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Variance of periodic measure

of bounded set with random position

Jiř́i Janáček

Abstract. The principal term in the asymptotic expansion of the variance of the periodic
measure of a ball in R

d under uniform random shift is proportional to the (d + 1)st
power of the grid scaling factor. This result remains valid for a bounded set in R

d with
sufficiently smooth isotropic covariogram under a uniform random shift and an isotropic
rotation, and the asymptotic term is proportional also to the (d−1)-dimensional measure
of the object boundary. The related coefficients are calculated for various periodic grids
constructed from affine sets.

Keywords: periodic measure, variance

Classification: 62J10, 62D05

1. Introduction

The area of a planar figure can be estimated by superposing a randomly rotated
and shifted grid of regularly spaced dots on the image, counting the dots inside
the figure and multiplying the number of dots by the grid point specific area. The
number of object intersecting grid points is an example of a 2-periodic measure
in R2. Similarly, the volume of bounded objects in Euclidean space of arbitrary
dimension can be estimated using any d-periodic measure. The situation can be
reversed, namely the grid is fixed and the object moves. The variance of measure
of a bounded object shifted and rotated at random can be used to calculate the
estimator variance.

The variance of the d-periodic measure of a random ball will be calculated
and it will be proved, that the conclusion concerning the asymptotic behaviour
of the variance of the periodic measure remains valid also for bounded sets with
sufficiently smooth isotropic covariograms. The principal term in its asymptotic
expansion is proportional to the surface area measure of the set with a coeffi-
cient depending on the grid. The coefficients of various grids of points, lines or
hypersurfaces can be calculated using multidimensional zeta functions.

The study was supported by the Grant Agency of the Czech Republic, grant No. 201/03/0946.
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2. Definitions and results on a ball

Definition 2.1. LetT be a discrete subgroup of translations in the d-dimensional
Euclidean space Rd. T can be defined by the regular matrix A ∈ Rd×d as T(A) =

AZd, where Zd is set of all points in Rd with integral co-ordinates. T has the
fundamental region FT = A[0, 1)d of volume λd (FT) = detA, where λd is the
Lebesgue measure; hence the spatial intensity of T is α = (detA)−1.
The group dual to the group T(A) is T∗ = T

(
A−1).

A T-periodic measure µ in Rd is a non-negative Borel σ-finite measure such
that µ(K + x) is a T-periodic function of x for any measurable set K ⊆ Rd. The
intensity of µ is λ = αµ (FT).
The Fourier coefficient of a T-periodic measure µ with index ξ ∈ T∗ is

(2.1) µ̃ξ = α

∫

FT

exp (−2πixξ) dµ(x),

where α is the intensity of T.

The Fourier transform of a function f ∈ L1
(

Rd
)
is

(2.2) f̂ (ξ) =

∫

Rd

f(x) exp (−2πixξ)dλd(x).

If f is moreover spherically symmetric then rd−1f(r) ∈ L1
(
R+

)
and the

Fourier transform of f can be expressed as the Haenkel transform

(2.3) f̂(ρ) = 2πρ1−
d

2

∫ ∞

0
r

d

2 J d

2
−1(2πρr)f(r) dr,

where J d

2
−1 is the Bessel function of the first kind.

Notation 2.2. The symbols E and Var denote expected value and variance, re-
spectively. The convolution of a σ-finite Borel measure µ on Rd with a function

f ∈ L1
(

Rd
)
with bounded support is

(2.4) f ⋆ µ(x) =

∫

Rd

f(y − x) dµ(y).

Theorem 2.3. Let µ be a T-periodic measure and let K be a bounded measur-

able set in Rd. Then

(2.5) E (IK ⋆ µ) ≡
∫

FT

(IK ⋆ µ)α dλd = λλd (K)
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and

(2.6) Var (IK ⋆ µ) ≡
∫

FT

(IK ⋆ µ −E (IK ⋆ µ))2 α dλd =

ξ 6=0∑

ξ∈T∗

∣∣µ̃ξ

∣∣2
∣∣∣ÎK (ξ)

∣∣∣
2
,

where α is the spatial density of T and λ is the intensity of µ.

Proof: Equality (2.5) can be proved by standard arguments. We have from (2.4)
and periodicity of µ

∫

FT

∫

Rd

IK(y − x) dµ(y)α dλd(x) =

∫

FT

∫

FT

∑

z∈T
IK+z(y − x) dµ(y)α dλd(x).

By changing the integration order using Fubini theorem we get

α

∫

FT

∫

FT

∑

z∈T
IK+z(y − x) dλd(x) dµ(y) = αµ (FT)

∫

Rd

IKdλd = λλd(K).

Equality (2.6) follows from the Parseval theorem, because IK ⋆µ ∈ L2 (FT) and
the functions exp (−2πixξ), ξ ∈ T∗, form an orthonormal basis in L2

(
FT, αλd

)
.

�

Definition 2.4. The covariogram of a bounded measurable set K is the func-
tion γK = IK ⋆ I−K . It follows from the properties of Fourier transforms that

γ̂K =
∣∣∣ÎK

∣∣∣
2
is a nonnegative function. The isotropic covariogram is γK(|u|) =

EMγMK(u) where MK is the set K rotated by M ∈ SOd and the mean EM

is calculated by integration using the invariant probability measure on SOd, the
group of rotations in Rd; an equivalent definition is γK(υ) = Eu,|u|=υγK(u). The

Haenkel transform of the isotropic covariogram is γ̂K .

Remark 2.5. It follows from the definition that γK is bounded and, as γ̂K ≥ 0, the
function γ̂K is integrable in Rd (see [3, Theorem 9]). Further, ρd−1γ̂K(ρ) ≥ 0 is
integrable in R+ by Fubini theorem. γK is then the inverse Fourier transform 2.2

of γ̂K ([3, Theorem 8]) and γK is the (inverse) Haenkel transform 2.3 of γ̂K(ρ).
By the variance decomposition lemma ([9]) (the variance is the variance of the
conditional mean plus the mean of conditional variance) we have from (2.6)

EM∈SOd
Var (IMK ⋆ µ) =

ξ 6=0∑

ξ∈T∗

∣∣µ̃ξ

∣∣2 γ̂K (|ξ|)

as the variance of the conditional mean is zero here.
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The variance of the estimate of the volume of the ball by a periodic measure
can be calculated using Bessel functions of the first kind. D.G. Kendall and
R.A. Rankin in [5], [6] used this approach to study the variance of the area
estimate of ovals in the plane and of the volume estimate of a ball by point grids
in an arbitrary dimension. A straightforward generalization of their results to
periodic measures is given in what follows.

(2.7) κd =
π

d

2

Γ
(

d
2 + 1

)

is the volume of the unit ball Bd(1) in Rd.

Lemma 2.6. The Fourier transform of the characteristic function of the ball

Bd(R) with diameter R > 0 in Rd is

ÎBd(R) (ξ) =

(
R

|ξ|

) d

2

J d

2

(2πR |ξ|) ,

where Jν is the Bessel function of the first kind. For (R|ξ|)→ +∞,

ÎBd(R)
2
(ξ) =

1

2π2
Rd−1

|ξ|d+1
(
1 + cos

(
4πR |ξ| − (d+ 1)π

2

)
+ o (1)

)
.

Proof: The first equation follows from the Poisson integral [13, 3.3(3)]

∫

|x|<r
exp (2πixξ) dλd(x) =

(
r

|ξ|

) d

2

J d

2

(2πr |ξ|) .

The second equation follows from the first one and from the asymptotic expan-
sion of the Bessel function of the first kind for z → ∞ [13, 7.21(1)]:

Jν(z) =

√
2

πz
cos

(
z − (2ν + 1)π

4

)
+O

(
z−

3

2

)
.

�

Now we can proceed to the asymptotic expansion of the variance of the volume
estimator using homothetic images of the periodic measure with scale factor u →
0+. The following notation is introduced to simplify the statements of the related
theorems.

Notation 2.7. Let µ be a T-periodic measure in Rd, u ∈ R+, K ⊆ Rd measurable.
Then the u-scaled measure µu (K) = udµ

(
u−1K

)
is uT-periodic.
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Theorem 2.8. Let µ be a T-periodic measure, u ∈ R+. Then

(2.8) E
(
IBd(R) ⋆ µu

)
= λκdRd,

(2.9)

Var
(
IBd(R) ⋆ µu

)
=

ξ 6=0∑

ξ∈T∗

∣∣µ̃ξ

∣∣2
(

R

u−1 |ξ|

)d

J2d
2

(
2πRu−1 |ξ|

)

=
Rd−1

2π2




ξ 6=0∑

ξ∈T∗

∣∣µ̃ξ

∣∣2

|ξ|d+1


Φ

(
Ru−1

)
ud+1,

where Φ defined by the above equality fulfills

lim
x→∞

1

x

∫ x

0
Φ (x) dx = 1, 0 ≤ Φ, lim sup

x→∞
Φ (x) ≤ 2.

Proof: It follows from Theorem 2.3 and Lemma 2.6. See also [6]. �

Notation 2.9. Equality (2.9) can be expressed using the surface measure of the

ball, Hd−1 (∂Bd (R)), and the constant CV
µ

(2.10)

Var
(
IBd(R) ⋆ µu

)
= CV

µ Hd−1 (∂Bd(R))Φ
(
Ru−1

)
ud+1,

CV
µ =

1

2π2dκd

ξ 6=0∑

ξ∈T∗

∣∣µ̃ξ

∣∣2

|ξ|d+1
.

Matérn studied in [7] numerically the variance of estimate of various figures in
plane by grids of points or lines and proposed the validity of the above formula
for a large class of figures. Matheron formulated in his transitive theory [8] asym-
ptotic results for orthogonal point grids in an arbitrary dimension and found an
approximation of the relevant coefficients. The rest of the article is devoted to
the generalization of (2.10) for some other bounded objects and to the calculation

of the coefficients CV
µ for various grids.

3. Asymptotic expansion of variance of periodic measure of randomly

placed bounded set

Definition 3.1. A function f is in BVs
(
R+

)
, s ≥ 0, iff there is a finite signed

measure σ on R+ such that f is a fractional integral of the Weyl type:

f(x) =
1

Γ(s+ 1)

∫ ∞

x
(y − x)s dσ(y)
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for x ∈ R+, i.e. iff f (s), the (generalized) derivative of the order s, has a bounded
variation. A function is in BVs

c

(
R+

)
iff it is in BVs

(
R+

)
and has a bounded

support.

Remark 3.2. (a) s ≥ 1 : f is in BVs
(
R+

)
iff f ′ is in BVs−1 (

R+
)
.

(b) The covariogram of the ball is in BV
d+1

2
c

(
R+

)
.

Proof: (a) follows from the differentiation of 1
Γ(s+1)

∫ ∞
x (y− x)sdσ(y) under the

integral.

(b) γB
′(r) = κd−1

(
1− r2

) d−1

2 = f(r)(1 − r)
d−1

2 , where f = κd−1 (1 + r)
d−1

2 is

smooth in R+ and (1− r)
d−1

2 is in BV
d−1

2
c

(
R+

)
. �

Lemma 3.3. If β > α − 12 and α+ ν > 0, then for x → +∞
∫ 1

0
tα−1(1− t)β−1Jν(xt) dt =

2α−1Γ
(
1
2 (α+ ν)

)

Γ
(
1− 12 (α − ν)

) x−α + o
(
x−α

)
.

Proof: From

xα

∫ 1

0
tα−1(1− t)β−1Jν(xt) dt =

∫ x

0
yα−1

(
1− y

x

)β−1
Jν(y) dy

by integration by parts using
∫

xνJν−1(x) dx = xνJν(x) and taking into account
Weber integral [13, 13.24(1)]

∫ ∞

0
yµ−1Jν(y) dy =

2µ−1Γ
(
1
2 (µ+ ν)

)

Γ
(
1− 12 (µ − ν)

)

with µ < 3
2 and µ+ ν > 0. See also [11, 10.86]. �

Notation 3.4. Var (µu, K) is the variance of the periodic measure µu of a uni-
formly randomly shifted and isotropically rotated set K.

Remark 3.5. If K is a bounded full-dimensional locally finite union of sets of
positive reach (e.g. polyhedron, set with piecewise C2 smooth boundary or finite

union of full-dimensional convex sets), then −γK
′+(0) = κd−1

dκd
Hd−1 (∂K) ([10]).

Theorem 3.6. Let µ be a T-periodic measure, u ∈ R+, K a bounded measurable

set such that γK
′+(0) exists and is finite, and Φ a function on R+ defined by

Var (µuK) =
−γK

′+(0)
2π2κd−1




ξ 6=0∑

ξ∈T∗

∣∣µ̃ξ

∣∣2

|ξ|d+1


Φ

(
u−1

)
ud+1.
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Then

(i) if γK is in BV
d+1

2
c

(
R+

)
then

(3.1) lim
x→∞

1

x

∫ x

0
Φ (x) dx = 1,

(ii) if γK is in BV
d+3

2
c

(
R+

)
then

(3.2) lim
x→∞

Φ(x) = 1.

Proof: By 2.5 we have

Var (µu, K) = EM∈SOd
Var (IMK ⋆ µu) =

ξ 6=0∑

ξ∈T∗

∣∣µ̃ξ

∣∣2 γ̂K

(
u−1 |ξ|

)
.

We shall prove first that the auxiliary function Ψ defined by the equation

−γK
′+(0)Ψ(x) = 2π2κd−1x

d+1γ̂K(x)

has the property (3.1) or (3.2). It is easy to see that the function

Φ(x) =

∑ξ 6=0
ξ∈T∗

cξΨ(|ξ|x)
∑ξ 6=0

ξ∈T∗
cξ

, cξ =

∣∣µ̃ξ

∣∣2

|ξ|d+1
,

has then the same property too.

ad (i) Let γK be in BV
d+1

2
c

(
R+

)
. Then Remark 2.5 and the change of inte-

gration order yield

lim
R→∞

1

R

∫ R

0
2π2κd−1ρ

d+1γ̂K (ρ) dρ

= lim
R→∞

∫ ∞

0
γK(r)

1

R

∫ R

0
4π3κd−1ρ

d

2
+2r

d

2 J d

2
−1 (2πrρ) dρ dr

and the subsequent integration by parts followed by
∫

xνJν−1(x) dx = xνJν(x)
gives

lim
R→∞

∫ ∞

0
−γK

′(r)
1

R

∫ R

0
2π2κd−1ρ

d

2
+1r

d

2 J d

2

(2πrρ) dρ dr

= lim
R→∞

∫ ∞

0
−γK

′(r)πκd−1R
d

2 r
d

2
−1J d

2
+1 (2πrR) dr.
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From the assumption that γK is in BV
d+1

2
c

(
R+

)
follows the existence of a

signed measure σ with bounded support such that γK
′ (r) = Γ

(
d+1
2

)−1 ∫ ∞
r (t −

r)
d−1

2 dσ(t) and by changing the integration order we obtain

−πκd−1Γ
(

d+ 1

2

)−1
lim

R→∞
R

d

2

∫ ∞

0

∫ t

0
(t − r)

d−1

2 r
d

2
−1J d

2
+1 (2πrR) dr dσ(t).

Finally, the substitution r = ρy and Lemma 3.3 give

−Γ
(

d+ 1

2

)−1 ∫ ∞

0
t

d−1

2 dσ(t) = −γK
′+(0).

ad (ii) Let γK be in BV
d+3

2
c

(
R+

)
. Remark 2.5 and the change of the integra-

tion order yield

lim
R→∞

2π2κd−1R
d+1γ̂K(R)

= lim
R→∞

∫ ∞

0
γK(r)4π

3κd−1R
d

2
+2r

d

2 J d

2
−1 (2πrR) dr.

By integration by parts and using
∫

xνJν−1(x) dx = xνJν(x) we get

lim
R→∞

∫ ∞

0
−γK

′(r)2π2κd−1R
d

2
+1r

d

2 J d

2

(2πrR) dr.

From the assumption that γK is in BV
d+3

2
c

(
R+

)
follows the existence of a

signed measure σ with bounded support such that γK
′(r) = Γ

(
d+3
2

)−1 ∫ ∞
r (t −

r)
d+1

2 dσ(t) and by changing the integration order we obtain

−2π2κd−1Γ
(

d+ 3

2

)−1
lim

R→∞
R

d

2
+1

∫ ∞

0

∫ t

0
(t − r)

d+1

2 r
d

2 J d

2

(2πrR) dr dσ(t).

Finally, by substitution r = ρy and using Lemma 3.3 we get

= −Γ
(

d+ 3

2

)−1 ∫ ∞

0
t

d+1

2 dσ(t) = −γK
′+(0).

�

Corollary 3.7. From Theorem 3.6 and Remark 3.5 it follows that

Var (µu, K) = CV
µ Hd−1 (∂K)Φ

(
u−1

)
ud+1

with coefficients CV
µ defined in (2.10) and Φ fulfills either (3.1) or (3.2) according

to the regularity of the isotropic covariogram of K.



Variance of periodic measure of bounded set with random position 451

4. Evaluation of coefficients of grids of affine sets

If µ is the counting measure on a d-periodic grid of points AZd, the coefficients
CV

µ introduced in Notation 2.9 and Corollary 3.7,

CV
µ =

1

2π2dκd

n 6=0∑

n∈Zd

∣∣∣A−1n
∣∣∣
−d−1

,

can be calculated using the Epstein zeta function

Z
(
A−1, s

)
=

n 6=0∑

n∈Zd

∣∣∣A−1n
∣∣∣
−s

.

Only grids of intensity α = 1 will be studied as it makes a straightforward
comparison of the efficiency of the related volume estimators possible and the
results for general grids can be obtained by scaling.
For hypercubic grids of points in Rd we have A = Id, where Id is the identity

matrix. For (self-dual) triangular grid of points in R2

A = A2 =

√
2

4
√
3

( √
3
2 0
1
2 1

)
.

Face centered cubic grid and body centered cubic grid of points in R3 are
mutually dual with matrices A = D3 and A = D∗

3, respectively:

D3 =
1
3
√
2




0 1 1
1 0 1
1 1 0



 , D∗
3 =

1
3
√
4




−1 +1 +1
+1 −1 +1
+1 +1 −1



 .

The lattices of the closest packings of spheres in dimensions d = 4, 8, 24 are
D4, E8, Λ24 ([12]).
Using the Mellin transform and the Poisson summation

∑

n∈Zd

exp−π
∣∣∣A−1n

∣∣∣
2
t = detAt−

d

2

∑

n∈Zd

exp−π |An|2 t−1

we obtain the Riemann expansion

(4.1)

Γ
(s

2

)
π− s

2Z
(
A−1, s

)
=
2detA

s − d
− 2

s

+

n 6=0∑

n∈Zd

Γ

(
s

2
, π

∣∣∣A−1n
∣∣∣
2
) (

π
∣∣∣A−1n

∣∣∣
2
)− s

2

+ detA

n 6=0∑

n∈Zd

Γ

(
d − s

2
, π|An|2

) (
π|An|2

) s−d

2
,
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where Γ (a, x) =
∫ ∞
x ta−1e−t dt is the incomplete gamma function. The function

Z
(
A−1, s

)
can be evaluated with the precision of the order of e−πL2 by summing

all terms with |An| < L,
∣∣A−1n

∣∣ < L ([3]).

Various identities valid between special Epstein zeta functions, the Riemann
zeta function ζ and Dirichlet function Lp

ζ(s) =

∞∑

n=1

n−s, Lp(s) =

∞∑

n=0

(p|n)n−s

(where (p|n) is Kronecker symbol from number theory) can also be used for cal-
culation of the Epstein zeta functions:

Z (I2, s) = 4ζ
(

s
2

)
L−4

(
s
2

)
([5]),

Z (A2, s) = 6ζ
(

s
2

)
L−3

(
s
2

)
([6]),

Z (I4, s) = 8
(
1− 22−s

)
ζ

(
s
2

)
ζ

(
s
2 − 1

)
([2]),

Z (D4, s) = 24
(
1− 21− s

2

)
2−

s

4 ζ
(

s
2

)
ζ

(
s
2 − 1

)
from theta function in [12],

Z (I6, s) = 16ζ
(

s
2

)
L−4

(
s
2 − 2

)
− 4ζ

(
s
2 − 2

)
L−4

(
s
2

)
([2]),

Z (I8, s) = 16
(
1− 21− s

2 + 24−s
)

ζ
(

s
2

)
ζ

(
s
2 − 3

)
([2]),

Z (E8, s) = 240 · 2−
s

2 ζ
(

s
2

)
ζ

(
s
2 − 3

)
from theta function in [12],

Z (I24, s) =
16
691

(
1− 21− s

2 + 212−s
)

ζ
(

s
2

)
ζ

(
s
2 − 11

)

+128691

(
259 + 745 · 24− s

2 + 259 · 212−s
)

g24
(

s
2

)
([2]),

Z (Λ24, s) =
65520
691

(
ζ

(
s
2

)
ζ

(
s
2 − 11

)
− g24

(
s
2

))
from theta function in [12], where

g24 (t) =
∑∞

n=1 τ (n)n−t is the Ramanujan-Dirichlet function and
∑∞

i=0 τ(n)qn = q
∏∞

i=1

(
1− qi

)24
. Unfortunately, no similar relation is known

for any three-dimensional grid.

Grids of parallel affine sets of dimension k can be calculated using the zeta
functions of point grids in dimension d − k.

The coefficients of grids of parallel lines in R3 intersecting a perpendicular plane
in a square or a triangular grid of points are calculated from the zeta functions
Z (I2, 4) or Z (A2, 4), respectively.

For grids of parallel hyper-surfaces in Rd, Z (I1, d+ 1) = 2ζ (d+ 1) where ζ(s)
is the Riemann zeta function.

Fourier coefficients of shifted grids and combinations of grids can be obtained
by linear operations with the Fourier coefficients of the grids.

Let the multiple grids of lines in R3 be expressed parametrically as Ti = oi +
fvi + ghi + αdi, i = 0, . . . , n, f and g are integers, α is real and oi, vi, hi, di

are vectors from R3.
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The grid of unit density with square cross-section in R3 ([4]) is composed of

three orthogonal sets of parallel lines, di = ei, i = 1, 2, 3, v1 =
√
3e3, v2 = v3 =√

3e1, h1 = h3 =
√
3e2, h2 =

√
3e3, the sum in (2.10) is 3Z (I2, 4) + 12ζ(4) for

self-intersecting grid oi = 0, i = 1, 2, 3 and 3Z (I2, 4)− 212 ζ(4) for grid optimized

by mutually shifting the collections o1 = 0, o2 =
√
3
2 e3, o3 =

√
3
2 (e1 + e2).

For a quadruple of sets of parallel lines with triangular cross-section and di-
rections of diagonals of the cube d1 = e1 + e2 + e3, d2 = e1 + e2 − e3, d3 =
e1 − e2 + e3, d4 = e1 − e2 − e3, vi =

1
2
e2
4
√
3
, hi =

1
2
e3
4
√
3
, i = 1, 2, 3, 4, the

sum in (2.10) is 4Z (A2, 4) + 18ζ(4) for self-intersecting grid oi = 0, i = 1, 2, 3, 4,

and 4Z (A2, 4) − 63
4 ζ(4) for optimized grid o1 =

1
2
e1+e2
4
√
3
, o2 =

1
2
e1+e3
4
√
3
, o3 = 0,

o4 =
1
2
e2+e3
4
√
3
.

The values of the constant CV
µ for various grids with unit spatial density of

the corresponding Hausdorff measure are given in Tables 1 and 2, where d is the
dimension of embedding space and k is the dimension of the affine sets. The
values of Z

(
A−1, s

)
were calculated by 4.1 and from the above identities for

zeta functions. The procedure 4.1 could be applied for lattices up to I8, the
values of Z (E8, 9), Z (I24, 25), Z (Λ24, 25) were evaluated from the identities only.
The triangular grid and the body centered cubic grid have the smallest observed
coefficients of grids of points in d = 2, 3 and are the duals to the grids of the
closest sphere packings. As such a relation may be more general, the coefficients
of duals of the closest sphere packings in d = 4, 8, 24 were also evaluated.

d k Grid CV
µ

1 0 I1 0.083333333
2 0 square I2 0.072837040
2 0 triangular A2 0.071701169
2 1 parallel lines I2 0.019384090
3 0 cubic I3 0.066649070
3 0 body centered cubic D∗

3 0.064350404
3 0 face centered cubic D3 0.064389706
3 1 parallel lines, I2 cross-section 0.024296742
3 1 parallel lines, A2 cross-section 0.023315276
3 1 lines, I2 cross-section, triple 0.125250104
3 1 lines, I2 cross-section, optimal triple 0.027075333
3 1 lines, A2 cross-section, quadruple 0.171800922
3 1 lines, A2 cross-section, optimal quadruple 0.024538766
3 2 parallel planes 0.008726646

Table 1. Coefficients of grids of affine sets of dimension k in Rd, d ≤ 3.
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d Grid CV
µ

4 I4 0.062959415
4 D4 0.058670401
5 I5 0.061045829
6 I6 0.060656899
7 I7 0.061828449
8 I8 0.064852630
8 E8∗ 0.045596961
24 I24 52.76720063
24 Λ24∗ 0.028950578

Table 2. Coefficients of grids of points in Rd.

5. Conclusions

The asymptotic expansion of the variance of the estimators of volume of
bounded objects (Corollary 3.7) have been used for a long time in stereologi-
cal studies. Supposing some smoothness of the covariograms of the objects, the
expansion follows from integral geometric identities. Such smoothness is proved
for balls and can be conjectured for bounded objects with smooth boundary. The
coefficients of periodic grids of affine sets can be calculated using the multidimen-
sional zeta function.
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