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Powers and alternative laws

Nicholas Ormes, Petr Vojtěchovský

Abstract. A groupoid is alternative if it satisfies the alternative laws x(xy) = (xx)y and
x(yy) = (xy)y. These laws induce four partial maps on N+ × N+

(r, s) 7→ (2r, s − r), (r − s, 2s), (r/2, s+ r/2), (r + s/2, s/2),

that taken together form a dynamical system. We describe the orbits of this dynamical
system, which allows us to show that nth powers in a free alternative groupoid on one
generator are well-defined if and only if n ≤ 5. We then discuss some number theoretical
properties of the orbits, and the existence of alternative loops without two-sided inverses.

Keywords: alternative laws, alternative groupoid, powers, dynamical system, alternative
loop, two-sided inverse

Classification: Primary 20N02; Secondary 20N05, 37E99

1. Alternative laws and the induced dynamical systems

Let G be a free groupoid with one generator x. The elements of G are (correctly
parenthesized) words built from the single letter x. The length |w| of a word w is
the number of letters in w.

For a positive integer n we denote by xn any of the words of length n in G. Note
that there are precisely cn such words, where cn is the nth Catalan number defined
by the recursive relation c0 = 1, c1 = 1, cn+1 = c1cn+c2cn−1+· · ·+cn−1c2+cnc1,
cf. [7].

A groupoid is said to be left alternative if it satisfies the left alternative law
x(xy) = (xx)y. Dually, it is right alternative if it satisfies the right alternative
law x(yy) = (xy)y. A groupoid that is both left alternative and right alternative
is called alternative. (When dealing with algebras, the flexible law x(yx) = (xy)x
is counted among alternative laws, and hence alternative algebras by definition
satisfy the flexible law in addition to the left and right alternative laws. Our
terminology is common for nonassociative structures with one binary operation.)

Both authors supported by the 2004 PROF Grant of the University of Denver.
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Let A be the free alternative groupoid with generator x. Then A consists of
equivalence classes of G, where two elements of G are equivalent if and only if they
can be obtained from each other by finitely many applications of the alternative
laws. For instance, the equivalence class of (xx)(xx) consists of all possible powers
x4, as is immediately seen from x((xx)x) = x(x(xx)) = (xx)(xx) = ((xx)x)x =
(x(xx))x and from the fact that c4 = 5. Thus the words of the form x4 form an
equivalence class in A, i.e., x4 is well-defined .
The goal of this paper is to determine for which n > 0 the power xn is well-

defined in A, and to investigate related questions. In Sections 5 and 6 we turn our
attention to alternative loops without two-sided inverses. The following concept
proves useful in all of these tasks:
Consider a word w = uv in G such that |u| = r > 0, |v| = s > 0. Assume that

w is transformed into w′ = u′v′ by a single application of an alternative law. Then
(|u′|, |v′|) is either (r, s) (when the law is applied inside u or v), or (2r, s−r) (when
w = u(ut)), or (r− s, 2s) (when w = (tv)v), or (r/2, s+ r/2) (when w = (tt)v), or
(r + s/2, s/2) (when w = u(tt)). This suggests the introduction of these partial
maps on N

+ × N
+:

α(r, s) = (2r, s − r), β(r, s) = (r − s, 2s),

γ(r, s) = (r/2, s+ r/2), δ(r, s) = (r + s/2, s/2).

Note that α is defined if and only if s > r, β is defined if and only if r > s, γ is
defined if and only if r is even, and δ is defined if and only if s is even. Also note
that α is the inverse of γ, and β is the inverse of δ (in the sense that α ◦ γ, γ ◦ α,
β ◦ δ, δ ◦ β are identity maps on their respective domains).
It is not a novel idea to think of partial maps on integers as a dynamical system

— the most notorious example being the dynamical system on N
+ associated with

the 3n+ 1 problem [8]. In that case there are two maps

µ(r) =
r

2
,

ν(r) =
3r + 1

2
,

µ is defined for even r, ν for odd r, and the (open) problem is whether 1 can be
found in the orbit of every r.
Just as in the 3n+1 problem, we are interested in the orbits of the dynamical

system. We define the orbit of (r, s) ∈ N
+ × N

+ as the set

O(r, s) = {ϕkϕk−1 · · ·ϕ1(r, s); k ≥ 0, ϕi ∈ {α, β, γ, δ}}.

Note that although the dynamical system is defined on N
+ × N

+, it is really
a union of one-dimensional dynamical systems, since a + b = r + s for every
(a, b) ∈ O(r, s).
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The orbits do not capture the equivalence classes of G, of course, but they
provide some information about them. In particular, if u1v1 = u2v2 in A, then
(|u1|, |v1|) ∈ O(|u2|, |v2|).

More information about A can be recovered by considering higher dimensional
dynamical systems. For an integer m > 1, let T denote all binary trees with
m leaves. Let t ∈ T be one of the trees and w = u1 · · ·um a word bracketed
according to t, with |ui| = ri. Then the alternative laws apply to w and produce
words bracketed according to some t′ ∈ T with subwords of some lengths r′1, . . . ,

r′m. The orbit of (r1, . . . , rm) ∈ (N
+)m then consists of all m-tuples (r′1, . . . , r

′
m)

obtained as above from all trees t ∈ T and all words w bracketed according to t
with subwords of lengths r1, . . . , rm.

In full generality, the structures that describe the action of identities on terms
are known as geometry monoids, with which one can associate so-called syntactical
monoids. See [2], [3], [4].

When m = 2, we do not have to worry about all possible bracketings, since the
two top factors are uniquely specified in a given word of G. Since we will need
the dynamical systems of dimension m > 2 only on one occasion (Lemma 3.6),
we do not discuss them here any further.

2. Orbits

We are now going to describe the general shape of any orbit O(r, s). The key
observation is the following:

When r < s then α applies to (r, s) and

α(r, s) = (2r, s − r) = (2r mod (r + s), 2s mod (r + s)).

When r > s then β applies to (r, s) and

β(r, s) = (r − s, 2s) = (2r mod (r + s), 2s mod (r + s)).

Hence the two partial maps α, β can be replaced by a single partial map ω on
N
+ × N

+ given by

ω(r, s) = (2r mod (r + s), 2s mod (r + s)),

defined if and only if r 6= s. Moreover, since α is the inverse of γ, and β is the
inverse of δ, ω is the left inverse of both γ and δ. (This peculiarity arises because
γ, δ are not defined everywhere.)
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Figure 1. Orbits for n = r + s = 20.

Figure 1 shows all (two) orbits O(r, s) with r + s = 20. The arrows in the
figure stand for a single application of ω. All features of orbits that we are going
to discuss are already displayed in the figure.

Lemma 2.1. Let a, b, r, s > 0. Then (a, b) ∈ O(r, s) if and only if there are
m, n ∈ N such that ωm(a, b) = ωn(r, s).

Proof: Every map ϕi in the definition of O(r, s) is either ω, or a right inverse
of ω. On any path from (r, s) to (a, b) in the orbit, a right inverse of ω cannot be
followed by ω, of course. Hence there is at most one point along the path where
ω is followed by a right inverse of ω. �

Let O be an orbit and g > 0 an integer. We say that a point v = (r, s) ∈ O
has depth g (or is at depth g) if gcd(r, s) = g. We also denote the depth of v by
gcd(v), and define gcd(V ) = maxv∈V gcd(v) for any subset V of O. In particular,
gcd(O) is the depth of O. The subset of O consisting of all v ∈ O of maximum
depth will be called the bottom of O, and denoted by B = B(O).

Lemma 2.2. Let r, s > 0, r 6= s, r+s = n = 2ab, b odd. Let g = gcd(r, s) = 2cd,
d odd, and (r′, s′) = ω(r, s). Then g′ = gcd(r′, s′) ∈ {g, 2g}, and g′ = g if and
only if a = c.

Proof: Without loss of generality, let r′ = 2r, s′ = s − r (i.e., ω = α). Since g
is a common divisor of r, s, it is also a common divisor of r′, s′, and thus g|g′. It
then follows that g′ ∈ {g, 2g}, because gcd(r, s) = gcd(r, s′) and r′ = 2r.
When a = c then g′ 6= 2g (equivalently, g′ = g) because g′ is a divisor of

n = r′ + s′ but 2g is not. When a > c then g′ = 2g because both r′ = 2r and
s′ = n − r′ are divisible by 2g. �
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Hence the depth increases by the factor of 2 with every application of ω until
the bottom is reached.

Corollary 2.3. Let r, s > 0, (a, b) ∈ O(r, s). Then gcd(a, b)/ gcd(r, s) = 2m for
some m ∈ Z.

Lemma 2.4. Let r, s > 0, r + s = n, and g = gcd(r, s). Then exactly one of the
following is true:

(i) g is odd, n is even, and (r, s) has no ω-preimages,
(ii) both g, n are odd, (r, s) has one ω-preimage (r′, s′), and gcd(r′, s′) = g,
(iii) g is even and (r, s) has two ω-preimages (r′, s′), (r′′, s′′).

Furthermore, if (iii) holds and g′ = gcd(r′, s′) = gcd(r′′, s′′) then g = 2g′.

Proof: First note that the case g even, n odd cannot occur.
An ω-preimage of (r, s) has two possible forms: γ(r, s) = (r/2, s + r/2) =

(r/2, (s+ n)/2), or δ(r, s) = (r + s/2, s/2) = ((r + n)/2, s/2).
When g is odd and n is even then both r and s are odd, so neither r/2 nor s/2

are integers, and (r, s) has no ω-preimages.
When g and n are both odd then one of r, s is even and the other is odd.

Without loss of generality assume that r is even and s is odd. Then r′ = r/2,
s′ = (s+n)/2 are integers, and (r′, s′) is the unique ω-preimage of (r, s). Moreover,
g = gcd(r, s) = gcd(r, s+ n) = gcd(r/2, (s+ n)/2) since g is odd.
Assume that g is even. Then n, r, s are all even. Hence (r′, s′) = (r/2, (s +

n)/2), (r′′, s′′) = ((r + n)/2, s/2) are ω-preimages of (r, s).
Assume further that g′ = gcd(r′, s′) = gcd(r′′, s′′). Then g′|(r/2), g′|(s/2), and

g = 2g′ follows by Lemma 2.2. �

Proposition 2.5. The bottom B(O) of an orbit O is either a single point or a
directed cycle. Moreover, B(O) is a singleton if and only if (r, r) ∈ O for some r,
in which case B(O) = {(r, r)}.

Proof: Let B = B(O). If (r, r) ∈ O then B = {(r, r)} because r = gcd(r, r) >
gcd(a, b) for any (a, b) ∈ O with a 6= b (since either a < r or b < r).
Assume that (r, r) /∈ O. Let v ∈ B. Then Lemma 2.2 implies ω(v) ∈ B. By

induction, C = {ωk(v); k ≥ 0} ⊆ B. By finiteness, there is a least t > 0 such

that ωt(v) = ωk(v) for some 0 ≤ k < t. If k > 0 then ωk(v) has two distinct

ω-preimages, ωk−1(v) and ωt−1(v), both at the same depth, which contradicts
Lemma 2.4. Hence k = 0 and C is a directed cycle.
Suppose there is v′ ∈ B \ C, and let C′ = {ωk(v′); k ≥ 0} be the directed

cycle determined by v′. By Lemma 2.1, there are m, n ∈ N such that ωm(v) =
ωn(v′) = v′′. Then v′′ ∈ C ∩ C′, and v′ ∈ C follows, a contradiction. �

Let us call a rooted tree T an extended complete binary tree if T is rooted at
r and consists of an edge rt and a complete binary tree attached to t. The height
of a rooted tree is the length of its longest branch.
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Theorem 2.6 (Shape of orbits). Every orbit O = O(r, s) consists of a directed
cycle B = B(O), possibly degenerated into a point, to which disjoint trees are
attached. If |B| > 1, there is one tree attached to every node of B. If |B| = 1,
there are two trees attached to the unique node of B. Moreover:

(i) when |O| > 1, each tree attached to B is an extended complete binary
tree of height a, where gcd(B) = 2ab, b odd,

(ii) O = B = {(2kr mod (r+ s), 2ks mod (r+ s)); k ≥ 0} if and only if r+ s
is odd,

(iii) |O| = |B|2a if |B| > 1, and |O| = 2a+1 − 1 if |B| = 1.

Proof: We use Lemmas 2.2, 2.4 and Proposition 2.5 freely. Suppose that (r, s) is
a node at even depth g. Then (r, s) has two ω-preimages. If (r, s) ∈ B and |B| > 1
then exactly one of these ω-preimages is in the cycle B, while the other is at depth
g/2. If (r, s) /∈ B, both ω-preimages of (r, s) are at depth g/2. The binary tree
arising in this process keeps growing until the shallowest depth b is reached, where
gcd(B) = 2ab, b odd. The rest follows from the fact that a complete binary tree

of height h has 1 + 2 + · · ·+ 2h = 2h+1 − 1 nodes. �

Note that Theorem 2.6 implies that the shape of the orbit O(r, s) is determined
once the length of the bottom cycle and the highest power of 2 dividing r+ s are
known.
In the following lemma we let B(r, s) to denote the bottom of O(r, s).

Lemma 2.7. Let r, s > 0, and let t be a common divisor of r, s. Assume
(r, s) ∈ B(r, s). Then (r/t, s/t) ∈ B(r/t, s/t) and B(r, s) = t · B(r/t, s/t) =
{(ta, tb); (a, b) ∈ B(r, s)}. When g = gcd(r, s), then r/g+s/g is odd and B(r, s) =
g · B(r/g, s/g) = g · O(r/g, s/g).

Proof: Let r + s = 2ab, b odd, g = gcd(r, s) = 2cd, d odd. Then (r, s) ∈ B(r, s)
holds if and only if a = c, by Lemma 2.2. Hence (r, s) ∈ B(r, s) implies (r/t, s/t) ∈
B(r/t, s/t). We leave the verification of the equality B(r, s) = t · B(r/t, s/t) to
the reader. Finally, r/g + s/g is odd since g = 2ad, d odd, and we are done by
Theorem 2.6(ii). �

3. Complete orbits and well-defined powers

An orbit O(r, s) is said to be complete if |O(r, s)| = r + s − 1, that is O(r, s)
contains all pairs (a, b) with a, b > 0 and a+ b = r+ s. An integer n is said to be
complete if any (and hence all) orbits O(r, s) with r + s = n are complete.
Recalling the introduction, we say that xn in the free alternative groupoid

generated by x is well-defined , if the expression xn is independent of parentheses.
Obviously, if xn is well-defined, then n must be complete.
For a prime p, let GF(p) be the field of order p. Recall that a ∈ GF(p) is a

primitive element of GF(p) if it generates the multiplicative group GF(p) \ {0}.
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Proposition 3.1. An integer n > 0 is complete if and only if either n = 2m or
n = p is an odd prime and 2 is a primitive element of GF(p).

Proof: Assume that n = 2m. Consider (1, n − 1) ∈ O(1, n − 1) = O. Since
ωm−1(1, n − 1) = (2m−1, 2m−1), we have B(O) = {(2m−1, 2m−1)}. Then |O| =
2m − 1 by Theorem 2.6(iii), showing that n is complete.
If n = p is an odd prime then n is complete if and only if 2 is a primitive

element of GF(p), by Theorem 2.6(ii).
Assume that n is not an odd prime and n 6= 2m. Let p be an odd prime

(properly) dividing n. Then gcd(1, n − 1) = 1 and gcd(p, n − p) = p, and thus
(1, n − 1), (p, n − p) cannot be in the same orbit, by Corollary 2.3. This means
that n is not complete. �

Lemma 3.2. Suppose that n > pq is divisible by pq, where p, q are odd primes,
not necessarily distinct. Then there are at least three distinct orbits O(r, s) with
r + s = n.

Proof: Use the elements (1, n−1), (p, n−p) and (pq, n−pq) with Corollary 2.3.
�

Lemma 3.3. If 1 ≤ n ≤ 5, the power xn is well-defined in the free alternative

groupoid generated by x.

Proof: There is nothing to prove for n ≤ 2. Any one of the alternative laws
shows that x3 is well-defined. We have shown in the introduction that x4 is
well-defined.
Since xm are well-defined for every m < 5, to prove that x5 is well-defined

it suffices to show that for every 1 < i < 5 some word uv with |u| = i can be
obtained from x(x(x(xx))). Now, x(x(x(xx))) = (xx)(x(xx)) = (xx)((xx)x) =
((xx)(xx))x = (((xx)x)x)x = ((xx)x)(xx) does just that. �

Because 6 is not complete by Proposition 3.1, x6 is not well-defined. However,
we cannot conclude right away that xn is not well-defined for every n > 5. The
catch is that it could happen that the alternative laws apply to higher powers,
say x8, in so many ways that xn could be well-defined. The following technical
lemma will help us eliminate such a possibility:

Lemma 3.4. Let u, v be words such that |u| + |v| = n and |u| is odd. Further
assume that one of the following two conditions holds:

(i) n is odd and not complete,
(ii) n is even, n is as in Lemma 3.2, n/2 is odd.

Then there is a word w of length n such that u(uv) 6= uw in the free alternating

groupoid A generated by x. In particular, xn+|u| is not well-defined in A.

Proof: Let |u| = r, |v| = s, r + s = n. Since n is not complete, there exists
0 < t < n such that (r, s) /∈ O(t, n − t). Should we assume (ii), we can further
demand that t 6= n/2, by Lemma 3.2.
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Let w be any word of the form w1w2 where |w1| = t, |w2| = n − t. If u(uv) =
u(w1w2), then any proof of this fact must involve some of the letters in the left-
most u, because (r, s) /∈ O(t, n − t), and thus uv 6= w1w2. Since such a proof
terminates in u(w1w2), there is a step in the proof when the word becomes u1u2,
|u1| = r, and such that all additional steps are performed inside u1 or u2. We
claim that such a step is either impossible, or yields u2 that cannot be transformed
to w1w2.
How could the word u1u2 be produced? Assume it is produced by the left

alternative law. Then the step is either y(yu2) = (yy)u2 = u1u2, contradicting
|u| = |u1| odd, or it is (u1u1)z = u1(u1z) = u1u2, in which case u2 cannot be
transformed to w1w2 because (r, s) /∈ O(t, n − t). Now assume that the step in
question is produced by the right alternative law. When the step is y(u2u2) =
(yu2)u2 = u1u2 we reach a contradiction as |u1| = r < |u2| = n. Assume the step
is (u1z)z = u1(zz) = u1u2. This is clearly impossible when n is odd. Otherwise
(ii) is assumed, and hence t = |w1| 6= n/2. But u2 = zz, |z| = n/2, n/2 is odd
and |O(n/2, n/2)| = 1, so u2 cannot be transformed into w1w2. �

Lemma 3.5. The power xn is well-defined in the free alternative groupoid gene-

rated by x if and only if n ≤ 5, except possibly n = 11, n = 13.

Proof: Because 7 is not complete, Lemma 3.4 implies that x8 is not well-defined.
Let n = 2m > 8, and let k be the largest odd multiple of 3 smaller than n. Note
that either n = k+1 or n = k+5, and thus k > 3, n < 2k. Since k is not complete
by Proposition 3.1, xn is not well-defined by Lemma 3.4. Any even n that is not
a power of 2 is not complete, by Proposition 3.1, and we have therefore shown
that xn is not well-defined for any even n > 4.
Now assume that n > 5 is odd. All odd multiples of 18 satisfy assumption (ii)

of Lemma 3.4. The lemma therefore implies that xn is not well-defined for any
odd n between 18 and 36, between 3 · 18 = 54 and 108, between 5 · 18 = 90 and
180, etc. Moreover, 30 satisfies assumption (ii) of Lemma 3.4, too, and thus xn

is not well-defined for any odd n between 30 and 60. Since none of 7, 9, 15, 17 is
complete, by Proposition 3.1, we are through. �

A more subtle argument (a higher dimensional dynamical system) is needed to
eliminate the possibility that x11 or x13 is well-defined:

Lemma 3.6. Let A be the free alternative groupoid generated by x. Then x3x5 6=
x4x4 in A. Consequently, x11, x13 are not well-defined in A.

Proof: Since 3, 5 are odd, we can only transform x3x5 into (x3x3)x2. Because
|O(3, 3)| = 1, we can either return to x3(x3x2), or proceed to ((x3x3)x)x, from
which point we cannot proceed any further. The powers we have reached are of
the form x3x5, x6x2, x7x, but not x4x4.
Note that (x3x3)x5 can only be transformed to x3(x3x5). Since x3x5 6= x4x4,

the expression x3(x3x5) can only be transformed to x3x8 or to (x3x3)x5. Thus
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x11 is not well-defined.
Similarly, x3(x5x5) can only be transformed to (x3x5)x5 (because |O(5, 5)|=1).

Since x3x5 6= x4x4, we conclude that x13 is not well-defined either. �

Corollary 3.7. The power xn is well-defined in a free alternative groupoid ge-

nerated by x if and only if n ≤ 5.

4. Flips

For r, s > 0, we say that (r, s) flips if (s, r) ∈ O(r, s). Whether or not the
element (1, r) flips is related to the existence of two-sided inverses in alternative
loops. We explain this in more detail in the next section. For the time being, we
can think of flipping as a concept related to well-defined powers.
Clearly, if r+s is complete or if r = s then (r, s) flips. We first investigate flips

for r+ s odd. The situation is more transparent in the odd case then in the even
case thanks to Theorem 2.6(ii). The even case is handled by Proposition 4.10.
The suspected connection to number theory reveals itself in the following result:

Proposition 4.1. Assume that r, s > 0 and r+ s is odd. Then (r, s) flips if and

only if there is k ≥ 0 such that 2kr ≡ −r (mod r + s). If further gcd(r, s) = 1,

then (r, s) flips if and only if there is k ≥ 0 such that 2k ≡ −1 (mod r + s).

Proof: All congruences in this proof are modulo r+s. By Theorem 2.6(ii), (r, s)

flips if and only if there is k ≥ 0 such that s ≡ 2kr, r ≡ 2ks. Since r+s ≡ 2k(r+s),
we see that the above two congruences hold if and only if at least one of them
holds, say s ≡ 2kr. As s ≡ −r, (r, s) flips if and only if 2kr ≡ −r.
Assume that gcd(r, s) = 1. Then gcd(r, r+s) = 1, too, and the last congruence

is therefore equivalent to 2k ≡ −1. �

When gcd(r, s) 6= 1, the situation can be reduced to the relatively prime case
(see Proposition 4.10). We are thus interested in solutions k to the congruence

(1) 2k ≡ −1 (mod n).

Of course, (1) has no solution when n is even. When n is odd, the behavior of
(1) appears to be a difficult number theoretic question, related to the classical
problem whether 2 is a primitive element modulo n. We do not fully understand
for which values of n the congruence (1) has a solution. Nevertheless, based on
the prime factorization of n, we can identify many values of n for which there is
no solution, and others for which there is a solution.

Lemma 4.2. Suppose p is an odd prime. The congruence 2k ≡ −1 (mod p) has
a solution if and only if the multiplicative order of 2 in GF(p) is even.

Proof: All congruences in this proof are modulo p. Assume that the order of 2
is an odd number m and that 2k ≡ −1 (mod p). Then we have a contradiction

via 1 ≡ 1k ≡ (2m)k ≡
(

2k
)m

≡ (−1)m ≡ −1.
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On the other hand, if the order of 2 is an even number m, then we have

2m−1 ≡
(

2m/2 − 1
)(

2m/2 + 1
)

≡ 0, which implies 2m/2 ≡ 1 or 2m/2 ≡ −1, the

former contradicting the fact that 2 is of order m. �

Many of our results are based on quadratic residues. We recall some of the
relevant definitions and results from elementary number theory. (See [1].)
Let p be an odd prime and gcd(a, p) = 1. Then a is said to be a quadratic

residue modulo p if the congruence x2 ≡ a (mod p) has a solution. The Legendre
symbol (a/p) is then defined by

(a/p) =

{

1, if a is a quadratic residue of p,

−1, otherwise.

Lemma 4.3 (Euler’s Criterion). Let p be an odd prime and gcd(a, p) = 1. Then

(a/p) = a(p−1)/2 mod p.

Lemma 4.4. Assume that p is an odd prime. Then

(2/p) =

{

1, if p ≡ 1 (mod 8) or p ≡ 7 (mod 8),

−1, if p ≡ 3 (mod 8) or p ≡ 5 (mod 8).

In particular, the following proposition now follows easily:

Proposition 4.5. Let p be an odd prime, and let r, s > 0 be such that r+s = p,
gcd(r, s) = 1. Then:

(i) if p ≡ 3 or 5 (mod 8) then (r, s) flips,
(ii) if p ≡ 7 (mod 8) then (r, s) does not flip.

Proof: Assume p ≡ 3 or 5 (mod 8). Then 2(p−1)/2 ≡ −1 (mod p), so (1) has a
solution, and (i) follows.

To see (ii), note that if p ≡ 7 (mod 8) then 2(p−1)/2 ≡ 1 (mod p). Hence the
order of 2 in GF(p) divides (p − 1)/2, which is odd. Then (1) has no solution by
Lemma 4.2. �

Theorem 4.6 (Chinese Remainder Theorem). Let n1, . . . , nm be pairwise rela-

tively prime integers, and let a1, . . . , am be integers. Then there exists a unique

solution x of the system of congruences x ≡ ai (mod ni)with 0 ≤ x < n1n2 · · ·nm.

Lemma 4.7. Let n be odd, and let r, s > 0 be such that r+s = n and gcd(r, s) =
1. Then the following conditions are equivalent:

(i) (r, s) flips,
(ii) there is a ∈ N such that for every prime p dividing n there is kp satisfying

2kp ≡ −1 (mod p) such that kp = 2
abp, bp odd,

(iii) there is a ∈ N such that for every prime p dividing n there is kp satisfying

2kp ≡ −1 (mod p), and every such solution satisfies kp = 2
abp for some

odd bp.
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Proof: We first show the equivalence of (i) and (ii).

Assume that (i) holds. Then 2k ≡ −1 (mod n) for some k. Thus 2k ≡
−1 (mod p) for every prime divisor p of n, and it suffices to set kp = k.
Conversely, assume (ii), let n = pm1

1 · · · pmℓ

ℓ be the prime factorization of n,

and let ki = 2
abi be such that bi is odd and 2

ki ≡ −1 (mod pi) for every i. We

first show by induction on r that 2kpr−1
≡ −1 (mod pr) holds for every k = ki,

p = pi and r > 0. There is nothing to prove for r = 1. Let x = 2kpr−1
and assume

that x ≡ −1 (mod pr). Since p is odd, we have xp+1 = (x+1)
∑p−1

i=0 (−1)
ixi. By

the induction hypothesis, pr divides x+ 1. Then x ≡ −1 (mod p), too, and thus
∑p−1

i=0 (−1)
ixi ≡

∑p−1
i=0 (−1)

i(−1)i ≡ p ≡ 0 (mod p). Altogether, pr+1 divides

xp + 1, and the claim is proved. Now let K = 2a(b1p
m1−1
1 · · · bℓp

mℓ−1
ℓ ). By the

claim, 2kip
mi−1

i ≡ −1 (mod pmi

i ). As ki = 2
abi, K is an odd multiple of kip

mi−1
i ,

and so 2K ≡ −1 (mod pmi

i ). Then 2
K ≡ −1 (mod n) by the Chinese Remainder

Theorem, and (r, s) flips.
Condition (iii) implies (ii). To see the converse, it suffices to show that any

two solutions to 2k ≡ −1 (mod p) are divisible by the same powers of 2. Assume
that 2u ≡ −1 ≡ 2v (mod p), u = 2ab, b odd, v = 2cd, d odd, and that a > c.

Then −1 ≡ (−1)d ≡ (2u)d ≡ 22
abd ≡ 22

cdb2a−c
≡ (2v)b2

a−c
≡ (−1)b2

a−c
≡ 1,

a contradiction. �

Theorem 4.8. Let n be odd, and let r, s > 0 be such that r + s = n and
gcd(r, s) = 1. Then:

(i) if every prime p dividing n satisfies p ≡ 3 (mod 8) then (r, s) flips,
(ii) if every prime p dividing n satisfies p ≡ 5 (mod 8) then (r, s) flips,
(iii) if n is divisible by primes p ≡ 3, q ≡ 5 (mod 8) then (r, s) does not flip,
(iv) if n is divisible by a prime p with p ≡ 7 (mod 8) then (r, s) does not flip.

Proof: For a prime divisor p of n, let kp = (p − 1)/2. When p ≡ 3 (mod 8)

then kp is odd and 2
kp ≡ −1 (mod p). When p ≡ 5 (mod 8) then kp is even,

not divisible by 4, and 2kp ≡ −1 (mod p). Parts (i), (ii) and (iii) therefore follow

by Lemma 7.7. When p ≡ 7 (mod 8) then 2k ≡ −1 (mod p) has no solution, as
explained in the proof of Proposition 4.5, and (iv) follows again by Lemma 4.7.

�

Remark 4.9. The cases not covered in Theorem 4.8 seem to be complicated.
For instance:

17 ≡ 1 (mod 8) and (1, 16) flips,
73 ≡ 1 (mod 8) and (1, 72) does not flip,
51 = 17 · 3 ≡ 1 · 3 (mod 8), and (1, 50) does not flip,
843 = 281 · 3 ≡ 1 · 3 (mod 8), and (1, 842) flips,
85 = 17.5 ≡ 1 · 5 (mod 8), and (1, 84) does not flip,
205 = 41 · 5 ≡ 1 · 5 (mod 8), and (1, 204) flips.
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In order to fully understand such situations, we would have to know not only
whether (1) has a solution k for n = p ≡ 1 (mod 8), but also the highest power
of 2 dividing the solution (and hence all solutions).

The following proposition tells us how to proceed in the even case or when
gcd(r, s) 6= 1:

Proposition 4.10. Let r, s > 0, r + s = n = 2ab, b odd, gcd(r, s) = 2cd, d odd,
(r′, s′) = ωa−c(r, s), g′ = gcd(r′, s′). Then r′/g′ + s′/g′ is odd, and (r, s) flips if
and only if (r′/g′, s′/g′) flips.

Proof: The point (r′, s′) is the first point at the bottom B = B(r, s) encountered
along the unique directed path from (r, s), by Theorem 2.6. By Lemma 2.7,
B = g′ · B(r′/g′, s′/g′) and r′/g′ + s′/g′ is odd. The rest follows. �

We conclude this section with an example:

Example 4.11. Does (r, s) = (435, 137) flip? Since 435 + 137 = 572 = 22 · 143
and gcd(435, 137) = 1, we look at (r′, s′) = ω2(r, s) = (4 · 435 mod 572, 4 ·
147 mod 572) = (24, 548). Since g′ = gcd(24, 548) = 4, we know by Proposi-
tion 4.10 that (r, s) flips if and only if (24/4, 548/4) = (6, 137) flips. The odd sum
6+137 = 143 factors as 143 = 11 ·13. Since 11 ≡ 3 (mod 8) and 13 ≡ 5 (mod 8),
Theorem 4.8 tells us that (6, 137) does not flip. Hence (435, 137) does not flip.

5. Flips and alternative loops

A groupoid with neutral element in which the equation ab = c has a unique
solution whenever two of the element a, b, c are given is known as a loop. In
particular, we can cancel on the left and on the right in a loop, i.e., xy = xz or
yx = zx implies y = z. Multiplication tables of finite loops are therefore precisely
normalized Latin squares. See [5] for an introductory text on the theory of loops.
Let L be a loop with neutral element e. Then for every x ∈ L there are

uniquely determined y, z ∈ L such that xy = zx = e. If y = z, we say that x has
a two-sided inverse.
A loop is alternative if it satisfies the left and right alternative laws. Although it

is trivial to construct finite loops without two-sided inverses, no finite alternative
loops without two-sided inverses are known.

Problem (Warren D. Smith (2004)). Is there a finite alternative loop without
two-sided inverses?

To see the connection between this problem and flips, consider the following:

Assume that L is a finite loop, and let x ∈ L. Define the left powers x(n)

recursively by x(0) = e, x(n+1) = xx(n). Let x[n] denote the analogously defined
right powers.

By finiteness of L, there is a smallest positive integer n such that x(n) = x(m)

for some 0 ≤ m < n. If m > 0 then xx(n−1) = x(n) = x(m) = xx(m−1), and the
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left cancelation implies that x(n−1) = x(m−1), a contradiction with the minimality
of n.
Thus for every x there exists n such that xx(n) = e. Similarly, there exists

m such that x[m]x = e. Clearly then, x has a two-sided inverse if and only if

x(n) = x[m] for the above integers n, m.

Assume that xx(n) = e. If it were possible to conclude that x(n)x = e by using
alternative laws only, then (1, n) would have to flip. However, we know that (1, n)
does not flip for all values of n.
Thus any proof of Problem 5.1 must involve either cancelation or the neutral

element e. For instance, one could prove xx(n) = x[m]x by showing v(xx(n)) =

v(x[m]x) for some word v, and then canceling v. As we are going to show in the
next section, the finiteness of the loop in question must also be incorporated into
any such proof.
We conclude this section with an existence result of arbitrarily long intervals

(r, 1), . . . , (r, s) where no (r, i) flips.

Theorem 5.2 (Dirichlet). Let a, b be relatively prime integers. Then the arith-
metic progression an+ b contains infinitely many primes.

Lemma 5.3. Let r, s, t > 0 be such that t is odd, divides r + s, and does
not divide r. If there is a directed path in O(r, s) from (r, s) to (r′, s′), then
there is a directed path from (r mod t, s mod t) to (r′ mod t, s′ mod t) in
O(r mod t, s mod t).

Proof: Since t divides r + s and t does not divide r, we see that (r mod t) +
(s mod t) = t.
The first coordinate of ω(r, s) is 2r mod (r + s). The first coordinate of

ω(r mod t, s mod t) is [2(r mod t)]mod (r mod t+s mod t) = 2(r mod t)mod t
= 2r mod t. Thus the first coordinate of ω(r, s) is mapped onto the first coor-
dinate of ω(r mod t, s mod t) under the map u 7→ u mod t. Since the sum of
coordinates is preserved under ω, an analogous statement holds for the second
coordinate.
Note that t divides (2r mod (r + s)) + (2s mod (r + s)) = r + s. Thus, if

we show that t does not divide 2r mod (r + s), we can repeat the step in the
previous paragraph as many times as we wish; hence finishing the proof. Now,
(2r mod (r+ s)) mod t = 2r mod t 6= 0 since t is odd and does not divide r. �

Proposition 5.4. Let M be a positive integer. Then there exists r > 0 such
that none of (r, 1), (r, 2), . . . , (r, M) flips.

Proof: By Theorem 5.2, there are infinitely many primes congruent to 7 modu-
lo 8. Let p1 < p2 < · · · < pM be among such primes, and assume further that
M < p1. Since p1, p2, . . . , pM are pairwise relatively prime, there is a solution
r > 0 to the system of congruences r + s ≡ 0 (mod ps), 1 ≤ s ≤ M . We claim
that none of (r, 1), . . . , (r, M) flips.
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Let 1 ≤ s ≤ M , r + s = 2ab, b odd. Since ps is odd and divides r + s = 2ab,
ps must divide b. But s ≤ M < p1 ≤ ps, and hence b cannot divide s. Thus
(r mod b) + (s mod b) = b. By Theorem 4.8(iv), (r mod b, s mod b) does not
flip. By Lemma 5.3, (r, s) does not flip. �

6. An infinite alternative loop without two-sided inverses

It is essential to include the word “finite” in the statement of Problem 5.1, as
there are infinite alternative loops without two-sided inverses. The existence of
such a loop was suggested by J.D. Phillips, and it was constructed for the first
time by Warren D. Smith.
When our construction below is used with the parameters S = {a0 = 1, a1},

it yields Smith’s loop. Our contribution should be regarded as a straightforward
generalization of Smith’s idea. We split it into several steps:
Let S0, S1 be cyclic subgroups of an abelian group S = (S, ·, 1), with generators

s0, s1, respectively. Assume that s0 6= s1. Let x0, x1 be symbols. Set L =
{axn

i ; a ∈ S, i ∈ {0, 1}, n ∈ N} and identify x0i with 1. Define multiplication ◦
on L by

(2) axn
i ◦ bxm

j =















(ab)xn+m
i , i = j,

(absn
i )x

m−n
j , i 6= j, n ≤ m,

(absm
i )x

n−m
i , i 6= j, n ≥ m.

Note that the two bottom branches yield the same result when n = m, namely
absn

i .

Lemma 6.1. (L, ◦) defined by (2) satisfies:

(i) L is closed under ◦,
(ii) a ◦ b = ab for a, b ∈ S, and thus S ≤ L,
(iii) a ∈ S commutes and associates with every element of L.

Proof: Parts (i), (ii) are straightforward. We have a◦bxm
j = (ab)xm

j = (ba)x
m
j =

bxm
j ◦ a for a, b ∈ S, m ∈ N. To show that a ∈ S associates with all elements of

L, it suffices to show that (a ◦ bxn
i ) ◦ cxm

j = a ◦ (bxn
i ◦ cxm

j ) and (bx
n
i ◦ cxm

j ) ◦ a =

bxn
i ◦(cx

m
j ◦a) for every b, c ∈ S, n, m ∈ N. Assume n ≤ m. Then (a◦bxn

i )◦cxm
j =

(ab)xn
i ◦cxm

j = (abcsn
i )x

m−n
j = a◦ (bcsn

i )x
m−n
j = a◦ (bxn

i ◦cxm
j ). Assume n ≥ m.

Then (a ◦ bxn
i ) ◦ cxm

j = (ab)xn
i ◦ cxm

j = (abcsm
i )x

n−m
i = a ◦ (bcsm

i )x
n−m
i =

a ◦ (bxn
i ◦ cxm

j ). The other equality is proved similarly. �

Lemma 6.2. (L, ◦) is a loop without two-sided inverses.

Proof: We need to show that x ◦ y = z has a unique solution in L whenever two
of the elements x, y, z are given. We prove this when x and z are given, the other
case being analogous.



Powers and alternative laws 39

Let x = axn
i , z = bxm

j . When i = j and n ≤ m, we have x ◦ (a−1b)xm−n
i = z.

When i = j and n ≥ m, we let k 6= i and have axn
i ◦ (a−1bs

−(n−m)
i )xn−m

k =

(aa−1bs
−(n−m)
i sn−m

i )x
n−(n−m)
i = z. When i 6= j, we have axn

i ◦(a
−1bs−n

i )x
m+n
j

= (aa−1bs−n
i sn

i )x
(m+n)−n
j = z. It is not hard to see that the above solutions are

unique in all cases.
Now, x0 ◦ s−10 x1 = s−10 s0 = 1 and s−11 x1 ◦ x0 = s−11 s1 = 1 together with

s0 6= s1 implies that x0 ∈ L does not have a two-sided inverse. �

Theorem 6.3. (L, ◦) is an alternative loop without two-sided inverses.

Proof: It remains to show that the alternative laws hold in L. We only prove
the left alternative law, the right alternative law being analogous.
Let a, b ∈ S, n, m ∈ N, i 6= j. Then

(axn
i ◦ axn

i ) ◦ bxm
j = a2x2ni ◦ bxm

j =

{

(a2bs2ni )x
m−2n
j , 2n ≤ m,

(a2bsm
i )x

2n−m
i , 2n ≥ m.

On the other hand, when n ≤ m we have

axn
i ◦ (axn

i ◦ bxm
j ) = axn

i ◦ (absn
i )x

m−n
j =

{

(a2bsn
i sn

i )x
m−2n
j , 2n ≤ m,

(a2bsn
i sm−n

i )x2n−m
i , 2n ≥ m,

and when n ≥ m we have

axn
i ◦ (axn

i ◦ bxm
j ) = axn

i ◦ (absm
i )x

n−m
i = (a2bsm

i )x
2n−m
i .

Careful comparison of cases then shows that the left alternative law holds.
When i = j, the left alternative law obviously holds. �

Note that all powers xn with n > 0 are well defined in the loop (2).

Acknowledgment. The second author worked briefly on Problem 5.1 with
J.D. Phillips and Warren D. Smith. Consequent work of Smith resulted in an
unpublished manuscript [6]. The maps α, β, γ, δ of Section 1 are discussed in [6],
and results concerning mirrorable integers and primes are obtained there. (An

integer n is mirrorable if the left power x(n) is equal to the right power x[n].
Therefore, if n is mirrorable then (1, n − 1) flips, but not necessarily vice versa.)
All results of Sections 2, 3 and 4 are new, to our knowledge.
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