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Topologial struture of the spaeof lower semi-ontinuous funtionsKatsuro Sakai, Shigenori UeharaAbstrat. Let L(X) be the spae of all lower semi-ontinuous extended real-valued fun-tions on a Hausdor� spae X, where, by identifying eah f with the epi-graph epi(f),L(X) is regarded the subspae of the spae Cld∗

F
(X ×R) of all losed sets in X ×R withthe Fell topology. LetLSC(X) = {f ∈ L(X) | f(X) ∩ R 6= ∅, f(X) ⊂ (−∞,∞℄} andLSCB(X) = {f ∈ L(X) | f(X) is a bounded subset of R}.We show that L(X) is homeomorphi to the Hilbert ube Q = [−1, 1℄N if and onlyif X is seond ountable, loally ompat and in�nite. In this ase, it is proved that(L(X),LSC(X),LSCB(X)) is homeomorphi to (ConeQ, Q × (0, 1),� × (0, 1)) (resp.(Q, s,�)) if X is ompat (resp. X is non-ompat), where ConeQ = (Q×I)/(Q×{1}) isthe one over Q, s = (−1, 1)N is the pseudo-interior, � = {(xi)i∈N ∈ Q | supi∈N |xi| < 1}is the radial-interior.Keywords: spae of lower semi-ontinuous funtions, epi-graph, Fell topology, Hilbertube, pseudo-interior, radial-interiorClassi�ation: 57N20, 54C351. IntrodutionThe set of all losed sets in a (topologial) spae X is denoted by Cld∗(X) andlet Cld(X) = Cld∗(X) \ {∅}. For eah U ⊂ X , we denote

U− = {A ∈ Cld∗(X) | A ∩ U 6= ∅} and
U+ = {A ∈ Cld∗(X) | A ⊂ U}.The Fell topology on Cld∗(X) is the topology generated by

{U− | U ⊂ X is open} ∪ {(X \ K)+ | K ⊂ X is ompat}.By Cld∗F (X) (or CldF (X)), we denote the spae Cld∗(X) (or Cld(X)) with theFell topology.1 In the paper [9℄, it is proved that Cld∗F (X) (resp. CldF (X)) is1Note that the hyperspae CldV (X) with the Vietoris topology is metrizable if and only if
X is ompat metrizable. On the other hand, Cld∗

F
(X) (or CldF (X)) is metrizable if and onlyif X is loally ompat and separable metrizable [2, Theorem 5.1.5℄.



114 K.Sakai, S.Ueharahomeomorphi to (≈) the Hilbert ube Q = [−1, 1℄N (resp. Q \ {0}) if and only if
X is a loally ompat, loally onneted, separable metrizable spae whih hasno ompat omponents.By [−∞,∞℄, we denote the extended real line. For an extended real-valuedfuntion f : X → [−∞,∞℄, letepi(f) = {(x, t) ∈ X × R | t ≥ f(x)},whih is alled the epi-graph of f . Note that

• f is lower semi-ontinuous if and only if epi(f) is losed in X × R,whene f an be regarded as a lower semi-ontinuous real-valued funtion de�nedon the set f−1(R) ⊂ X .Let L(X) be the spae of all lower semi-ontinuous extended real-valued fun-tions on X , where, by identifying eah f with epi(f), L(X) is onsidered thesubspae of the spae Cld∗F (X × R). In this paper, we show the following:Theorem 1.1. For a Hausdor� spae X , L(X) ≈ Q if and only if X is loallyompat, seond ountable and in�nite.In this paper, we also study the following subspaes:LSC(X) = {f ∈ L(X) | f(X) ∩ R 6= ∅, f(X) ⊂ (−∞,∞℄};LSCB(X) = {f ∈ L(X) | f(X) is a bounded subset of R}.Observe that L(X) ⊃ LSC(X) ⊃ LSCB(X). Eah f ∈ LSC(X) is alled a properlower semi-ontinuous extended real-valued funtion. Eah f ∈ LSCB(X) is abounded lower semi-ontinuous real-valued funtion de�ned on the whole spae X .Let I = [0, 1℄ be the losed unit interval. By ConeX , we denote the one over
X whih is the quotient spae obtained from X × I by shrinking X × {1} to apoint ∗ (alled the vertex ), that is,ConeX = (X × I)/(X × {1}).Throughout this paper, we use the homeomorphism θ : [−∞,∞℄ → I de�ned asfollows:

θ(−∞) = 0, θ(∞) = 1 and θ(t) = 12 (

t1 + |t|
+ 1) .Let �n be the standard n-simplex and rint�n the radial interior of �n, i.e.,�n = {(t1, . . . , tn+1) ∈ In+1 |

∑n+1
i=1 ti = 1};rint�n = {(t1, . . . , tn+1) ∈ �n | ti > 0 for i = 1, . . . , n+ 1}.



Topologial struture of the spae of l.s.. funtions 115In ase X is �nite, we an easily see that L(X) ≈ �n ≈ Cone�n−1, where
n = ardX . Indeed, write X = {x1, . . . , xn} and de�ne p : L(X) → Cone�n−1as follows:

p(f) = 









∗ (the vertex of Cone�n−1) if f = ∅, 2
(1− θ(f(x1))

σ(f) , . . . ,
1− θ(f(xn))

σ(f) , θ(min f(X))) otherwise,where σ(f) = ∑n
i=1(1− θ(f(xi))). Then, p is a homeomorphism suh that

p(LSC(X)) = �n−1 × (0, 1) and p(LSCB(X)) = rint�n−1 × (0, 1).Thus, we have the following:Fat. For a �nite T1-spae X with ardX = n,(L(X), LSC(X), LSCB(X))
≈ (Cone�n−1, �n−1 × (0, 1), rint�n−1 × (0, 1)).In this paper, we generalize this fat into the ase X is in�nite. Let

s = (−1, 1)N and � = {(xi)i∈N ∈ Q | supi∈N |xi| < 1},whih are alled the pseudo-interior and the radial interior of Q, respetively.We prove the following two generalizations:Theorem 1.2. For a Hausdor� spae X , the following are equivalent:(a) X is seond ountable, ompat and in�nite;(b) (L(X), LSC(X)) ≈ (ConeQ, Q × (0, 1));() (L(X), LSC(X), LSCB(X)) ≈ (ConeQ, Q × (0, 1), �× (0, 1)).In the above, the vertex ∗ ∈ ConeQ orresponds to the funtion ∅ ∈ L(X).Theorem 1.3. For a Hausdor� spae X , the following are equivalent:(a) X is seond ountable, loally ompat and non-ompat;(b) (L(X), LSC(X)) ≈ (Q, s);() (L(X), LSC(X), LSCB(X)) ≈ (Q, s,�).Remark. It should be remarked that(Q, s,�) ≈ (ConeQ, s × (0, 1), �× (0, 1)).One should also keep in mind that the omplement L(X)\LSC(X) in Theorem 1.3is onneted, but the one in Theorem 1.2 has two omponents {∅} and {f ∈ L(X) |
−∞ ∈ f(X)}.2Here, f = ∅ means that f is the onstant funtion x 7→ ∞.



116 K.Sakai, S.Uehara2. Metrizability and losednessThe following follows from the result of Fell [5℄ (f. [2, Theorem 5.1.3℄):Proposition 2.1. For every Hausdor� spae X , Cld∗F (X ×R) is ompat. If Xis loally ompat then Cld∗F (X × R) is a ompat Hausdor� spae. �Let CldF (X) = Cld∗F (X)\{∅}. Then, the hyperspae CldF (X) an be regardedas a subspae of LSCB(X) by the embedding i : CldF (X) → LSCB(X) de�nedby
i(A)(x) = { 0 if x ∈ A,1 if x /∈ A.Moreover, by identifying x ∈ X with {x} ∈ CldF (X), we an also regard Xas a subspae of CldF (X). Sine Cld∗F (X × R) (resp. CldF (X)) is metrizableif and only if X × R (resp. X) is loally ompat and seond ountable by [2,Theorem 5.1.5℄, we have the following:Proposition 2.2. For a Hausdor� spae X , the following are equivalent:(a) X is loally ompat and seond ountable;(b) Cld∗F (X × R) is metrizable;() L(X) is metrizable;(d) LSC(X) is metrizable;(e) LSCB(X) is metrizable;(f) CldF (X) is metrizable. �Proposition 2.3. A Hausdor� spae X is loally ompat if and only if the spaeL(X) is losed in Cld∗F (X × R).Proof: To see the \only if" part, assume that X is loally ompat. For eah

A ∈ Cld∗F (X × R) \ L(X), we have x ∈ X and r1 < r2 ∈ R suh that (x, r1) ∈ Aand (x, r2) /∈ A. Choose an open neighborhood V of x in X and δ > 0 so thatlV is ompat and lV × (r2 − δ1, r2 + δ) ⊂ (X × R) \ A.Let K = lV × [r2 − δ, r2 + δ℄ and U = V × (−∞, r2 − δ). Then,
A ∈ U− ∩ ((X × R) \ K)+ ⊂ Cld∗F (X × R) \ L(X).Hene, Cld∗F (X × R) \ L(X) is open in Cld∗F (X × R), that is, L(X) is losed.Now, to see the \if" part, assume that X is not loally ompat, whene wehave x0 ∈ X whih has no ompat neighborhoods in X . Let

A = (X × [1,∞)) ∪ {(x0, 0)} ∈ Cld∗F (X × R) \ L(X).



Topologial struture of the spae of l.s.. funtions 117For eah neighborhoodW ofA in Cld∗F (X×R), we an hoose open sets U1, . . . , Un

⊂ X × R and a ompat set K ⊂ X × R so that (x0, 0) ∈ U1 and
A ∈ U−1 ∩ · · · ∩ U−

n ∩ ((X × R) \ K)+ ⊂ W.Sine prX(K) is ompat, prX(K) is not a neighborhood of x0 in X , heneprX(U1) 6⊂ prX (K). Thus, we have x1 ∈ prX(U1) \prX(K). We de�ne g ∈ L(X)by
g(x) = { 0 if x = x1,1 if x 6= x1.By identifying g with the epi-graph, we an write as follows:

g = (X × [1,∞)) ∪ ({x1} × [0,∞)).Then, it is easy to see that
g ∈ U−1 ∩ · · · ∩ U−

n ∩ ((X × R) \ K)+ ⊂ W.Hene, W ∩ L(X) 6= ∅. This means that A ∈ l L(X), that is, L(X) is not losedin Cld∗F (X × R). �As orollaries of propositions above, we have the following:Corollary 2.4. A Hausdor� spae X is loally ompat if and only if the spaeL(X) is a ompat Hausdor� spae. �Corollary 2.5. A Hausdor� spae X is loally ompat and seond ountable ifand only if the spae L(X) is a ompat metrizable spae. �We now onsider the subspae:L−∞(X) = {f ∈ L(X) | −∞ ∈ f(X)}= L(X) \ (LSC(X) ∪ {∅}) ⊂ L(X).Lemma 2.6. For a loally ompat Hausdor� spae X , L−∞(X) is ompat ifand only if X is ompat.Proof: Assume that X is ompat. For eah f ∈ L(X)\L−∞(X), we have b ∈ Rsuh that f(X) ⊂ (b,∞℄. Then, f has the following open neighborhood in L(X):((X × R) \ (X × {b}))+ ∩ L(X) ⊂ L(X) \ L−∞(X).Thus, L−∞(X) is losed in L(X), hene it is ompat by Corollary 2.4.



118 K.Sakai, S.UeharaOn the other hand, if X is not ompat then it ontains an in�nite and disreteset {xi | i ∈ N}, where xi 6= xj if i 6= j. For eah i ∈ N, we de�ne fi ∈ L−∞(X)by
fi(x) = {

−∞ if x = xi,

∞ if x 6= xi,that is, fi = epi(fi) = {xi} × R. For eah neighborhood W of ∅ in L(X), wehave a ompat set K ⊂ X suh that ((X × R) \ K)+ ⊂ W . Sine {xi | i ∈ N}is disrete in X and prX(K) is ompat, we have n ∈ N suh that if i ≥ n then
xi /∈ prX(K), hene fi ∈ ((X × R) \ K)+ ⊂ W . Thus, the sequene (fi)i∈Nonverges to the funtion ∅. Therefore, L−∞(X) is not ompat. �Proposition 2.7. Let X be a loally ompat Hausdor� spae.(1) If X is σ-ompat then LSC(X) is absolutely Gδ.(2) If X is ompat then LSC(X) is open in L(X), hene it is loally ompat.(3) If X is non-ompat then LSC(X) is nowhere loally ompat.Proof: (1) Sine L(X) is a ompat Hausdor� spae, it suÆes to see thatLSC(X) is Gδ in L(X). Let X = ⋃

n∈N
Xn, where eah Xn is ompat. For eah

n ∈ N, let
Wn = {f ∈ L(X) | −∞ /∈ f(Xn)}.Then, LSC(X) = ⋂

n∈N
Wn \ {∅}. For eah f ∈ Wn, sine Xn is ompat, wehave r ∈ R suh that f(Xn) ⊂ (r,∞℄, whih implies

f ∈ ((X × R) \ (Xn × {r}))+ ∩ L(X) ⊂ Wn.This means that Wn is open in L(X).(2) For eah f ∈ LSC(X), sine X is ompat, we have r ∈ R suh that
f(X) ⊂ (r,∞℄. Then,

f ∈ ((X × R) \ (X × {r}))+ ∩ L(X) \ {∅} ⊂ LSC(X).Hene, LSC(X) is open in L(X).(3) For eah f ∈ LSC(X) and eah neighborhood of W in LSC(X), we haveopen sets U1, . . . , Un ⊂ X × R and a ompat set K ⊂ X × R suh that
f ∈ U−1 ∩ · · · ∩ U−

n ∩ ((X × R) \ K)+ ∩ LSC(X) ⊂ W.Sine X is non-ompat, we have x0 ∈ X \ prX(K). For eah i ∈ N, we de�ne
fi ∈ W as follows:

fi(x) = {

f(x0)− i if x = x0,
f(x) if x 6= x0.



Topologial struture of the spae of l.s.. funtions 119Then, (fi)i∈N onverges to f∞ ∈ L−∞(X) de�ned as follows:
f∞(x) = {

−∞ if x = x0,
f(x) if x 6= x0.Sine L(X) is Hausdor�, {fi | i ∈ N} is disrete in LSC(X) ∩ lW . Therefore,LSC(X) ∩ lW is not ompat. �3. Homotopy dense subsets and AR propertyA subset Y of a spae X is said to be homotopy dense in X if there exists ahomotopy h : X × I → X suh that h0 = idX and ht(X) ⊂ Y for every t > 0,where ht : X → X is de�ned by ht(x) = h(x, t). Let η, ζ : L(X) × I → L(X) bethe homotopies de�ned as follows:

ηt(f)(x) = {

f(x) if t = 0,min{f(x), 1/t} if t > 0;
ζt(f)(x) = {

f(x) if t = 0,max{f(x),−1/t} if t > 0.By identifying ηt(f) and ζt(f) with the epi-graphs, we an write
ηt(f) = f ∪ X × [1/t,∞) and ζt(f) = f ∩ X × [−1/t,∞).We shall verify the ontinuity of η and ζ.Continuity of η : Let V ⊂ X × R be open. For eah (f, t) ∈ η−1(V −),

f ∩ V 6= ∅ or X × [1/t,∞) ∩ V 6= ∅ (the latter does not our if t = 0). When
f ∩ V 6= ∅, V − ∩ L(X) is a neighborhood of f in L(X) and ηs(g) ∈ V − for every
g ∈ V − ∩ L(X) and s ∈ I. When X × [1/t,∞) ∩ V 6= ∅ (t > 0), it follows that
X × [a,∞)∩V 6= ∅ for some a > 1/t. Then, t ∈ (1/a, 1℄ and X × [1/s,∞)∩V 6= ∅for every s ∈ (1/a, 1℄, whih implies that ηs(g) ∈ V − for every g ∈ L(X) and
s ∈ (1/a, 1℄. Hene, η−1(V −) is open in L(X)× I.Now, let K ⊂ X × R be ompat. For eah (f, t) ∈ η−1(((X × R) \ K)+),
f ∩ K = ∅ and X × [1/t,∞) ∩ K = ∅, whene ((X × R) \ K)+ ∩ L(X) is aneighborhood of f in L(X) and X × [a,∞) ∩ K = ∅ for some 0 < a < 1/t.Then, t ∈ [0, 1/a) and X × [1/s,∞) ∩ K = ∅ if 0 < s < 1/a. It follows that
ηs(g) ∈ ((X × R) \ K)+ for every g ∈ ((X × R) \ K)+ ∩ L(X) and s ∈ [0, 1/a).Thus, η−1(((X × R) \ K)+) is open in L(X)× I. �Continuity of ζ : Let V ⊂ X ×R be open. For eah (f, t) ∈ ζ−1(V −), we have(x, r) ∈ V suh that r ≥ max{f(x),−1/t} (r ≥ f(x) if t = 0). Sine V is open in
X × R, (x, r0) ∈ V for some r0 > r. Let r < r1 < r0 and W = V ∩ X × (r1,∞).Then, W− ∩ L(X) is a neighborhood of f in L(X). Sine −1/t < r1, we have
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a > t so that −1/s < r1 if 0 < s < a. Then, t ∈ [0, a). Let g ∈ W− and s ∈ [0, a).Then, we have (x′, r′) ∈ W with r′ ≥ g(x′). Sine r′ > r1 > −1/s, it follows that
r′ ≥ max{g(x′),−1/s}, whih means ζs(g) ∈ W− ⊂ V −. Therefore, ζ−1(V −) isopen in L(X)× I.Let K ⊂ X ×R be ompat and (f, t) ∈ ζ−1(((X ×R) \K)+), that is, f ∩X ×[−1/t,∞) ∩ K = ∅. Observe that

f ∩ X × {c} = f−1((−∞, c℄)× {c} for eah c ∈ R.By this fat, it is easy to see that
c < d ⇒ f ∩ X × [c,∞) ⊂ f−1((−∞, d℄)× [c, d℄ ∪ (f ∩ X × [d,∞)).Then, it follows that f ∩ X × [a,∞) ∩ K = ∅ for some a < −1/t beause K isompat. Let

W = ((X × R) \ (X × [a,∞) ∩ K))+ ∩ L(X).Then, W is a neighborhood of f in L(X) and t ∈ (1/|a|, 1℄. For eah g ∈ W and
s ∈ (1/|a|, 1℄, g∩X×[−1/s,∞)∩K = ∅, whih means that ζ(g, s) ∈ ((X×R)\K)+.Hene, ζ−1(((X × R) \ K)+) is open in X × R. �We de�ne the homotopy ξ : L(X) × I → L(X) by ξt = ηtζt = ζtηt for every
t ∈ I, that is,

ξt(f) = (f ∩ X × [−1/t,∞)) ∪ X × [1/t,∞) ⊂ X × R.Sine ξt(L(X)) ⊂ LSCB(X) for t > 0, we have the following:Proposition 3.1. The subspae LSCB(X) is homotopy dense in L(X). �It an be shown that the omplement LSC(X) \ LSCB(X) is homotopy densein LSC(X). At the same time, we shall prove that some other subspaes of L(X)are homotopy dense in L(X) and they are AR's.3 To this end, we use the resulton Lawson semilatties.A topologial semilattie is a topologial spae S equipped with a ontinuousoperator ∨ : S × S → S whih is idempotent, ommutative and assoiative (i.e.,
x∨ x = x, x∨ y = y ∨ x, (x∨ y) ∨ z = x∨ (y ∨ z)). A topologial semilattie S isalled a Lawson semilattie if S admits an open basis onsisting of subsemilatties([7℄). A subspae Y of X is alled relatively LC0 in X if every neighborhood Uof eah x ∈ X ontains a neighborhood V of x in X suh that any two points
y, z ∈ V ∩ Y an be onneted by a path in V ∩ Y . The following is proved in [6,Theorem 5.1℄.3AR = absolute retrat; ANR = absolute neighborhood retrat.



Topologial struture of the spae of l.s.. funtions 121Proposition 3.2. Let X be a metrizable Lawson semilattie and Y ⊂ X asubsemilattie. If Y is relatively LC0 in X (and Y is onneted), then X is anANR (an AR) and Y is homotopy dense in X , hene Y is also an ANR (an AR).
�To apply Proposition 3.2 above, we show the following:Proposition 3.3. For a Hausdor� spae X , the spae Cld∗F (X) is a Lawsonsemilattie with the union operator ∪. The spaes L(X), LSC(X), LSCB(X) andL−∞(X) are subsemilatties of Cld∗F (X).Proof: For eah open set U ⊂ X and eah ompat set K ⊂ X , U− and (X\K)+are subsemilatties of Cld∗F (X). Hene, Cld∗F (X) has an open basis onsisting ofsubsemilatties. The ontinuity of ∪ is easily observed. The seond statement isevident. �We onsider the following subspae:

F (X) = {f ∈ LSC(X) | f(x) = ∞ exept for �nitely many x ∈ X}= {f ∈ LSC(X) | f−1(R) is �nite}.As is easily observed, F (X) is a dense subsemilattie of LSC(X). Moreover, itshould be noted that F (X) ∩ LSCB(X) = ∅ if X is in�nite.Lemma 3.4. For every seond ountable loally ompat Hausdor� spae X ,
F (X) is homotopy dense in LSC(X).Proof: By Proposition 3.2, it suÆes to show that F (X) is relatively LC0 inLSC(X). To this end, let f ∈ LSC(X) and W an open neighborhood of f inLSC(X). Sine LSC(X) is a Lawson semilattie, we may assume that W is asubsemilattie of LSC(X). For eah f1, f2 ∈ W ∩ F (X), we an de�ne a path
h : I→ F (X) as follows:

h(t)(x) = {

f1(x) if f1(x) ≤ f2(x),
θ−1((1− t)θ(f1(x)) + tθ(f2(x))) if f2(x) < f1(x),where θ : [−∞,∞℄ → I is the homeomorphism de�ned in §1. It is easy to see that

h is a path in W ∩ F (X) onneting h(0) = f1 and h(1) = f1 ∪ f2. Similarly,
f2 an be onneted to f1 ∪ f2 by a path in W ∩ F (X). Then, f1 and f2 areonneted by a path in W ∩F (X). Therefore, F (X) is relatively LC0 in LSC(X).

�Sine F (X) ⊂ LSC(X) \ LSCB(X), the following follows from Lemma 3.4:



122 K.Sakai, S.UeharaProposition 3.5. For every in�nite seond ountable loally ompat Hausdor�spae X , LSC(X) \ LSCB(X) is homotopy dense in LSC(X). �A losed subset A ⊂ Y is alled a Z-set in Y if for eah open over U , thereexists a map4 f : Y → Y \A whih is U-lose to the identity.5 A ountable unionof Z-sets is alled a Zσ-set . One should note that a losed set (resp. an Fσ-set)
A ⊂ Y is a Z-set (resp. a Zσ-set) if the omplement Y \ A is homotopy densein Y .Lemma 3.6. Let X be a seond ountable loally ompat Hausdor� spae.(1) The spae L−∞(X) is an AR.(2) If X is ompat then L−∞(X) is a ompat Z-set in L(X).(3) If X is non-ompat then L−∞(X) is homotopy dense in L(X).Proof: (1) Take f1, f2 ∈ L−∞(X). All the same as in the proof of Lemma 3.4,we an obtain a path h : I → L−∞(X) from f1 to f2, hene L−∞(X) is path-onneted. Reall that L−∞(X) is a Lawson semilattie. If both f1 and f2 are insome open subsemilattie W of L−∞(X), then h is a path in W . Hene, L−∞(X)is LC0. Thus, L−∞(X) is an AR by Proposition 3.2.(2) By Lemma 2.6, L−∞(X) is ompat. Sine L−∞(X) ∩ LSCB(X) = ∅ andLSCB(X) is homotopy dense in L(X) by Proposition 3.1, it follows that L−∞(X)is a Z-set in L(X).(3) When X is non-ompat, it is easy to see that L−∞(X) is dense in L(X).Similarly to Lemma 3.4, we an prove that L−∞(X) is homotopy dense in L(X).

�Proposition 3.7. Let X be a seond ountable loally ompat Hausdor� spae.Then, L(X), LSC(X), LSCB(X) and LSC(X) \ LSCB(X) are AR's.Proof: We an de�ne a map λ : LSCB(X)2 × I→ LSCB(X) as follows:
λ(f, g, t)(x) = (1− t)f(x) + tg(x) for eah (f, g, t) ∈ LSCB(X)2 × I.Then, λ(f, g, 0) = f , λ(f, g, 1) = g and λ(f, f, t) = f , namely LSCB(X) is equi-onneted, so LSCB(X) is path-onneted and loally path-onneted. Note thatLSCB(X) is a Lawson semilattie as a subsemilattie of the Lawson semilattieCld∗F (X×R) (Proposition 3.3). Therefore, LSCB(X) is an AR by Proposition 3.2.Sine LSCB(X) is homotopy dense in L(X) by Proposition 3.1, it follows thatL(X) and LSC(X) are AR's. Moreover, sine LSC(X) \ LSCB(X) is homotopydense in L(X) by Proposition 3.5, LSC(X) \ LSCB(X) is also an AR. �4Here, a map is a ontinuous funtion5Two maps f, g : X → Y are U-lose if eah {f(x), g(x)} is ontained in some U ∈ U .



Topologial struture of the spae of l.s.. funtions 1234. Proof of TheoremsThe following property is alled the disjoint ells property .
• For eah n ∈ N, and eah open over U of X , every maps f, g : In → Xare U-lose to maps f ′, g′ : In → X suh that f ′(In) ∩ g′(In) = ∅.To prove Theorem 1.1, we apply the following Toru�nzyk's haraterization of theHilbert ube [10℄ ([8, Corollary 7.8.4℄).Theorem 4.1. In order that X ≈ Q, it is neessary and suÆient that X is aompat AR with the disjoint ells property. �Using this haraterization of Q, we shall show Theorem 1.1.Proof of Theorem 1.1: The \neessity" follows from Corollary 2.5 and Fat.We prove the \suÆieny". By Corollary 2.4 and Proposition 3.7, L(X) is aompat AR. Sine both LSCB(X) and L(X) \ LSCB(X) are homotopy dense inL(X) by Propositions 3.1 and 3.5, L(X) has the disjoint ells property. Thus, wehave L(X) ≈ Q by Theorem 4.1. �In [1℄, introduing the notion of ap-sets haraterizing subsets M ⊂ Q suhthat (Q, M) ≈ (Q,�), R. Anderson proved that (Q,�) ≈ (Q, Q \ s) (f. [3℄). Thefollowing is a ombination of Lemmas 4.2 and 4.4 in [3℄.Lemma 4.2. Suppose that (Q, M) ≈ (Q,�). If L is a Zσ-set in Q and K is a

Z-set in Q then (Q, (M ∪ L) \ K) ≈ (Q,�). �The following is the ombination of Lemmas 4.3 and 4.4 in [3℄.Lemma 4.3. Suppose that (Q, M) ≈ (Q, N) ≈ (Q,�) and K is a Z-set in Qwith K∩M = K∩N . Then, for eah ε > 0, there is a homeomorphism h : Q → Qsuh that h(M) = N , h|K = id and h is ε-lose to id. Moreover if M ∪ N ⊂ sthen h also satis�es h(Q \ s) = Q \ s, that is, h(s) = s. �A tower (Mi)i∈N of losed sets in X has the deformation property in X if thereis a homotopy h : X × I → X suh that h0 = id and, for eah t > 0, h(X × [t, 1℄)is ontained in some Mi. We apply the following Curtis' result ([4, Corollary 4.9℄:Lemma 4.4. Let M = ⋃

i∈N
Mi ⊂ Q, where M1 ⊂ M2 ⊂ · · · satisfy the followingonditions:(1) Mi ≈ Q for eah i ∈ N;(2) eah Mi is a Z-set in Mi+1;(3) (Mi)i∈N has the deformation property in Q.Then, (Q, M) ≈ (Q,�). �Before proving Theorems 1.2 and 1.3, we show the following:



124 K.Sakai, S.UeharaTheorem 4.5. For a Hausdor� spae X , (L(X), LSCB(X)) ≈ (Q,�) if and onlyif X is loally ompat, seond ountable and in�nite.Proof: The \only if" part follows from Theorem 1.1. To see the \if" part,assume that X is loally ompat and seond ountable. For eah n ∈ N, let
Bn = {f ∈ L(X) | f(X) ⊂ [−n, n℄} and

Fn = {f ∈ Bn | f(x) = n exept for �nitely many x ∈ X}.Then, as is easily observed, (Bn, Fn) ≈ (L(X), F (X)), hene we have Bn ≈ Q byTheorem 1.1 and Fn is homotopy dense in Bn by Lemma 3.4. Sine Bn∩Fn+1 = ∅and Fn+1 is homotopy dense in Bn+1, it follows that Bn is a Z-set in Bn+1.Let ξ : L(X) × I → L(X) be the homotopy de�ned in §3. For eah t > 0,hoose n ∈ N so that n ≥ 1/t. Then, ξ(L(X) × [t, 1℄) ⊂ Bn. Thus, (Bn)n∈Nhas the deformation property in L(X). Sine LSCB(X) = ⋃

n∈N
Bn, we have(L(X), LSCB(X)) ≈ (Q,�) by Lemma 4.4. �To prove Theorem 1.2, we use the following:Lemma 4.6. For every seond ountable ompat in�nite Hausdor� spae X ,L−∞(X) ≈ Q.Proof: By Lemma 3.6, L−∞(X) is a ompat AR. Let η : L(X)× I→ L(X) bethe homotopy de�ned in §3. Observe that η(L−∞(X) × I) ⊂ L−∞(X). Sine Xis in�nite, it follows that

ηt(L−∞(X)) ⊂ L−∞(X) \ F (X) for t > 0,whene L−∞(X) \ F (X) is homotopy dense in L−∞(X). Moreover, by the samearguments as the proof of Lemma 3.4, it an be shown that F (X) ∩ L−∞(X) ishomotopy dense in L−∞(X). Hene, L−∞(X) has the disjoint ells property. ByTheorem 4.1, we have L−∞(X) ≈ Q. �Now, we shall prove Theorems 1.2 and 1.3.Proof of Theorem 1.2: The impliation ()⇒ (b) is obvious. By Corollary 2.5,Proposition 2.7(3) and Fat, we have the impliation (b) ⇒ (a).(a) ⇒ (): By Theorem 4.5 above, we have(L(X), LSCB(X)) ≈ (Q,�) ≈ (ConeQ,�× (0, 1)).Sine L−∞(X) is a Z-set in L(X) by Lemma 3.6(2) and L−∞(X) ≈ Q byLemma 4.6, we an apply the Z-set unknotting theorem to obtain a homeomor-phism g : L(X) → ConeQ suh that g({∅}) = {∗} and g(L−∞(X)) = Q × {0}.Note that (Q × {0} ∪ {∗}) ∩ g(LSCB(X)) = ∅.



Topologial struture of the spae of l.s.. funtions 125By Lemma 4.3, we have a homeomorphism h : ConeQ → ConeQ suh that
hg(LSCB(X)) = �× (0, 1) and h|Q × {0} ∪ {∗} = id,whene it follows that
hg(LSC(X)) = hg(L(X) \ (L−∞(X) ∪ {∅}))= ConeQ \ (Q × {0} ∪ {∗}) = Q × (0, 1).This ompletes the proof. �Proof of Theorem 1.3: The impliation () ⇒ (b) is obvious. The impliation(b) ⇒ (a) follows from Corollary 2.5 and Proposition 2.7(2).(a) ⇒ (): We an write X = ⋃

n∈N
Xn, where intX1 is in�nite, eah Xn isompat and Xn $ intXn+1. For eah n ∈ N, let

Mn = {f ∈ L(X) | f(X \ intXn) = {−∞}} and
Nn = {f ∈ Mn | f(intXn) is a bounded subset of R}.Then, as is easily observed, we have(Mn, Nn) ≈ (L(intXn), LSCB(intXn)),whene Mn ≈ Q by Theorem 1.1 and Nn is homotopy dense in Mn by Proposi-tion 3.1. Sine (X \ intXn)∩ intXn+1 6= ∅, we have Mn ∩Nn+1 = ∅, whene Mnis a Z-set in Mn+1 beause Nn+1 is homotopy dense in Mn+1. We an de�ne ahomotopy h : L(X)× I→ L(X) as follows: h0 = id,

h1/n(f) = f ∪ (X \ intXn)× R,and, for 1/(n+ 1) < t < 1/n,
ht(f) = h1/(n+1)(f) ∪ (X \ intXn)× [ϕn(t),∞),where ϕn : (1/(n + 1), 1/n) → R is a ontinuous monotone funtion suh thatlim
t→1/(n+1)ϕn(t) = −∞ and lim

t→1/n
ϕn(t) = ∞.For eah t > 0, hoose n ∈ N so that n ≥ 1/t. Then, h(L(X) × [t, 1℄) ⊂ Mn.Thus, (Mn)n∈N has the deformation property in L(X). Let M = ⋃

n∈N
Mn. Wehave (L(X), M) ≈ (Q,�) by Lemma 4.4.



126 K.Sakai, S.UeharaOn the other hand, LSC(X) is a homotopy dense Gδ-set in L(X) by Proposi-tions 2.7(1) and 3.1. Then,L−∞(X) ∪ {∅} = L(X) \ LSC(X)is a Zσ-set in L(X). Sine M ⊂ L−∞(X), we apply Lemma 4.2 to have(L(X), L−∞(X) ∪ {∅}) ≈ (Q,�) ≈ (Q, Q \ s),hene (L(X), LSC(X)) ≈ (Q, s). Then, it follows from Lemma 4.3 that(L(X), LSC(X), LSCB(X)) ≈ (Q, s,�).The proof is ompleted. �Remark. In the proof above, we have (L(X), L−∞(X)) ≈ (Q,�) by the samereason as L−∞(X) ∪ {∅}, that is,Proposition 4.7. For every seond ountable loally ompat non-ompatHausdor� spae X , (L(X), L−∞(X)) ≈ (Q,�) ≈ (Q, Q \ s). �Referenes[1℄ Anderson R.D., On sigma-ompat subsets of in�nite-dimensional spaes, unpublished.[2℄ Beer G., Topologies on Closed and Closed Convex Sets, Math. and its Appl. 268, KluwerAad. Publ., Dordreht, 1993.[3℄ Chapman T.A., Dense sigma-ompat subsets in in�nite-dimensional manifolds, Trans.Amer. Math. So. 154 (1971), 399{426.[4℄ Curtis D.W., Boundary sets in the Hilbert ube, Topology Appl. 20 (1985), 201{221.[5℄ Fell J.M.G., A Hausdor� topology for the losed subsets of a loally ompat non-Hausdor�spae, Pro. Amer. Math. So. 13 (1962), 472{476.[6℄ Kubi�s W., Sakai K., Yaguhi M., Hyperspaes of separable Banah spaes with the Wijsmantopology, Topology Appl. 148 (2005), 7{32.[7℄ Lawson J.D., Topologial semilatties with small subsemilatties, J. London Math. So. (2)1 (1969), 719{724.[8℄ van Mill J., In�nite-Dimensional Topology, Prerequisites and Introdution, North-HollandMath. Library 43, Elsevier Si. Publ. B.V., Amsterdam, 1989.[9℄ Sakai K., Yang Z., Hyperspaes of non-ompat metrizable spaes whih are homeomorphito the Hilbert ube, Topology Appl. 127 (2002), 331{342.[10℄ Toru�nzyk H., On CE-images of the Hilbert ube and haraterization of Q-manifolds,Fund. Math. 106 (1980), 31{40.
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