Arhangel'skiiTheorem 5. Let X be a sattered ompat Hausdor� spae overed by a family
γ of Gδ-subsets suh that the weight of P is not greater than 2ω, for eah P ∈ γ.Then the weight of X does not exeed 2ω.Proof: The Lindel�of degree of the Gδ-modi�ation Xω of the spae X doesnot exeed ω ([13℄). Sine γ is an open overing of Xω , we an assume that γ isountable. It follows that w(Xω) ≤ 2ω, whih implies that nw(X) ≤ w(Xω) ≤ 2ω.Finally, sine X is ompat, we have w(X) = nw(X) ≤ 2ω. �The proof of the next result should be lear by now:Theorem 6. Let X be a sattered spae. Then the Gδ-modi�ation Xω of Xis power-homogeneous if and only if the pseudoharater of X is ountable (thatis, if and only if the Gδ-modi�ation of X is disrete).Problem 7. Suppose that X is a ompat Hausdor� spae overed by a family γof Gδ-subsets P suh that the weight of P is not greater than 2ω, for eah P ∈ γ.Is the weight of X not greater than 2ω?Problem 8 (Arhangel'skii, Buzyakova). Let X be a ompat Hausdor� spaeof ountable tightness suh that the harater of X does not exeed 2ω. Is theweight of X not greater than 2ω?Consistently the answer to the last question is \yes". Indeed, it was shown in[7℄ to be onsistent with ZFC to assume that every ompat Hausdor� spae ofountable tightness is sequential. It remains to apply the following result from [2℄:the ardinality of every sequential Hausdor� ompat spae suh that χ(X) ≤ 2ωdoes not exeed 2ω.Closely related to Problem 8 is the following question: Let X be a ompatHausdor� spae of ountable tightness suh that the Gδ-modi�ation of X ishomogeneous. Is |X | ≤ 2ω? The answer to this question is independent of ZFC.Under Proper Foring Axiom (PFA) (for the disussion of (PFA) see [8℄) theanswer is \yes". In fat, we an prove a stronger statement:Theorem 9. Assume (PFA), and let X be a Hausdor� ompat spae of ount-able tightness suh that the Gδ-modi�ation of X is power-homogeneous. Then
X is �rst ountable (and hene, |X | ≤ 2ω and w(X) ≤ 2ω).Proof: A. Dow has shown in [Dow℄ that under (PFA) every non-empty ompatHausdor� spae of ountable tightness has a point of �rst ountability. It followseasily from this result that, under (PFA), the set of isolated points is dense in the
Gδ-modi�ation Xω of the ompatum X .Sine Xω is power-homogeneous, it follows from Theorem 7 in [4℄ that the set
M of all Gδ-points in Xω is losed. Therefore, M = X , that is, eah x ∈ X is a
Gδ-point in Xω . Sine Xω is a P -spae, we onlude that the spae Xω is disrete.Hene, the pseudoharater of the spae X is ountable. Sine X is ompat andHausdor�, it follows that X is �rst ountable. �



Gδ-modi�ation of ompata and ardinal invariants 99On the other hand, we have the following result:Theorem 10 (CH). Let X be a hereditarily separable ompat Hausdor� spaewithout points of �rst ountability. Then the Gδ-modi�ation of X is homoge-neous.This theorem will follow from a more general result below. Notie that Fe-dorhuk has onstruted [10℄ a onsistent example of a hereditarily separable,nowhere �rst ountable, ompat Hausdor� spae X suh that the ardinality of
X is greater than 2ω. In the model of Set-theory he onsidered (CH) was alsosatis�ed.Theorem 11 (CH). Let X be a ompat Hausdor� spae of the weight ω1 suhthat the harater of X at eah point is exatly ω1. Then the Gδ-modi�ation
Xω of X is homeomorphi to the Gδ-modi�ation of the ompatum Dω1 .Fix a set A of the ardinality ω1 = c = 2ω, give A the disrete topology, andlet B be the Gδ-modi�ation of the produt spae Aω1 .Claim 1: The Gδ-modi�ation of Dω1 is homeomorphi to the spae B.This is obvious.By Claim 1, it is enough to prove that Xω is homeomorphi to B. For that,we need the following lemma:Lemma 12. Let X be a non-sattered ompat Hausdor� spae. Then thereexists a disjoint overing γ of X by non-empty losed Gδ-sets suh that |γ| = 2ω.Proof: Sine X is not sattered, there exists a ontinuous mapping f of X ontothe losed interval I = [0, 1℄ (see [9℄). Then γ = {f−1(y) : 0 ≤ y ≤ 1} is, learly,the overing we are looking for. �Below we will need the following slightly stronger version of Lemma 12:Lemma 13. Let X be a non-sattered ompat Hausdor� spae and F0 be alosed Gδ-subset of X . Then there exists a disjoint overing γ1 of X by non-empty losed Gδ-sets suh that |γ1| = 2ω and F0 = ⋃

η, for some subfamily ηof γ1.Proof: We an �x a ontinuous real-valued funtion g on X suh that g−1(0) =
F0, sine X is normal. Take also a disjoint overing γ of X by losed Gδ-subsetssuh that |γ| = 2ω (this is possible by Lemma 12). Now let γ1 be the family
{g−1(a) ∩ P : a ∈ R, P ∈ γ} \ {∅}, where R is the set of reals. Obviously, γ1 isthe overing we are looking for. �Proof of Theorem 11: A standard onstrution by trans�nite reursion along
ω1, using (CH) and Lemmas 12 and 13, provides us with a trans�nite sequene
{γα : α < ω1} of disjoint overings of X by losed non-empty Gδ-subsets of Xsuh that the following onditions are satis�ed:1) γβ re�nes γα, whenever α < β < ω1;



100 A.V.Arhangel'skii2) for eah P ∈ γα, the ardinality of the family ηP = {F ∈ γα+1 : F ⊂ P}is ω1;3) the family S = ⋃
{γα : α < ω1} is a network of the spae X .Observe that ompatness of X and the above onditions ensure that the fol-lowing ondition is satis�ed:4) for every unountable entered family ξ of elements of S, the intersetionof ξ onsists of exatly one point xξ , ξ is a network of X at x, and ξ is abase of the Gδ-modi�ation Xω at x.Note, that elements of S are open-losed subsets of Xω, and that if ξ ⊂ S isountable, then either ⋂
ξ = ∅ or the ardinality of ⋂

ξ is c = ω1.The above properties of the family {γα : α < ω1} allow to establish a homeo-morphism between the spae Xω and the spae B in an obvious routine way. �Corollary 14 (CH). Let X be a ompat Hausdor� spae of the weight ω1 suhthat the harater of X at eah point is exatly ω1. Then the Gδ-modi�ation
Xω of X is homogeneous. Furthermore, Xω is homeomorphi to a topologialgroup.Proof: Indeed, by Theorem 11 Xω is homeomorphi to the Gδ-modi�ation Bof the ompatum Dω1 . However, the spae B is homogeneous, sine Dω1 ishomogeneous. Hene, Xω is homogeneous as well. In fat, B is homeomorphi toa topologial group, sine Dω1 is a topologial group. �Problem 15. Can (CH) be dropped in the above statement?The following long standing problems posed in [3℄, [1℄, [2℄ remain open:Problem 16. Is it true in ZFC that every homogeneous ompat sequential spaeis �rst ountable?Problem 17. Is it true in ZFC that every homogeneous ompat spae of ount-able tightness is �rst ountable?Aknowledgment. I am grateful to Professor Raushan Z. Buzyakova for severalvery helpful remarks on the subjet of this paper.Referenes[1℄ Arhangel'skii A.V., On ardinal invariants, In: General Topology and its Relations to Mod-ern Analysis and Algebra 3. Proeedings of the Third Prague Topologial Symposium, 1971,37{46. Aademia Publishing House, Czehoslovak Aademy of Sienes, Prague, 1972.[2℄ Arhangel'skii A.V., Struture and lassi�ation of topologial spaes and ardinal invari-ants, Russian Math. Surveys 33 (1978), 33{96.[3℄ Arhangel'skii A.V., Topologial homogeneity, topologial groups and their ontinuous im-ages, Russian Math. Surveys 42 (1987), 83{131.[4℄ Arhangel'skii A.V., Homogeneity of powers of spaes and the harater, Pro. Amer. Math.So. 133 (2005), 2165-2172.
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