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Another proof of Derrienni's reverse maximalinequality for the supremum of ergodi ratiosRyotaro SatoAbstrat. Using the ratio ergodi theorem for a measure preserving transformation in a

σ-�nite measure spae we give a straightforward proof of Derrienni's reverse maximalinequality for the supremum of ergodi ratios.Keywords: σ-�nite measure spae, measure preserving transformation, onservative, er-godi, supremum of ergodi ratios, maximal and reverse maximal inequalitiesClassi�ation: Primary 28D05, 47A351. Let (X,F , µ) be a σ-�nite measure spae and T be a measure preservingtransformation in (X,F , µ). Given two measurable funtions f and g on X suhthat 0 ≤ f , g ≤ ∞ on X and 0 <
∫

X g dµ ≤ ∞, let
s(f, g)(x) = sup

n≥0 ∑n
i=0 f(T ix)

∑n
i=0 g(T ix) .(Throughout this note we de�ne a/∞ = 0 and a/0 = ∞ for any a, with 0 ≤

a ≤ ∞.) In this note we use the ratio ergodi theorem to give a straightforwardproof of the following reverse maximal inequality due to Derrienni [1℄ (f. alsoOrnstein [5℄). It is interesting to note that the author was inspired by readingEphremidze's paper [3℄.Theorem. Suppose that T is onservative and ergodi, and that ∫

X f dµ < ∞.If α >
∫

X f dµ/
∫

X g dµ, then, letting E(α) = {x | s(f, g)(x) > α}, we have
∫

E(α) f dµ ≤ α

∫

E(α)∪T−1E(α) g dµ.Proof: We may assume that µ(E(α)) > 0. For x ∈ X , let K(x) = {n ≥ 0 |
T nx ∈ E(α)} and L(x) = {0, 1, . . .} \ K(x). Sine T is onservative and ergodi,
K(x) is in�nite for a.a. x ∈ X . To see that L(x) is also in�nite for a.a. x ∈ X ,suppose there exists k ≥ 0 suh that i ∈ K(x) for all i ≥ k. Then learly we have(1) lim sup

l→∞

∑l
i=k f(T ix)

∑l
i=k g(T ix) ≥ α.



156 R.SatoBut this is a ontradition, sine(2) lim
l→∞

∑l
i=k f(T ix)

∑l
i=k g(T ix) = ∫

X f dµ
∫

X g dµ
< αfor a.a. x ∈ X by the ratio ergodi theorem (f. Theorem 3.3.4 in [4℄).Sine K(x) and L(x) are in�nite for a.a. x ∈ X , we an write K(x) = ⋃∞

n=1 In(disjoint union), where In = [kn, ln℄ (= {i | kn ≤ i ≤ ln}) and 0 ≤ kn ≤ ln < ln+2 ≤ kn+1 for eah n ≥ 1. Hene the set J(x) = {n ≥ 0 | T nx ∈ E(α)∪T−1E(α)}has the form
J(x) = { [0, l1℄ ∪ ⋃∞

n=2 [kn − 1, ln℄ if k1 = 0,
⋃∞

n=1 [kn − 1, ln℄ if k1 ≥ 1.Sine T kn−1x 6∈ E(α) for n ≥ 2, we have(3) ∑ln
i=kn−1 f(T ix)

∑ln
i=kn−1 g(T ix) ≤ α (n ≥ 2).On the other hand, if h is a funtion in L1(µ) suh that ∫

X h dµ = 1 and 0 < h <
∞ on X , then, by the ratio ergodi theorem,(4) lim

n→∞

∑n
i=0(χE(α)∪T−1E(α)f)(T ix)

∑n
i=0 h(T ix) = ∫

E(α)∪T−1E(α) f dµand(5) lim
n→∞

∑n
i=0(χE(α)∪T−1E(α)g)(T ix)

∑n
i=0 h(T ix) = ∫

E(α)∪T−1E(α) g dµfor a.a. x ∈ X . Sine ∑∞
i=0 h(T ix) = ∞ for a.a. x ∈ X , ombining (3), (4) and (5)yields(6) ∫

E(α)∪T−1E(α) f dµ ≤ α

∫

E(α)∪T−1E(α) g dµ,and this ompletes the proof, sine f ≥ 0 on X . �2. Here we onsider the ase g = 1 on X . Then it follows that s(f, 1) = f∗,where f∗(x) = supn≥1 n−1 ∑n−1
i=0 f(T ix). In this ase we have the followingreverse maximal inequality.



Another proof of Derrienni's reverse maximal inequality 157Proposition. If µ(X) = ∞, T is ergodi (but not neessarily onservative), and
f satis�es ∫

{f>t} f dµ < ∞ for all t > 0, then we have ∫

{f∗>α} f dµ ≤ 2αµ({f∗ >

α}) < ∞ for all α > 0.Proof: We �rst prove that µ({f∗ > α}) < ∞. To do this, let f1 = fχ{f≤α/2}and f2 = f − f1. Then we have f = f1 + f2, ‖f1‖∞ ≤ α/2, and ∫

X f2 dµ < ∞.Sine f∗ ≤ f∗1 + f∗2 and ‖f∗1 ‖∞ ≤ α/2, it follows that {f∗ > α} ⊂ {f∗2 > α/2},and by Hopf's maximal ergodi theorem (f. Theorem 1.2.1 in [4℄)
µ({f∗2 > α/2}) ≤ (2/α) ∫

{f∗2 >α/2} f2 dµ < ∞,so that µ({f∗ > α}) < ∞. Putting F = f − α, we then have F+ = (f − α)+ ∈
L1(µ) and {F ∗ > 0} = {f∗ > α}; furthermore ∫

X F dµ = ∫

X(f−α)+ dµ−
∫

X(f−
α)− dµ = −∞ beause µ(X) = ∞. Hene by Theorem 1.4 in Ephremidze [2℄ wesee that

∫

{f∗>α}∪T−1{f∗>α}
(f − α) dµ ≤ 0.Sine f ≥ 0 and µ({f∗ > α}) < ∞, we then have

∫

{f∗>α}
f dµ ≤

∫

{f∗>α}∪T−1{f∗>α}
f dµ ≤ 2αµ({f∗ > α}) < ∞,ompleting the proof. �Corollary. If µ(X) = ∞, and T is ergodi, then for any β ≥ 0 we have

∫

{f∗>t}
f∗

(log f∗

t

)β

dµ < ∞ for all t > 0if and only if
∫

{f>t}
f

(log f

t

)β+1
dµ < ∞ for all t > 0.Proof: See the proof of Theorem 2 in [6℄. �(Of ourse, as is known, this holds when µ(X) < ∞, by the Theorem.)Referenes[1℄ Derrienni Y., On the integrability of the supremum of ergodi ratios, Ann. Probability 1(1973), 338{340.[2℄ Ephremidze L., On the distribution funtion of the majorant of ergodi means, StudiaMath. 103 (1992), 1{15.



158 R.Sato[3℄ Ephremidze L., A new proof of the ergodi maximal equality, Real Anal. Exhange 29(2003/04), 409{411.[4℄ Krengel U., Ergodi Theorems, Walter de Gruyter, Berlin, 1985.[5℄ Ornstein D., A remark on the Birkho� ergodi theorem, Illinois J. Math. 15 (1971), 77{79.[6℄ Sato R., Maximal funtions for a semiow in an in�nite measure spae, Pai� J. Math.100 (1982), 437{443.
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