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The rank of the diagonal and submetrizability

A.V. Arhangel’skii, R.Z. Buzyakova

Abstract. Several topological properties lying between the submetrizability and the Gδ-
diagonal property are studied. We are mostly interested in their relationship to each
other and to the submetrizability. The first example of a Tychonoff space with a regular
Gδ-diagonal but without a zero-set diagonal is given. The same example shows that a
Tychonoff separable space with a regular Gδ-diagonal need not be submetrizable. We
give a necessary and sufficient condition for submetrizability of a regular separable space.
The rank 5-diagonal plays a crucial role in this criterion. Every closed bounded subset
of a Tychonoff space with a Gδ-diagonal is shown to be Čech-complete. Under a slightly
stronger condition, any such subset is shown to be a Moore space. We also establish
that every closed bounded subset of a Tychonoff space with a regular Gδ-diagonal is
metrizable by a complete metric and, therefore, has the Baire property. Some further
results are obtained, and new open problems are posed.

Keywords: Gδ-diagonal, rank k-diagonal, submetrizability, condensation, regular Gδ-
diagonal, zero-set diagonal, Čech-completeness, pseudocompact space, Moore space,
Mrowka space, bounded subset, extent, Souslin number
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1. Introduction

Condensations are one-to-one continuous mappings onto. A space is submetriz-
able if it condenses onto a metrizable space. An important ingredient of submetriz-
ability is the Gδ-diagonal property. Below we consider a series of properties be-
tween these two. First of all, we consider how the properties are related to each
other and to the submetrizability. In particular, the first example of a Tychonoff
space with a regular Gδ-diagonal that is not a zero-set diagonal is given (Exam-
ple 2.9). This solves Problem 24 from [2]. The same example shows that not every
Tychonoff separable space with a regular Gδ-diagonal is submetrizable. This pro-
vides an answer to Problem 16 from [2]. A necessary and sufficient condition
for submetrizability of a regular separable space is given; rather unexpectedly, it
turned out that the rank 5-diagonal plays a crucial role in that. Every closed
bounded subset of a Tychonoff space with a Gδ-diagonal is shown to be Čech-
complete, and, under a slightly stronger assumption, any such subset is shown to
be a Moore space. Several new open problems are identified.
All spaces are assumed to be topological T1-spaces. In terminology we follow

[7] and [2]. If A is a subset of X and γ is a family of subsets of X , then St(A, γ) =



586 A.V.Arhangel’skii, R.Z.Buzyakova

⋃
{U ∈ γ : U ∩ A 6= ∅}. We also put St0(A, γ) = A and, for a natural number n,
Stn+1(A, γ) = St(Stn(A, γ), γ). If A = {x}, for some x ∈ X , then we write x
instead of {x}.
A diagonal sequence of rank k on a space X , where k ∈ ω, is a countable family

{γn : n ∈ ω} of open coverings of X such that {x} =
⋂
{Stk(x, γn) : n ∈ ω}, for

every x ∈ X . A space X has a rank k-diagonal , where k ∈ ω, if there is a diagonal
sequence {γn : n ∈ ω} on X of rank k. The diagonal k-sequences of open covers
were introduced by T. Ishii in [11]. Ph. Zenor has dealt with the case k = 3 in [16],
and A. Bella [4] has considered this notion for the case k = 2. R.F. Gittings has
considered diagonal k-sequences of open covers, and some special versions of them,
in the context of a classification of p-spaces he offered in [8], [9].
A space has a Gδ-diagonal if and only if it has a rank 1-diagonal [7]. The rank

of the diagonal of X is defined as the greatest natural number n such that X has
a rank n-diagonal, if such a number n exists. The rank of the diagonal of X is
infinite, if X has a rank n-diagonal for every n ∈ ω. Clearly, every submetrizable
space has a diagonal of infinite rank.

Proposition 1.1. Every Moore space X has a rank 2-diagonal.

Proof: Indeed, fix a development {γn : n ∈ ω} of X , and let a, b be any two
distinct points of X . We have to show that b /∈ St2(a, γn), for some n ∈ ω.
Assume the contrary. Then St(a, γn) ∩ St(b, γn) 6= ∅, for each n ∈ ω, and we

can fix xn ∈ St(a, γn) ∩ St(b, γn) 6= ∅. Since the family {St(a, γn) : n ∈ ω} forms
a base at a, the sequence s = {xn : n ∈ ω} converges to a. For a similar reason,
s must converge to b. But this is impossible, since a 6= b and the space X is
Hausdorff. �

A space X has a regular Gδ-diagonal [16] if there is a countable family {Un :
n ∈ ω} of open neighbourhoods of the diagonal ∆X in the square X × X such
that ∆X =

⋂
{Un : n ∈ ω}.

Proposition 1.2 (Ph. Zenor). If the rank of the diagonal of a space X is at least
3, then X has a regular Gδ-diagonal.

2. The rank of the diagonal and condensations

In this section we study to what extent the rank of the diagonal is responsible
for submetrizability type properties of a space. Every regular separable space with
a zero-set diagonal is submetrizable [12]. In [5] further results in this direction
were obtained and it was asked whether every separable space with a regular Gδ-
diagonal is submetrizable as well. We answer this question in negative below, and
also show that in a special case the answer is “yes”.
A space X is star-Lindelöf if, for each open cover γ of X , there is a countable

subset A of X such that St(A, γ) = X . Every separable space is star-Lindelöf,
and every space of the countable extent is star-Lindelöf as well.
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Lemma 2.1. Let {Un}n be a diagonal sequence on X of rank r. Let x, y be any
distinct elements of X .

1. If r ≥ 2, then there exists n such that y /∈ St(z,Un) whenever x ∈
St(z,Un).

2. If r ≥ 3 then there exists n such that y /∈ St(z,Un) whenever x ∈ St(z,Un).
3. If r ≥ 4 then there exists n such that St(zx,Un)∩St(zy,Un) = ∅ whenever

x ∈ St(zx,Un) and y ∈ St(zy,Un).

4. If r ≥ 5, then there exists n such that St(zx,Un)∩St(zy,Un) = ∅ whenever
x ∈ St(zx,Un) and y ∈ St(zy,Un).

Proof: Let us prove 1. Assume the contrary. Since r ≥ 2, y /∈ St2(x,Un), for
some n ∈ ω. Then there exists z ∈ X such that St(z,Un) contains both x and y.
Therefore, there exist Ux ∋ x, z and Uy ∋ y, z in Un. Clearly, Ux and Uy form a
two-link path from x to y within Un, a contradiction.

Proof of 2: Assume the contrary. Since r ≥ 3, there exists n such that y /∈
St3(x,Un). Then x ∈ St(z,Un) and y ∈ St(z,Un), for some z ∈ X . Pick Uy ∈ Un

that contains y. Then Uy meets St(z,Un). Therefore, there is Uz,y ∈ Un that
contains z and meets Uy. Since x ∈ St(z,Un), there exists Ux,z ∈ Un that contains
x and z. The sets Ux,z, Uz,y, Uy provide a 3-link path from x to z within Un,
a contradiction.

The proofs of 3 and 4 are analogous to the proofs of 1 and 2. �

A space X is said to be weakly M -normal (weakly normal) if, for every closed
disjoint subsets A and B of X there is a continuous mapping f from X to a
metrizable space M (respectively, to a separable metrizable space M) such that
f(A) ∩ f(B) = ∅. Clearly, every normal space is weakly normal. On the other
hand, every submetrizable space is weakly M -normal.

Theorem 2.2. Let X be a star-Lindelöf space with a rank r-diagonal.

1. If r ≥ 2 then X condenses onto a second-countable T1-space.
2. If r ≥ 3 then X condenses onto a second-countable T2-space.
3. If r ≥ 5 then X condenses onto a second-countable Urysohn space. If, in
addition, X is weakly M -normal, then X is submetrizable.

Proof: Let {Un}n be a diagonal sequence on X of rank r. By virtue of
star-Lindelöfness, for every n we can fix a countable Xn ⊂ X such that X =⋃
{St(x,Un) : x ∈ Xn}. Let B be the family of all St(x,Un)’s and X \ St(x,Un)’s,
where x ∈ Xn and n ∈ ω. Clearly, B is countable. Fix distinct x, y ∈ X .
To prove part 1, apply 1 of Lemma 2.1. For part 2, apply 2 of Lemma 2.1.

For part 3, apply 4 of Lemma 2.1. If X is weakly normal, we can fix a countable
family ξ = {fn : n ∈ ω} of continuous mappings of X to metrizable spaces Mn so
that any two elements of B with disjoint closures are separated by some fn. Then
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the diagonal product of the mappings fn is a continuous one-to-one mapping of
X to a metrizable space Π{Mn : n ∈ ω}. Hence, X is submetrizable. �

Corollary 2.3. A star-Lindelöf space X is submetrizable if and only if X is

weakly normal and has a rank 5-diagonal.

Corollary 2.4. Every separable Moore space with a regular Gδ-diagonal con-

denses onto a Hausdorff space with a countable base.

Proof: Indeed, a Moore space has a rank 3-diagonal if and only if it has a regular
Gδ-diagonal (Ph. Zenor, [16]). It remains to apply Theorem 2.2. �

Proposition 2.5. Every pseudocompact subspace Y of a Hausdorff first count-
able space X is closed in X .

Proof: Assume the contrary, and fix a point a ∈ Y \ Y . Fix also a countable
decreasing base {Un : n ∈ ω} of X at a. Put Vn = Un ∩ Y for n ∈ ω. Then
ξ = {Vn : n ∈ ω} is an infinite family of non-empty open subsets of Y such that
no point of Y is an accumulation point for ξ, since X is Hausdorff and ξ converges
to the point a which is not in Y . This contradicts pseudocompactness of Y . �

Theorem 2.6. Every condensation f from a regular pseudocompact space X
onto a Hausdorff first countable space Z is a homeomorphism.

Proof: Since f is continuous, one-to-one, and onto, we only have to show that f
is closed. Take any closed subset F ofX . Since X is regular, F =

⋂
{U : U ∈ γF },

where γF is the family of all open neighbourhoods of F in X . We put η = {U :
U ∈ γF }. Take any P ∈ η. Clearly, P is pseudocompact. Therefore, f(P ) is a
pseudocompact subspace of Z. It follows from Proposition 2.5 that f(P ) is closed
in Z, for every P ∈ η. We have f(F ) =

⋂
{f(P ) : P ∈ η}, since f is one-to-one.

Hence, f(F ) is closed in Z, and the mapping f is closed. �

Corollary 2.7. If a regular pseudocompact space X can be condensed onto a
Hausdorff space with a countable base, then X is metrizable and compact.

Proof: Indeed, it follows from Theorem 2.6 that X itself has a countable base.
Therefore, X is compact and metrizable. �

Corollary 2.8. Mrowka space Ψ does not condense onto a second-countable
Hausdorff space.

Mrowka space is a Moore space and has a rank 2-diagonal. Thus, conditions 1
and 2 in Theorem 2.2 cannot be improved in the obvious way.

Example 2.9. There exists a Tychonoff Moore space Z that is separable, non-
submetrizable, and has a diagonal of the rank exactly 3. Hence, Z has a regular
Gδ-diagonal.
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Construction. Let S be the subset of the Euclidean plane that consists of all
points on the line y = 1 and all points with rational coordinates that are above
this line. Let S′ be the subset of the Euclidean plane that consists of all points
on the line y = −1 and all points with rational coordinates that are below this
line. In short,

S = {(x, y) ∈ R2 : y = 1} ∪ {(x, y) ∈ R2 : x, y are rational and y > 1},

S′ = {(x, y) ∈ R2 : y = −1} ∪ {(x, y) ∈ R2 : x, y are rational and y < −1}.

Let Q be the set of rationals in R. The underlying set for our space Z is the set
of all elements p that fall in one of the following categories:

1. p = {(x, 1), (x,−1)}, where x ∈ Q;
2. p = (x, y) ∈ S ∪ S′, where either x /∈ Q or y /∈ {1,−1}.

In words, Z is obtained from S∪S′ by identifying each point on the line y = 1 that
has rational x-coordinate with the corresponding point on the line y = −1. Now
let us topologize Z. Fix p ∈ Z. If p = (x, y) and y /∈ {1,−1}, then we declare
p isolated. Otherwise, one of the following three cases takes place. Before we
discuss each case let us agree on terminology. In all cases below a “basic triangle
at q” will mean a triangle which has the sides adjacent to the vertex q of equal
length and an angle at q of measure 30◦. The height (or bisector) at q will be
used to orient the triangle vertically or with slope −1.

Case: [p = (x, 1) and x /∈ Q]. In the half-plane above the point p draw a basic
triangle at p with the height slope equal to −1.

The trace of the triangle (the boundary and interior included) on Z is a
basic neighborhood at p. The length of the height at p will be called the
height of the neighborhood.

Case: [p = (x,−1) and x /∈ Q]. In the half-plane below the point p draw a basic
triangle with the height slope equal to −1.

As in Case 1 the trace of the triangle on Z will determine a basic neigh-
borhood at p.

Case: [p = {(x, 1), (x,−1)} and x ∈ Q]. Construct two basic triangles, with
vertical heights (of the same length) — one above the vertex q = (x, 1)
and one below the vertex q′ = (x,−1).

The point p plus the traces of the boundary and interior of the two tri-
angles on Z is a basic neighborhood at p. The length of the height of the
upper triangle will be the height of the neighborhood. The construction
of Z is complete.

The space Z is Tychonoff, since each basic neighborhood is a clopen set. The
rest will be proved in the two lemmas below. Notice that Lemma 2.11 implies
that Z is not submetrizable. �
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Lemma 2.10. The diagonal rank of Z is at least 3.

Proof: If p ∈ Z is isolated, put Un(p) = {p}. If p is not isolated, let Un(p)
be a basic neighborhood at p such that each participating triangle has Euclidean
diameter less than 1/n. Let Un = {Un(p) : p ∈ Z}. Notice that if p is not isolated
then it belongs to only one element of Un, namely, to Un(p). Let us show that
{Un}n has rank at least 3. Fix any two distinct points p1, p2 ∈ Z.
Assume p1 = (x, 1) and p2 = (x,−1). Let us show that p1 /∈ St3(p2,U1).

Take any U ∈ U1. We need to show that U misses U1(p1) or U1(p2). Recall that
U1(p1) is the point p1 plus a triangle facing north-west above the line y = 1, while
U1(p2) is p2 plus a triangle facing south-east below the line y = −1. The only
chance for U to meet both sets is if U is a base neighborhood at {(q, 1), (q,−1)}
for some q ∈ Q. Since triangles we used to define neighborhoods have small angle
measures, the upper triangle of U can meet U1(p1) only if q < x. For the lower
triangle of U to meet U1(p2) we need q > x. Consequently, U misses U1(p1) or
U1(p2).
Now let p1 = (a, 1) and p2 = (b, 1). Let d be the Euclidean distance between

(a, 1) and (b, 1). Pick n such that 3/n < d. Let us show that p1 /∈ St3(p2,Un).
By the definition of Un, Un(p1) and Un(p2) are triangles of diameters less than
1/n in the upper half-plane bounded by the line y = 1. Take any U ∈ Un. The
portion of U that lies in the upper half-plane has diameter less than 1/n. Since
1/n+1/n+1/n is less than the Euclidean distance between p1 and p2, by triangle
inequality, U misses Un(p1) or Un(p2).
Other cases are similar to the latter case. �

Lemma 2.11. The diagonal rank of Z is at most 3.

Proof: Assume the contrary, and let {Un}n be a diagonal sequence of rank
at least 4. We may assume that each Un consists of basic neighborhoods. Put
An = {x ∈ R \Q : (x, 1) /∈ St4((x,−1),Un)}. For each An define An,m as follows:
x ∈ An is in An,m iff there are basic neighborhoods U(x, 1), U(x,−1) ∈ Un

of heights at least 1/m at (x, 1) and (x,−1), respectively. Since the diagonal
sequence has rank at least 4, every x ∈ R \ Q is in at least one An,m. Therefore,
there exist N and M such that clR(AN,M ) has a non-empty interior in R.
Pick any rational q in the interior of clR(AN,M ). Let U(q) ∈ UN be a basic

neighborhood at {(q, 1), (q,−1)}. It is clear that if a big triangle is moved just a
little along a straight line, then the new triangle meets the old one. Recall that all
basic neighborhoods of the same height at points of the form (x, 1) are obtained
from each other by sliding along the line y = 1. Therefore, we can pick distinct
a, b ∈ AN,M very close to each other so that a basic neighborhood at (a, 1) of
height at least 1/M meets a basic neighborhood at (b, 1) of height at least 1/M .
Let U(a, 1), U(b, 1), U(a,−1), U(b,−1) ∈ UN be basic neighborhoods of heights at
least 1/M at (a, 1), (b, 1), (a,−1), and (b,−1), respectively. Thus we have:

(1) U(a, 1) ∩ U(b, 1) 6= ∅ and U(a,−1) ∩ U(b,−1) 6= ∅.
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Since q is in the interior of clR(AN,M ), we can require that a < q and b > q. We
can also pick these a, b so close that

(2) U(b, 1) meets the upper triangle of U(q), and

(3) U(a,−1) meet the lower triangle of U(q).

From (1)–(3) we see that U(a, 1), U(b, 1), U(q), U(a,−1) form a 4-link path from
(a, 1) to (a,−1) within UN , contradicting the inclusion a ∈ AN . �

Corollary 2.12. There is a Tychonoff space with a regular Gδ-diagonal such

that the diagonal is not a zero-set.

Proof: By Zenor’s theorem [16], any space with a rank 3-diagonal has a regular
Gδ-diagonal. By H. Martin’s theorem [12], any separable space with a zero-set
diagonal is submetrizable. Therefore, Z is a Tychonoff space with a regular Gδ-
diagonal which is not a zero-set. �

Note, that the space Z is not weakly normal.

Problem 2.13. Is there a Tychonoff space with a rank 4-diagonal such that the
diagonal is not a zero-set? Which is not a rank 5-diagonal?

Problem 2.14 (A. Bella). Is every regular Gδ-diagonal a rank 2-diagonal?

Conjecture. For every natural number n there is a Tychonoff space Xn with a

rank n-diagonal that is not a rank n+ 1-diagonal.

Observe that, for n ≥ 5, the space Xn in the above conjecture cannot be
normal. Hence, it cannot be paracompact. Can it be metacompact? Can it be
subparacompact?
Recall that a space X is said to be perfect if every closed subset of X is a

Gδ-set in X .

Theorem 2.15. Let X be a normal star-Lindelöf perfect space with a rank 2-
diagonal. Then X condenses onto a separable metrizable space.

Proof: Let {Un}n be a diagonal sequence on X of rank at least 2. By virtue
of star-Lindelöfness, for every n we can fix a countable Xn ⊂ X such that X =⋃
{St(x,Un) : x ∈ Xn}. Let B = {St(x,Un) : x ∈ Xn and n ∈ ω}. Clearly,

B is countable. Fix distinct x, y ∈ X . By 1 of Lemma 2.1, there is W ∈ B
such that x ∈ W and y /∈ W . For each W ∈ B fix a continuous real-valued
function fW on X such that X \W = f−1(0). We can do this, since X is normal
and perfect. Clearly, the countable family F = {fW : W ∈ B} of continuous
functions separates points of X . Hence, the diagonal product of functions in F is
a condensation from X onto a separable metrizable space. �

Corollary 2.16. Every star-Lindelöf normal Moore space condenses onto a se-

parable metrizable space.
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G.M. Reed [14] proved that every separable normal Moore space is submetriz-
able. He has also constructed a Moore space with a regular Gδ-diagonal that is
not submetrizable [14]. The two crucial properties of Reed’s space were verified
in [2]. A description and some further interesting properties of Reed’s space are
given below.

Example 2.17. Let X = X0 ∪ X1 ∪ U , where X0 = R × {0}, X1 = R × {−1},
and U = R × (0,∞). If x = (a, 0) ∈ X0, then x′ denotes the twin element
(a,−1) ∈ X1. For n ∈ ω and x = (a, 0) ∈ X0 let Vn(x) = {x} ∪ {(s, t) ∈ U : (t =

s− a)∧ (0 < t < 1
n)}, and Vn(x

′) = {x′}∪{(s, t) ∈ U : (t = a− s)∧ (0 < t < 1
n)}.

The topology T on X is such that all elements of U are isolated, and the
collections {Vn(x) : n ∈ ω, n ≥ 1} and {Vn(x

′) : n ∈ ω, n ≥ 1} are bases of the
topology at x and x′, respectively.
Let γ be an open cover of the space X . We associate with it a subset J(γ)

of the usual space R of real numbers as follows. First, we define sets J0(γ) and
J1(γ). Let y ∈ R. Then y ∈ J0(γ) if, for some n ∈ ω and for some c, d ∈ R, the
following two conditions are satisfied:

(1) c < y < d, and

(2) The set of all z ∈ R such that c < z < d and Vn(z, 0) is contained in some
element of γ is dense in the interval [c, d].

Similarly, we define the set J1(γ) replacing in the above definition the set
Vn(z, 0) with the set Vn(z,−1).
From the Baire property of R and from the definition of the topology of X it

follows that J0(γ) and J1(γ) are open and dense in R.
Now take any diagonal sequence ξ = {γn : n ∈ ω} of open covers on X . By

the Baire property of the space R, the set K =
⋂
{J0(γn)∩J1(γn) : n ∈ ω} is not

empty. Fix any a ∈ K, and put x1 = (a, 0) and x′1 = (a,−1). Take any k ∈ ω
and consider the sets A = Stγk

(a), B = Stγk
(A), and C = Stγk

(B). Clearly,
Vn(x) ⊂ A, for some n ∈ ω. From a ∈ J1(γk) it follows that there is c ∈ R such
that c < a and, for some m ∈ ω and for some dense subset P of [c, a] (in the usual
topology of R) we have Vm(s,−1) ⊂ B for each s ∈ P .
Since a ∈ J0(γk), it follows from that there is d ∈ R such that a < d and, for

some l ∈ ω and for some dense subset H of [a, d] (in the usual topology of R) we
have Vl(s, 0) ⊂ C for each s ∈ H . However, the last fact immediately implies that
(a,−1) ∈ C, that is, the closure of the triple star of the point (a, 0) with respect
to γk, for each k ∈ ω, always contains the point (a,−1). Hence, the space X does
not have a strong rank 3-diagonal. In fact, it is clear from the above argument
that the rank of the diagonal of X is precisely 3, which implies that X is not
submetrizable.

It was observed by G.M. Reed that X is a Moore space and that X is con-
tinuously symmetrizable (see the details in [2]), and therefore, X has a zero-set
diagonal and a regular Gδ-diagonal. Thus, we see that neither zero-set diagonal,
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nor the regular Gδ-diagonal imply that X has a rank 4-diagonal . However, we do
not know the answer to the following question:

Problem 2.18. Is every rank 4-diagonal a zero-set?

Problem 2.19. Suppose that X is a normal space with a zero-set-diagonal. Is
X submetrizable? Is the rank of the diagonal of X at least 2?

Note, that the Reed’s space X is not weakly normal.

3. Diagonal properties, bounded sets, and extent

An important ingredient of submetrizability is Dieudonné completeness (i.e.
completeness with respect to the largest uniformity on X generating the topology
of X). Mrowka space Ψ witnesses that a Tychonoff space may have a rank 2-
diagonal without being Dieudonné complete (recall that every pseudocompact
Dieudonné complete space is compact [7]). However, we do not know the answers
to the following questions:

Problem 3.1. Is every Tychonoff space with a rank 3-diagonal (with a rank
5-diagonal) Dieudonné complete? What if the rank of the diagonal is infinite?

Problem 3.2. Is every Tychonoff space with a rank 4-diagonal (with a zero-set-
diagonal) Dieudonné complete?

Problem 3.3. Is every normal space with a Gδ-diagonal Dieudonné complete?

Observe that the spaces X and Z constructed in Section 2 are hereditarily
Dieudonné complete, since each of them obviously admits a continuous finite-to-
one mapping onto a hereditarily realcompact space (see [7, 3.11.B]).
The diagonal of a space X will be called a strong rank k-diagonal , where

k ∈ ω, if X has a diagonal sequence {γn : n ∈ ω} of open covers of X such that

{x} =
⋂
{Stk(x, γn) : n ∈ ω} for every x ∈ X . The next statement is obvious:

Proposition 3.4. Every rank 2-diagonal is a strong rank 1-diagonal.

On the other hand, every space with a regular Gδ-diagonal also has a strong
rank 1-diagonal. This was noticed by R. Hodel [10], who introduced the concept
of the strong rank 1-diagonal and was the first to show how much stronger this
property is than the Gδ-diagonal property.
We study below properties of bounded subsets of regular spaces with the strong

rank 1-diagonal (at least).
A subset A of a space X is said to be bounded in X , if every infinite collection

{Un : n ∈ ω} of open subsets of X such that Un ∩A 6= ∅ has a point of accumula-
tion in X . A subset A of a Tychonoff space X is bounded in X if and only if every
continuous real-valued function on X is bounded on A. In any Dieudonné com-
plete space every closed bounded subset is compact. So our interest in bounded
sets is motivated by the above problems.
The next fact was established in [2]:
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Proposition 3.5. Suppose that X is a regular space with a Gδ-diagonal, and

that Y is a bounded subset of X . Then the space Y is first countable.

Theorem 3.6. Suppose that X is a Tychonoff space with a Gδ-diagonal, and

that Y is a closed bounded subset of X . Then the space Y is Čech-complete.

Proof: Fix a Hausdorff compactification B of X . Since X has a Gδ-diagonal,
we can also fix a sequence {γn : n ∈ ω} of families γn of open subsets of B such
that {x} =

⋂
{St(x, γn) : n ∈ ω} ∩ X for each x ∈ X .

Put Gn = St(Y, γn), for n ∈ ω. Clearly, Gn is an open subset of B and Y ⊂ Gn,
for any n ∈ ω.
We claim that

⋂
{Gn : n ∈ ω}∩Y = Y . Clearly, Y ⊂ Z =

⋂
{Gn : n ∈ ω}∩ Y .

It remains to show that Z \ Y = ∅.
Assume the contrary, and fix z ∈ Z \ Y . Clearly, z ∈ Y . Since z ∈ Gn, we

can fix Vn ∈ γn such that z ∈ Vn. Put P =
⋂
{Vn : n ∈ ω}. If x ∈ P ∩ X , then

P ∩ X ⊂
⋂
{St(x, γn) : n ∈ ω} ∩ X , which implies that P ∩ X is either empty or

contains at most one point. Since z /∈ X , it follows that we can find a zero-set F
in B such that z ∈ B and F ∩X = ∅. Fix a continuous real-valued function g on
B such that g−1(0) = F . Define a real-valued function h on X by: h(x) = 1

g(x)
,

for each x ∈ X . Clearly, h is continuous. Notice, that h is unbounded on Y , since
z ∈ Y and g(z) = 0. This contradiction shows that Y is a Gδ-set in its Hausdorff
compactification Y . Hence, Y is Čech-complete. �

Theorem 3.7. Suppose that X is a regular space with a strong rank 1-diagonal.
Then any bounded subset Y of X is a Moore space.

Proof: Take a diagonal sequence {γn : n ∈ ω} of open covers of X such that

{x} =
⋂
{St(x, γn) : n ∈ ω}, for every x ∈ X . Clearly, we may assume that

γn+1 refines γn for each n ∈ ω. We are going to show that the traces of the
families γn on Y form a development of Y . Fix y ∈ Y , and let O(y) be an open
neighbourhood of y in X . Since X is regular, there is an open V ⊂ X such that
y ∈ V ⊂ V ⊂ O(y). Consider Wn = St(y, γn) \ V . To achieve the goal, we have
to show that Wn ∩ Y = ∅, for some n ∈ ω.
Assume the contrary. Then the family η = {Wn : n ∈ ω} accumulates to some

point a ∈ X , since Y is bounded in X . Note that the family η is decreasing.
It follows that a must belong to the closure of each Wn. Therefore, a /∈ V and
hence, a 6= y. On the other hand, we have

a ∈
⋂

{Wn : n ∈ ω} ⊂
⋂

{St(y, γn) : n ∈ ω} = {y},

which implies that a = y. This contradiction completes the proof. �

Theorem 3.7 should be compared to a result from [2]: any bounded subspace
of a regular space with a regular Gδ-diagonal is metrizable which implies that
every pseudocompact regular space with a regular Gδ-diagonal is metrizable and
compact [13]. The result in [2] can be now strengthened as follows:
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Theorem 3.8. Any closed bounded subspace Y of a regular space X with a

regular Gδ-diagonal is metrizable by a complete metric and therefore, any such

Y has the Baire property.

Proof: By the above mentioned result from [2], Y is metrizable. By Theo-
rem 3.6, Y is Čech-complete. It follows that Y is metrizable by a complete metric
(P.S. Alexandroff, F. Hausdorff, see [7]) and that Y has the Baire property. �

Theorem 3.9. Suppose that X is a Tychonoff space of countable extent and

with a strong rank 1-diagonal. Then any bounded subspace Y of X is separable
and metrizable.

Proof: The closure of Y in X is also bounded, therefore, we may assume that
Y is closed in X . Then the extent of Y is also countable. By Theorem 3.7, Y is
a Moore space. It follows that Y has a σ-discrete network. Since the extent of
Y is countable, this network is, in fact, countable. By Theorem 3.6, Y is Čech-
complete. It remains to refer to a theorem in [1] that every Čech-complete space
with a countable network has a countable base and is, therefore, separable and
metrizable. �

If we drop the assumption that the extent of X is countable, then the above
conclusion is no longer true, even for separable spaces. Indeed, Mrowka space Ψ
is a Tychonoff space with a strong rank 1-diagonal, Ψ is bounded in itself and is
not metrizable. However, we have the following related to Theorem 3.9 result:

Theorem 3.10. Suppose that X is a Tychonoff space with a Gδ-diagonal, and

that Y is a bounded subspace of X such that the Souslin number of Y is count-
able. Then Y is separable.

Proof: By Theorem 3.6, Y is Čech-complete. By a well known result of Šapi-
rovskij [15], Y contains a dense paracompact Čech-complete subspace Z. Clearly,
Z has a Gδ-diagonal. Hence (see [7]), Z is metrizable. Since Z is dense in Y , the
Souslin number of Z is also countable. Therefore, Z and Y are separable. �

Problem 3.11. Is every bounded subset of a regular (Tychonoff ) space with a
regular Gδ-diagonal compact? Separable?

Theorem 3.8 suggests that the answer to the last question might well be “yes”.

The above statements imply several corollaries for pseudocompact spaces.

Theorem 3.12. Suppose that X is a Tychonoff pseudocompact space. Then the
following three conditions are equivalent:

(1) X has a strong rank 1-diagonal;
(2) X is a Moore space;
(3) X is a separable Moore space.
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Proof: Clearly, (3) implies (2), and (2) implies (1). Now, let us assume that
(1) holds. Then, by Theorem 3.7, X is a Moore space. Hence, X is perfect.
Therefore, the Souslin number of X is countable (an obvious standard argument
shows that the Souslin number of every regular perfect pseudocompact space is
countable). Hence, by Theorem 3.10, the space X is separable. �

Corollary 3.13. Suppose that X is a Tychonoff pseudocompact space of the

countable extent and that X also has a strong rank 1-diagonal. Then X is metriz-
able and compact.

On the other hand, R. Buzyakova has shown [5] that, consistently, there exists
a pseudocompact Tychonoff space X of the countable extent and with a Gδ-
diagonal such that X is not metrizable [5]. Hence, the condition “strong rank
1-diagonal” cannot be replaced above by the condition “Gδ-diagonal”.

Corollary 3.14. Suppose that X is a regular pseudocompact space. Then the
rank r(X) of the diagonal of X can take only four values: 0, 1, 2, and ∞. More
precisely, we have:

(1) r(X) = 0 if and only if X does not have a Gδ-diagonal;

(2) r(X) = 1 if and only if X has a Gδ-diagonal but is not a Moore space;

(3) r(X) = 2 if and only if X is a non-metrizable Moore space;
(4) r(X) =∞ if and only if X is metrizable.

It follows from Corollary 3.14 that the rank of the diagonal of any Mrowka
space Ψ is precisely 2.
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