
Commentationes Mathematicae Universitatis Carolinae

Árpád Száz
Supremum properties of Galois-type connections

Commentationes Mathematicae Universitatis Carolinae, Vol. 47 (2006), No. 4, 569--583

Persistent URL: http://dml.cz/dmlcz/119618

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/119618
http://project.dml.cz


Comment.Math.Univ.Carolin. 47,4 (2006)569–583 569

Supremum properties of Galois–type connections

Árpád Száz

Abstract. In a former paper, motivated by a recent theory of relators (families of rela-
tions), we have investigated increasingly regular and normal functions of one preordered
set into another instead of Galois connections and residuated mappings of partially or-
dered sets.
A function f of one preordered set X into another Y has been called

(1) increasingly g-normal, for some function g of Y into X, if for any x ∈ X and
y ∈ Y we have f(x) ≤ y if and only if x ≤ g(y);

(2) increasingly ϕ-regular, for some function ϕ of X into itself, if for any x1, x2 ∈ X

we have x1 ≤ ϕ(x2) if and only if f(x1) ≤ f(x2).

In the present paper, we shall prove that if f is an increasingly regular function of X
onto Y , or f is an increasingly normal function of X into Y , then f [sup(A)] ⊂ sup(f [A])
for all A ⊂ X. Moreover, we shall also prove some more delicate, but less important
supremum properties of such functions.

Keywords: preordered sets, Galois connections (residuated mappings), supremum pro-
perties

Classification: Primary 06A06, 06A15; Secondary 04A05, 54E15

Introduction

In a former paper [14], motivated by a recent theory of relators (see [10] and [7]),
we have investigated increasingly regular and normal functions of one preordered
set into another instead of Galois connections [5, p. 155] and residuated mappings
[2, p. 11] of partially ordered sets.

A function f of one preordered set X into another Y has been called

(1) increasingly g-normal, for some function g of Y into X , if for any x ∈ X

and y ∈ Y we have f(x) ≤ y if and only if x ≤ g(y);

(2) increasingly ϕ-regular, for some function ϕ of X into itself, if for any
x1, x2 ∈ X we have x1 ≤ ϕ(x2) if and only if f(x1) ≤ f(x2).

In the first part of the present paper, we shall prove that if f is an increasingly
regular function of X onto Y , or f is an increasingly normal function of X into Y ,
then

f [ sup(A)] ⊂ sup(f [A])
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for all A ⊂ X . Moreover, we shall also show that under some completeness
properties of X the converse statements are also true.

In the second part of present paper, we shall prove that if f is an increasingly
ϕ-regular function of X onto a partially ordered set Y , then

sup
(

f [A]
)

⊂ f
[

min
(

ub(A) ∩ ϕ[X ]
)]

for all A ⊂ X . Moreover, by using a similar proof, we shall also show that if f is
an increasingly g-normal function of X into Y , then

g
[

sup(f [A])
]

⊂ min
(

ub(A) ∩ g[Y ]
)

for all A ⊂ X .

Actually, we shall prove the same inclusions for the relations g
f
of Y into

X and ϕ
f
of X into itself defined by g

f
(y) = max{x ∈ X : f(x) ≤ y} and

ϕ
f
(x) = g

f
(f(x)) for all y ∈ Y and x ∈ X . Moreover, we shall establish some

immediate consequences of these inclusions.

1. A few basic facts on relations

A subset F of a product set X×Y is called a relation on X to Y . If in
particular F ⊂ X2, then we may simply say that F is a relation on X . Thus,
∆

X
= {(x, x) : x ∈ X} is a relation on X .

If F is a relation on X to Y , then for any x ∈ X and A ⊂ X the sets F (x) =
{y ∈ Y : (x, y) ∈ F} and F [A] =

⋃

a∈A F (a) are called the images of x and A
under F , respectively.

Moreover, the sets D
F
= {x ∈ X : F (x) 6= ∅} and R

F
= F [D

F
] are called the

domain and range of F , respectively. If in particular D
F
= X (R

F
= Y ), then

we say that F is a relation of X to Y (on X onto Y ).

In particular, a relation f on X to Y is called a function if for each x ∈ D
f

there exists y ∈ Y such that f(x) = {y}. In this case, by identifying singletons
with their elements, we may usually write f(x) = y in place of f(x) = {y}.

If F is a relation on X to Y , then a function f of D
F
to Y is called a selection

of F if f ⊂ F , i.e., f(x) ∈ F (x) for all x ∈ D
F
. Thus, the Axiom of Choice can

be briefly expressed by saying that every relation has a selection.

If F is a relation on X to Y , then the values F (x), where x ∈ X , uniquely
determine F since we have F =

⋃

x∈X{x}×F (x). Therefore, the inverse relation

F−1 can be defined such that F−1(y) = {x ∈ X : y ∈ F (x)} for all y ∈ Y .

Moreover, if in addition G is a relation on Y to Z, then the composition
relation G◦F can be defined such that (G◦F )(x) = G[F (x)] for all x ∈ X . Thus,
we also have (G ◦ F )[A] = G[F [A]] for all A ⊂ X .
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A relation R on X is called reflexive, antisymmetric, and transitive if ∆
X

⊂ R,

R∩R−1 ⊂ ∆
X
, and R ◦R ⊂ R, respectively. Moreover, a reflexive and transitive

relation is called a preorder. And an antisymmetric preorder is called a partial
order.

2. A few basic facts on ordered sets

If ≤ is a relation on a nonvoid set X , then having in mind the terminology of
Birkhoff [1, p. 2] the ordered pair X(≤) = (X,≤) is called a goset (generalized
ordered set). And we usually write X in place of X(≤).

If X(≤) is a goset, then by taking X∗ = X and ≤∗=≤−1 we can form a new
goset X∗(≤∗). This is called the dual of X(≤). And we usually write ≥ in place
of ≤∗.

The goset X is called reflexive, transitive, and antisymmetric if the inequality
relation ≤ in it has the corresponding property. Moreover, for instance, X is
called preordered if it is reflexive and transitive.

In particular, a preordered set will be called a proset and a partially ordered set
will be called a poset. The usual definitions on posets can be naturally extended
to gosets [12]. (See also [11].)

For instance, for any subset A of a goset X , the members of the families

lb(A) =
{

x ∈ X : ∀ a ∈ A : x ≤ a
}

and

ub(A) =
{

x ∈ X : ∀ a ∈ A : a ≤ x
}

are called the lower and upper bounds of A in X , respectively.

Moreover, the members of the families

min(A) = A ∩ lb(A), max(A) = A ∩ ub(A),

inf(A) = max
(

lb(A)
)

, sup(A) = min
(

ub(A)
)

are called the minima, maxima, infima and suprema of A in X , respectively.

Thus, for any A,B ⊂ X , we have A ⊂ lb(B) if and only if B ⊂ ub(A).
Moreover, in [13], we have proved that a reflexive goset X is antisymmetric if and
only if card(max(A)) ≤ 1 (resp. card(sup(A)) ≤ 1) for all A ⊂ X .

Now, the goset X may, for instance, be naturally called

(1) sup-complete if sup(A) 6= ∅ for all A ⊂ X ;
(2) quasi-sup-complete if sup(A) 6= ∅ for all A ⊂ X with A 6= ∅.

In [3], we have proved that X is quasi-sup-complete if and only if it is pseudo-inf-
complete in the sense that inf(A) 6= ∅ for all A ⊂ X with lb(A) 6= ∅.
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3. Closure operations and regular structures

Definition 3.1. A function ϕ of a prosetX into itself is called an unary operation
onX . More generally, a function f ofX into another proset Y is called a structure
on X .

Remark 3.2. The latter terminology has been mainly motivated by the various
structures derived from relators. (See [9] and [11].)

Definition 3.3. An operation ϕ on X is called

(1) expansive if ∆
X

≤ ϕ;

(2) quasi-idempotent if ϕ2 ≤ ϕ.

Moreover, a structure f on X is called increasing if for any x1, x2 ∈ X , with
x1 ≤ x2, we have f(x1) ≤ f(x2).

Remark 3.4. Note that if (1) holds, then we also have ϕ = ∆
X
◦ϕ ≤ ϕ◦ϕ = ϕ2.

Therefore, if both (1) and (2) hold andX is a poset, then ϕ is actually idempotent.

Thus, according to [1, p. 111], we may also naturally have the following

Definition 3.5. An increasing, expansive and quasi-idempotent operation ϕ on
X is called a closure operation on X .

Remark 3.6. Now, an operation ϕ on X may be naturally called an interior
operation if it is a closure operation on X∗.

In [14], having in mind the ideas of [7], we have also introduced the following

Definition 3.7. A structure f on X is called increasingly ϕ-regular, for some
operation ϕ on X , if for any x1, x2 ∈ X we have

x1 ≤ ϕ(x2) ⇐⇒ f(x1) ≤ f(x2).

Remark 3.8. Now, a structure f on X to Y may be naturally called decreasingly
ϕ-regular if it is an increasingly ϕ-regular structure on X to Y ∗.

If f is a ϕ-regular structure on X , then according to a recent definition of
Galois connections [5, p. 155] we may also naturally say that the pair (f, ϕ) is a
Pataki connection on X .

However, even instead of Galois connections, it has been more convenient to
use residuated mappings ([2, p. 11]) in the following modified form.

Definition 3.9. A structure f on X to Y is called increasingly g-normal, for
some structure g on Y to X , if for any x ∈ X and y ∈ Y we have

f(x) ≤ y ⇐⇒ x ≤ g(y).
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Remark 3.10. Now, a structure f on X to Y may be naturally decreasingly
g-normal if it is an increasingly g-normal structure on X to Y ∗.

The importance of the latter definition lies mainly in the fact that ifX is a goset
and F (A) = ub(A) and G(A) = lb(A) for all A ⊂ X , then F is a decreasingly
G-normal structure on P(X). (See [5, 7.24 and 7.38].)

4. Relationships between closure operations and regular structures

By using the above definitions, in [14], we have proved the following theorems.

Theorem 4.1. If f is an increasingly ϕ-regular structure on X , then

(1) ϕ is expansive;
(2) f is increasing;
(3) f ≤ f ◦ ϕ ≤ f .

Corollary 4.2. If f is an increasingly ϕ-regular structure on X to a poset Y ,

then f = f ◦ ϕ.

Theorem 4.3. If ϕ is an operation on X , then the following assertions are equi-

valent:

(1) ϕ is a closure operation;
(2) ϕ is increasingly ϕ-regular;
(3) there exists an increasingly ϕ-regular structure f on X .

Corollary 4.4. If f is a structure and ϕ is an operation on X , then f is increa-

singly ϕ-regular if and only if ϕ is a closure operation and for any x1, x2 ∈ X we

have ϕ(x1) ≤ ϕ(x2) if and only if f(x1) ≤ f(x2).

Theorem 4.5. If f is an increasingly g-normal structure on X to Y and ϕ is an

operation on X such that ϕ ≤ g ◦ f ≤ ϕ, then f is increasingly ϕ-regular.

Hence, by using that now g is an increasingly f -normal structure on Y ∗ to X∗,
we can also state

Theorem 4.6. If f is an increasingly g-normal structure on X to Y , then f and

g are increasing. Moreover, ϕ = g ◦ f is a closure operation on X and ψ = f ◦ g
is an interior operation on Y .

Moreover, we shall also need the following very particular results of [14].

Theorem 4.7. If f is an increasingly ϕ-regular structure on one poset X to

another Y , then f is injective if and only if ϕ = ∆
X
.

Theorem 4.8. If f is an increasingly g-normal structure on one poset X to

another Y , then f is injective if and only if Rg = X .
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5. Characterizations of increasingly normal structures

Definition 5.1. For a structure f on X to Y , we define two relations Γ
f
and g

f

on Y to X such that

Γ
f
(y) =

{

x ∈ X : f(x) ≤ y
}

and g
f
(y) = max

(

Γ
f
(y)

)

for all y ∈ Y .

Remark 5.2. Note that if in particularX is a poset, then g
f
is already a function

of a subset of Y into X .

Concerning the relation g
f
, in [14], we have, for instance, proved the following

Theorem 5.3. For any structures f on X to Y and g on Y to X , the following

assertions are equivalent:

(1) f is increasingly g-normal;
(2) f is increasing and g is a selection of g

f
.

Definition 5.4. For a structure f on X to Y , we define

Q
f
=

{

g ∈ XY : f is increasingly g-normal
}

.

Moreover, if in particular Q
f
6= ∅, then we say that f is increasingly normal.

Concerning increasingly normal structures, in [14], we have, for instance,
proved the following theorems.

Theorem 5.5. If f is a structure on X to Y , then the following assertions are

equivalent:

(1) f is increasingly normal;
(2) f is increasing and Y is the domain of g

f
.

Theorem 5.6. If f is an increasingly normal structure on X to Y , then

g
f
(y) =

{

g(y) : g ∈ Q
f

}

for all y ∈ Y . Therefore, we actually have g
f
=

⋃

Q
f
.

Theorem 5.7. If f is an increasingly normal structure on a poset X to Y , then

g
f
is an increasing structure on Y to X and Q

f
= {g

f
}.

6. Characterizations of increasingly regular structures

Definition 6.1. For a structure f on X , we define two relations Λ
f
and ϕ

f
on

X such that

Λ
f
(x) =

{

u ∈ X : f(u) ≤ f(x)
}

and ϕ
f
(x) = max

(

Λ
f
(x)

)

for all x ∈ X .
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Remark 6.2. Note thus Λ
f
is preorder relation on X . Moreover, we have Λ

f
=

Γ
f
◦ f and ϕ

f
= g

f
◦ f .

Concerning the relation ϕ
f
, in [14], we have also proved the following

Theorem 6.3. If ϕ is an operation and f is a structure on X , then the following

assertions are equivalent:

(1) f is increasingly ϕ-regular;
(2) f is increasing and ϕ is a selection of ϕ

f
.

Definition 6.4. For a structure f on X , we define

O
f
=

{

ϕ ∈ XX : f is increasingly ϕ-regular
}

.

Moreover, if in particular O
f
6= ∅, then we say that f is increasingly regular.

Concerning increasingly regular structures, in [14], we have, for instance,
proved the following theorems.

Theorem 6.5. If f is a structure on X , then the following assertions are equi-

valent:

(1) f is increasingly regular;
(2) f is increasing and X is the domain of ϕ

f
.

Theorem 6.6. If f is an increasingly regular structure on X , then

ϕ
f
(x) =

{

ϕ(x) : ϕ ∈ O
f

}

for all x ∈ X . Therefore, we actually have ϕ
f
=

⋃

O
f
.

Theorem 6.7. If f is an increasingly regular structure on X onto Y , then f is

already increasingly normal.

Theorem 6.8. If f is an increasingly regular structure on a poset X , then ϕ
f
is

a closure operation on X and O
f
= {ϕ

f
}.

7. Supremum properties of increasingly normal structures

As an extension of an observation of Pickert [8] and the first part of [5, Propo-
sition 7.31], we can prove the following

Theorem 7.1. If f is an increasingly normal structure on X to Y , then for any

A ⊂ X we have

f [ sup(A)] ⊂ sup
(

f [A]
)

.

Proof: If y ∈ f [sup(A)], then there exists x ∈ sup(A) such that y = f(x).
Hence, we can see that

x ∈ ub(A) and x ∈ lb
(

ub(A)
)

.
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Thus, in particular, for any a ∈ A, we have a ≤ x. Hence, by using Theorem 4.6,
we can infer that f(a) ≤ f(x) = y. Therefore, y ∈ ub(f [A]).

On the other hand, if v ∈ ub(f [A]), then for any a ∈ A we have f(a) ≤ v.
Hence, by choosing a g ∈ Q

f
, we can infer that a ≤ g(v). Therefore, g(v) ∈ ub(A).

Hence, by using that x ∈ lb(ub(A)), we can infer that x ≤ g(v). This implies that
y = f(x) ≤ v. Therefore, y ∈ lb

(

ub(f [A])
)

, and thus

y ∈ ub
(

f [A]
)

∩ lb
(

ub
(

f [A]
))

= sup
(

f [A]
)

also holds. This proves the required inclusion. �

From the above theorem, it is clear that in particular we have

Corollary 7.2. If f is an increasingly normal structure on a sup-complete proset

X to a poset Y , then f [sup(A)] = sup(f [A]) for all A ⊂ X .

Proof: Note that now, in addition to f [sup(A)] ⊂ sup(f [A]), we also have
f [sup(A)] 6= ∅ and card

(

sup(f [A])
)

≤ 1 for all A ⊂ X . Therefore, the required
assertion is also true. �

Moreover, we can also prove the following partial converse to Theorem 7.1.

Theorem 7.3. If f is a structure on a sup-complete proset X to Y such that

f [ sup(A)] ⊂ sup
(

f [A]
)

for all A ⊂ X , then f is increasingly normal.

Proof: By Theorem 5.5, it is enough to show only that now f is increasing and
g

f
(y) 6= ∅ for all y ∈ Y .

For this, first note that if x1, x2 ∈ X such that x1 ≤ x2, then by taking
A = {x1, x2} we have

x2 ∈ A ∩ ub(A) = max(A) ⊂ sup(A).

Hence, by using the assumed sup-preservingness of f , we can infer that

f(x2) ∈ f [ sup(A)] ⊂ sup
(

f [A]
)

⊂ ub
(

f [A]
)

= ub
(

{f(x1), f(x2)}
)

.

Therefore, f(x1) ≤ f(x2), and thus f is increasing.

Next, note that if y ∈ Y , then by the assumed sup-completeness of X there
exists x ∈ X such that x ∈ sup

(

Γ
f
(y)

)

. Hence, by using the assumed sup-
preservingness of f , we can infer that

f(x) ∈ f
[

sup
(

Γ
f
(y)

]

⊂ sup
(

f [Γ
f
(y)]

)

⊂ lb
(

ub
(

f [Γ
f
(y)]

))

.
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Moreover, by Definition 5.1, we have f(u) ≤ y for all u ∈ Γ
f
(y), and thus y ∈

ub
(

f [Γ
f
(y)]

)

. Hence, it is clear that f(x) ≤ y, and thus x ∈ Γ
f
(y). Therefore,

x ∈ Γ
f
(y) ∩ sup

(

Γ
f
(y)

)

= max
(

Γ
f
(y)

)

= g
f
(y),

and thus g
f
(y) 6= ∅ is also true. �

Now, as an immediate consequence of Theorems 7.1 and 7.3, we can also state
the following extension of an observation of Pickert [8] and the first part of [5,
Proposition 7.34].

Corollary 7.4. If f is a structure on a sup-complete proset X to Y , then the

following assertions are equivalent:

(1) f is increasingly normal;
(2) f [sup(A)] ⊂ sup(f [A]) for all A ⊂ X .

8. Supremum properties of increasingly regular structures

From Theorem 7.1, by using Theorem 6.7, we can immediately derive

Theorem 8.1. If f is an increasingly regular structure on X onto Y , then for

any A ⊂ X we have

f [ sup(A)] ⊂ sup
(

f [A]
)

.

Proof: In this case, by Theorem 6.7, the structure f is increasingly normal.
Therefore, Theorem 7.1 can be applied to get the required inclusion. �

From the above theorem, it is clear that in particular we also have

Corollary 8.2. If f is an increasingly regular structure on a sup-complete proset

X onto a poset Y , then f [sup(A)] = sup(f [A]) for all A ⊂ X .

Moreover, analogously to Theorem 7.3, we can also prove the following

Theorem 8.3. If f is a structure on a quasi-sup-complete proset X to Y such

that

f [ sup(A)] ⊂ sup
(

f [A]
)

for all A ⊂ X with A 6= ∅, then f is increasingly regular.

Proof: By Theorem 6.5, it is enough to show only that f is increasing and
ϕ

f
(x) 6= ∅ for all x ∈ X .

From the proof of Theorem 7.3, it is clear that f is increasing. Moreover,
if x ∈ X , then by Definition 6.1 we have x ∈ Λ

f
(x), and thus Λ

f
(x) 6= ∅.

Therefore, by the assumed quasi-sup-completeness of X , there exists α ∈ X such
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that α ∈ sup
(

Λ
f
(x)

)

. Hence, by using the assumed sup-preservingness of f , we
can infer that

f(α) ∈ f
[

sup
(

Λ
f
(x)

]

⊂ sup
(

f [Λ
f
(x)]

)

⊂ lb
(

ub
(

f [Λ
f
(x)]

))

.

Moreover, by Definition 6.1, we also have f(u) ≤ f(x) for all u ∈ Λ
f
(x), and thus

f(x) ∈ ub
(

f [Λ
f
(x)]

)

. Hence, it is clear that f(α) ≤ f(x), and thus α ∈ Λ
f
(x).

Therefore,
α ∈ Λ

f
(x) ∩ sup

(

Λ
f
(x)

)

= max
(

Λ
f
(x)

)

= ϕ
f
(x),

and thus ϕ
f
(x) 6= ∅ is also true. �

Now, as an immediate consequence of Theorems 8.1 and 8.3, we can also state

Corollary 8.4. If f is a structure on a quasi-sup-complete proset X onto Y ,

then the following assertions are equivalent:

(1) f is increasingly regular;
(2) f [sup(A)] ⊂ sup(f [A]) for all A ⊂ X .

Remark 8.5. Note that if f is as an increasingly regular structure on X onto Y ,
or f is an increasingly normal structure on X to Y , then by Theorems 8.1 and 7.1
we also have

f [ min(X)] = f [ sup(∅)] ⊂ sup
(

f [∅]
)

= min(Y ).

9. Further supremum properties of increasingly regular structures

In addition to Theorem 8.1, we can also prove the following

Theorem 9.1. If f is a increasingly regular structure on X onto a poset Y , then

for any A ⊂ X we have

sup
(

f [A]
)

⊂ f
[

min
(

ub(A) ∩ ϕ
f
[X ]

)]

.

Proof: If y ∈ sup(f [A]), then by the corresponding definitions we have

y ∈ ub
(

f [A]
)

and y ∈ lb
(

ub
(

f [A]
))

.

Thus, in particular, for any a ∈ A we have f(a) ≤ y. Moreover, since Y = f [X ],
there exists x ∈ X such that y = f(x). Therefore, we also have f(a) ≤ f(x).
Hence, by taking a ϕ ∈ O

f
, we can infer that a ≤ ϕ(x). Therefore,

ϕ(x) ∈ ub(A) ∩ ϕ[X ] ⊂ ub(A) ∩ ϕ
f
[X ].

Namely, by Theorem 6.3, we have ϕ ⊂ ϕ
f
, and thus ϕ[X ] ⊂ ϕ

f
[X ].
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On the other hand, if v ∈ ub(A) ∩ ϕ
f
[X ], then for any a ∈ A we have a ≤ v,

and moreover there exists u ∈ X such that v ∈ ϕ
f
(u). Hence, by Theorem 6.6,

we can see that there exists ψ ∈ O
f
such that v = ψ(u). Therefore, we also

have a ≤ ψ(u), and thus f(a) ≤ f(u). Hence, it is clear that f(u) ∈ ub(f [A]).
Moreover, since

f(x) = y ∈ lb
(

ub
(

f [A]
))

,

we can also see that f(x) ≤ f(u). Hence, by using Corollary 4.4, we can infer
that ψ(x) ≤ ψ(u) = v. Moreover, by Theorem 6.3, we also have

ϕ(x), ψ(x) ∈ ϕ
f
(x) = max

(

Λ
f
(x)

)

= Λ
f
(x) ∩ ub

(

Λ
f
(x)

)

.

Hence, in particular, we can see that ϕ(x) ≤ ψ(x), and thus ϕ(x) ≤ v also holds.
Consequently, ϕ(x) ∈ lb

(

ub(A) ∩ ϕ
f
[X ]

)

, and thus

ϕ(x) ∈
(

ub(A) ∩ ϕ
f
[X ]

)

∩ lb
(

ub(A) ∩ ϕ
f
[X ]

)

= min
(

ub(A) ∩ ϕ
f
[X ]

)

is also true. Now, by Corollary 4.2, it is clear that

y = f(x) = f
(

ϕ(x)
)

∈ f
[

min
(

ub(A) ∩ ϕ
f
[X ]

)]

.

Therefore, the required inclusion is true. �

Remark 9.2. From the above proof, we can also see that if f is an increasingly
ϕ-regular structure on X onto a poset Y , then for any A ⊂ X we have

sup
(

f [A]
)

⊂ f
[

min
(

ub(A) ∩ ϕ[X ]
)]

.

Moreover, as an immediate consequence of Theorems 8.1 and 9.1, we can also
state

Theorem 9.3. If f is an increasingly regular structure on X onto a poset Y ,

then

f [ sup(A)] = sup
(

f [A]
)

for all A ⊂ X with ub(A) ⊂ ϕ
f
[X ].

Proof: Namely, if A ⊂ X , then by Theorem 8.1 we have

f [ sup(A)] ⊂ sup
(

f [A]
)

even if Y only a proset.

Moreover, if ub(A) ⊂ ϕ
f
[X ], then by Theorem 9.1 we also have

sup
(

f [A]
)

⊂ f
[

min
(

ub(A) ∩ ϕ
f
[X ]

)]

= f
[

min
(

ub(A)
)]

= f [ sup(A)].

Therefore, the required equality is also true. �

From the latter theorem, by Theorems 6.8 and 4.7, it is clear that in particular
we also have
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Theorem 9.4. If f is an injective increasingly regular structure on one poset X

onto another Y , then for any A ⊂ X we have

f [ sup(A)] = sup
(

f [A]
)

.

Proof: Namely, by Theorem 6.8, the structure f is increasingly ϕ
f
-regular. Hen-

ce, by Theorem 4.7, we can see that ϕ
f
is the identity function of X . Therefore,

ϕ
f
[X ] = X . Now, by Theorem 9.3, it is clear that the required assertion is true.

�

10. Further supremum properties of increasingly normal structures

From Theorem 9.1, by using Theorem 4.5 and Remark 6.2, we can also get the
following

Theorem 10.1. If f is a increasingly normal structure on X onto a poset Y ,

then for any A ⊂ X we have

sup
(

f [A]
)

⊂ f
[

min
(

ub(A) ∩ g
f
[Y ]

)]

.

Proof: Now, by Theorem 4.5, the structure f is increasingly regular. Moreover,
by Remark 6.2, we have ϕ

f
= g

f
◦ f . Thus, in particular

ϕ
f
[X ] =

(

g
f
◦ f)[X ] = g

f

[

f [X ]
]

= g
f
[Y ].

Hence, by Theorem 9.1, it is clear that the required inclusion is also true. �

Now, as an immediate consequence of Theorems 7.1 and 10.1, we can also state

Theorem 10.2. If f is an increasingly normal structure on X onto a poset Y ,

then

f [ sup(A)] = sup
(

f [A]
)

for all A ⊂ X with ub(A) ⊂ g
f
[Y ].

Hence, by Theorems 5.7 and 4.8, it is clear that in particular we also have the
following

Theorem 10.3. If f is an injective increasingly normal structure on one poset

X onto another Y , then for any A ⊂ X we have

f [ sup(A)] = sup
(

f [A]
)

.

Proof: Now, by Theorem 5.7, the structure f is g
f
-normal. Hence, by Theo-

rem 4.8, we can see that X = g
f
[Y ]. Therefore, by Theorem 10.2, the required

assertion is true. �

However, it now more interesting that, analogously to Theorem 9.1, we can
also prove the following
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Theorem 10.4. If f is an increasingly normal structure on X to Y , then for

any A ⊂ X we have

g
f

[

sup
(

f [A]
)]

⊂ min
(

ub(A) ∩ g
f
[Y ]

)

.

Proof: If y ∈ sup(f [A]), then by the corresponding definitions we have

y ∈ ub
(

f [A]
)

and y ∈ lb
(

ub
(

f [A]
))

.

Thus, in particular, for any a ∈ A we have f(a) ≤ y. Hence, by taking any
g ∈ Q

f
, we can infer that a ≤ g(y). Therefore,

g(y) ∈ ub(A) ∩ g[Y ] ⊂ ub(A) ∩ g
f
[Y ].

Namely, by Theorem 5.3, we have g ⊂ g
f
, and thus g[Y ] ⊂ g

f
[Y ].

On the other hand, if u ∈ ub(A)∩g
f
[Y ], then for any a ∈ A we have a ≤ u, and

moreover there exists v ∈ Y such that u ∈ g
f
(v). Hence, by Theorem 5.6, we can

see that there exists h ∈ Q
f
such that u = h(v). Therefore, a ≤ h(v), and thus

f(a) ≤ v. This shows that v ∈ ub(f [A]). Hence, by using that y ∈ lb(ub(f [A])),
we can infer that y ≤ v. Now, by Theorem 4.6, it is clear that h(y) ≤ h(v) = u.
Moreover, by Theorem 5.3, we also have

g(y), h(y) ∈ g
f
(y) = max

(

Γ
f
(y)

)

= Γ
f
(y) ∩ ub

(

Γ
f
(y)

)

.

Hence, in particular, we can see that g(y) ≤ h(y), and thus g(y) ≤ u also holds.
Consequently, g(y) ∈ lb

(

ub(A) ∩ g
f
[Y ]

)

, and thus

g(y) ∈ ub(A) ∩ g
f
[Y ] ∩ lb

(

ub(A) ∩ g
f
[Y ]

)

= min
(

ub(A) ∩ g
f
[Y ]

)

is also true. Now, by Theorem 5.6, it is clear that

g
f
(y) =

{

g(y) : g ∈ Q
f

}

⊂ min
(

ub(A) ∩ g
f
[Y ]

)

.

Therefore,

g
f

[

sup
(

f [A]
)]

=
⋃

{

g
f
(y) : y ∈ sup

(

f [A]
)}

⊂ min
(

ub(A) ∩ g
f
[Y ]

)

is also true. �

Remark 10.5. From the above proof, we can also see that if f is an increasingly
g-normal structure on X to Y , then for any A ⊂ X we have

g
[

sup
(

f [A]
)]

⊂ min
(

ub(A) ∩ g[Y ]
)

.

Moreover, as an immediate consequence of Theorem 10.4, we can also state
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Corollary 10.6. If f is an increasingly normal structure on X to Y , then

g
f

[

sup
(

f [A]
)]

⊂ sup(A)

for all A ⊂ X with ub(A) ⊂ g
f
[Y ].

Hence, it is clear that in particular we also have

Corollary 10.7. If f is an increasingly normal structure on a poset X to a

sup-complete proset Y , then

sup(A) = g
f

[

sup
(

f [A]
)]

for all A ⊂ X with ub(A) ⊂ g
f
[Y ].

Moreover, from Corollary 10.6, by using Theorems 5.7 and 4.8, we can also
immediately get the following

Theorem 10.8. If f is an injective increasingly normal structure on a poset X

to another Y , then for any A ⊂ X we have

g
f

[

sup
(

f [A]
)]

⊂ sup(A).

Proof: Now, by Theorem 5.7, the structure f is g
f
-normal. Hence, by Theo-

rem 4.8, we can see that X = g
f
[Y ]. Therefore, by Corollary 10.6, the required

assertion is true. �

From the above theorem, it is clear that in particular we also have

Corollary 10.9. If f is an injective increasingly normal structure on a poset X

to a sup-complete poset Y , then for any A ⊂ X we have

sup(A) = g
f

[

sup
(

f [A]
)]

.
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