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On semiregular digraphs of the congruence x
k ≡ y (mod n)

Lawrence Somer, Michal Kř́ıžek

Abstract. We assign to each pair of positive integers n and k ≥ 2 a digraph G(n, k)
whose set of vertices is H = {0, 1, . . . , n− 1} and for which there is a directed edge from
a ∈ H to b ∈ H if ak ≡ b (mod n). The digraph G(n, k) is semiregular if there exists a
positive integer d such that each vertex of the digraph has indegree d or 0. Generalizing
earlier results of the authors for the case in which k = 2, we characterize all semiregular
digraphs G(n, k) when k ≥ 2 is arbitrary.

Keywords: Chinese remainder theorem, congruence, group theory, dynamical system,
regular and semiregular digraphs

Classification: 11A07, 11A15, 05C20, 20K01

1. Introduction

This paper extends results given in the works [2] and [6] which provide an inter-
esting connection between number theory, graph theory and group theory. In the
papers [4] and [5] we investigated properties of the iteration digraph representing
a dynamical system occurring in number theory.

For n ≥ 1 let

H = {0, 1, . . . , n − 1}

and let f be a map of H into itself. The iteration digraph of f is a directed graph
whose vertices are elements of H and such that there exists exactly one directed
edge from x to f(x) for all x ∈ H . For a fixed integer k ≥ 2 and for each x ∈ H

let f(x) be the remainder of xk modulo n, i.e.,

(1.1) f(x) ∈ H and xk ≡ f(x) (mod n).

From here on, whenever we refer to the iteration digraph of f , we assume that
the mapping f is as given in (1.1), see Figure 1. Each pair of natural numbers n
and k ≥ 2 has a specific iteration digraph corresponding to it.
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Figure 1. The iteration digraph corresponding to n = 8 and k = 2.

We identify the vertex a of H with its residue modulo n. For brevity we
will make statements such as gcd(a, n) = 1, treating the vertex a as a number.

Moreover, when we refer, for instance, to the vertex ak, we identify it with the
remainder f(a) ∈ H given by (1.1). In this paper we will often identify the vertex
n with the vertex 0 for convenience.
For particular values of n and k, we denote the iteration digraph of f byG(n, k).

It is obvious that G(n, k) with n vertices also has exactly n directed edges.
Let ω(n) denote the number of distinct primes dividing n ≥ 2 and let the prime

power factorization of n be given by

(1.2) n =

r
∏

i=1

pαi

i ,

where p1 < p2 < · · · < pr are primes and αi > 0, i.e., r = ω(n). For n = 1 we set
ω(1) = 0.
A component of the iteration digraph is a subdigraph which is a maximal

connected subgraph of the associated nondirected graph.
The indegree of a vertex a ∈ H of G(n, k), denoted by indegn(a), is the number

of directed edges coming into a, and the outdegree of a is the number of directed
edges leaving the vertex a. We frequently will simply write indeg(a) when it is
understood that a is a vertex in G(n, k). By the definition of f , the outdegree of
each vertex of G(n, k) is equal to 1.
It is clear that each component has a unique cycle, since each vertex of the com-

ponent has outdegree 1 and the component has only a finite number of vertices.
Cycles of length 1 are called fixed points.

Remark 1.1. Recall that a graph is regular if all its vertices have the same
degree. We say that the digraph G(n, k) is regular if each of its vertices have
the same indegree. The digraph G(n, k) is said to be semiregular if there exists
a positive integer d such that each vertex of G(n, k) either has indegree d or 0.
Note that the set of semiregular digraphs G(n, k) includes the subset of regular
digraphs.
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Clearly, G(n, k) is regular only if G(n, k) has no vertices of indegree 0. Since
each component of G(n, k) has a unique cycle, we see that G(n, k) is regular
if and only if each component of G(n, k) is a cycle and each vertex of G(n, k)
has indegree 1. Since any vertex of indegree 0 is a noncycle vertex and there
is a path from any noncycle vertex to the cycle in its component, we see that
G(n, k) is regular if and only if each vertex of positive indegree has indegree equal
to 1. Noting that each vertex of G(n, k) has outdegree 1, we observe that G(n, k)
is regular as a digraph if and only if G(n, k) is regular as an undirected graph.
Figure 2 provides an example of a regular digraph, while Figure 3 gives an example
of a semiregular digraph which is not regular.

1 8 1372 4 14

0 123 5 6 9 10

11

Figure 2. The iteration digraph corresponding to n = 15 and k = 3.

Figure 3. The iteration digraph corresponding to n = 16 and k = 2.

In [4] all semiregular digraphs G(n, k) were characterized when k = 2. In this
paper, given a fixed integer k ≥ 2, we find all semiregular and regular digraphs
G(n, k). Further, we specify two particular subdigraphs of G(n, k). Let G1(n, k)
be the induced subdigraph of G(n, k) on the set of vertices which are coprime to
n and G2(n, k) be the induced subdigraph on the remaining vertices not coprime
with n. We observe that G1(n, k) and G2(n, k) are disjoint and that G(n, k) =
G1(n, k) ∪ G2(n, k), that is, no edge goes between G1(n, k) and G2(n, k). For
example, the second component of Figure 4 is G1(12, 2) whereas the remaining
three components make up G2(12, 2). It is clear that 0 is always a fixed point of
G2(n, k). If n > 1 then 1 and n − 1 are always vertices of G1(n, k).
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Figure 4. The iteration digraph corresponding to n = 12 and k = 2.

In Theorems 4.1 and 4.3, we will show that G1(n, k) is always semiregular. In
Theorem 4.4 we will also determine when G2(n, k) is semiregular. Observe that
in Figure 1, the subdigraph G2(8, 2) is semiregular but G(8, 2) is not semiregular.
Note further that in Figures 4 and 5, G2(n, k) is not semiregular, but each of its
components is semiregular. We will characterize later those digraphs for which
each of the components of G2(n, k) is semiregular.

12 13 21 26 270 18

24 156 3 9333630

Figure 5. The iteration subdigraph G2(39, 3).

Let N(n, k, a) denote the number of incongruent solutions of the congruence

xk ≡ a (mod n).

Then obviously

(1.3) N(n, k, a) = indegn(a).

It follows from (1.3) and Theorem 2.20 in [3] that if n has the factorization given
in (1.2), then

(1.4) indegn(a) = N(n, k, a) =
r

∏

i=1

N(pαi

i , k, a) =
r

∏

i=1

indegqi
(a),

where qi = pαi

i .

2. Properties of the Carmichael lambda-function

Before proceeding further, we need to review some properties of the Carmichael
lambda-function λ(n), which modifies the Euler totient function φ(n).
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Definition 2.1. Let n be a positive integer. Then the Carmichael lambda-
function λ(n) is defined as follows:

λ(1) = 1 = φ(1),

λ(2) = 1 = φ(2),

λ(4) = 2 = φ(4),

λ(2k) = 2k−2 = 12φ(2
k) for k ≥ 3,

λ(pk) = (p − 1)pk−1 = φ(pk) for any odd prime p and k ≥ 1,

λ(pk1
1 pk2
2 · · · pkr

r ) = lcm[λ(p
k1
1 ), λ(pk2

2 ), . . . , λ(p
kr
r )],

where p1, p2, . . . , pr are distinct primes and ki ≥ 1 for all i ∈ {1, . . . , r}.

It immediately follows from Definition 2.1 that

λ(n) | φ(n)

for all n and that λ(n) = φ(n) if and only if n ∈ {1, 2, 4, qk, 2qk}, where q is an
odd prime and k ≥ 1.
The following theorem generalizes the well-known Euler’s theorem which says

(see [1, p. 20]) that aφ(n) ≡ 1 (mod n) if and only if gcd(a, n) = 1. It shows that
λ(n) is the smallest possible order modulo n.

Theorem 2.2 (Carmichael). Let a, n ∈ N. Then

aλ(n) ≡ 1 (mod n)

if and only if gcd(a, n) = 1. Moreover, there exists an integer g such that

ordn g = λ(n),

where ordn g denotes the multiplicative order of g modulo n.

For the proof see [1, p. 21].

3. Results on the indegree

We will need the following theorems concerning the indegrees of vertices in
G1(n, k) and G2(n, k) in order to prove our main results on semiregularity.

Theorem 3.1. Let n have the factorization given in (1.2) and let a be a vertex
of positive indegree in G1(n, k). Then

indeg(a) = ε

r
∏

i=1

gcd(λ(pαi

i ), k),

where ε = 2 if 2 | k and 8 | n, and ε = 1 otherwise.

This is proved in [6, pp. 231–232].
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Theorem 3.2. Let n have the factorization given in (1.2), let a be a vertex of
positive indegree in G2(n, k), and let

a = Q

r
∏

i=1

pβi

i ,

where gcd(Q, n) = 1, βi ≥ 0 for 1 ≤ i ≤ r, and βi ≥ 1 for at least one value of i.
Then for i = 1, 2, . . . , r either βi ≥ αi, or both βi < αi and βi = kti for some
nonnegative integer ti. Moreover,

indeg(a) =

r
∏

i=1

AiBi,

where

Ai =

{

p
αi−⌈αi/k⌉
i if βi ≥ αi,

p
(k−1)ti
i if 0 ≤ βi < αi,

and

Bi = εi gcd(λ(p
αi−min(αi,βi)
i ), k),

where εi = 2 if pi = 2, 2 | k and αi − βi ≥ 3, and εi = 1 otherwise.

Proof: By the Chinese remainder theorem, indeg(a) > 0 if and only if for
i = 1, 2, . . . , r there exists an integer bi, a nonnegative integer ti and an integer ci

coprime to pi such that

(3.1) bk
i ≡ (pti

i ci)
k ≡ pkti

i ck
i ≡ a ≡ p

βi

i (a/p
βi

i ) (mod pαi

i ).

If βi ≥ αi, then bi ≡ 0 (mod pαi

i ) satisfies congruence (3.1). Now suppose that
βi < αi. Then congruence (3.1) is satisfied only if kti = βi.
By (1.4), the remainder of our assertion will follow if we can show that

N(pαi

i , k, a) = AiBi

for i = 1, 2, . . . , r. First suppose that βi ≥ αi. Then

N(pαi

i , k, a) = N(pαi

i , k, 0) = p
αi−⌈αi/k⌉
i = Ai = AiBi.

Now suppose that βi < αi. Let bi be a residue such that bk
i ≡ a (mod pαi

i ).
By (3.1),

bi ≡ pti
i ci (mod pαi

i ),
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where ti is a nonnegative integer and ci is an integer such that gcd(ci, pi) = 1 and

ck
i ≡ a/pβi

i (mod pαi−βi

i ).

Moreover, since (Z/pαi

i )
∗ is a group under multiplication, there exists an integer

di such that

(3.2) dk
i ≡ bk

i ≡ a ≡ pkti
i ck

i (mod pαi

i )

if and only if

(3.3) di ≡ pti
i ciei (mod pαi

i )

for some integer ei such that

(3.4) ek
i ≡ 1 (mod pαi−kti

i ).

Furthermore,

(3.5) pti
i ciei ≡ pti

i cie
′
i (mod pαi

i )

if and only if

(3.6) ei ≡ e′i (mod pαi−ti
i ).

We note that if ek
i ≡ 1 (mod pαi−kti

i ) and ei ≡ e′i (mod pαi−ti
i ), then (e′i)

k ≡ 1

(mod pαi−kti
i ). It now follows from (3.2)–(3.6) that

N(pαi

i , k, a) = p
(αi−ti)−(αi−kti)
i Ci = p

(k−1)ti
i Ci = AiCi,

where Ci denotes the number of solutions to the congruence

xk ≡ 1 (mod pαi−kti
i ).

By Theorem 3.1, Ci = Bi, and we obtain the required result. �

An even more complicated version of Theorem 3.2 is proved in [6, pp. 236–237].

4. On regularity and semiregularity of digraphs

We now present our main theorems.
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Theorem 4.1. Let n ≥ 1 and k ≥ 2 be integers. Then

(i) G1(n, k) is regular if and only if gcd(λ(n), k) = 1;
(ii) G2(n, k) is regular if and only if either n is square-free and gcd(λ(n), k) =
1, or n = p, where p is a prime;

(iii) G(n, k) is regular if and only if n is square-free and gcd(λ(n), k) = 1.

Proof: We suppose that n has the factorization given in (1.2).
(i) By Remark 1.1 and Theorem 3.1, it suffices to show that

(4.1)

r
∏

i=1

gcd(λ(pαi

i ), k) = 1.

However, (4.1) is satisfied if and only if gcd(λ(n), k) = 1.
(ii) First suppose that n is not square-free and q2 | n for some prime q. Then

by Theorem 3.2, q | indeg(0), and consequently indeg(0) > 1. Thus G2(n, k) is
not regular in this case.
Now suppose that n is square-free and n = p. Then G2(n, k) consists solely of

the fixed point p and G2(n, k) is regular.
We next suppose that n = p1p2 · · · pr, where r ≥ 2. By Theorem 3.2 and

Remark 1.1 the subdigraph G2(n, k) is regular if and only if for each vertex
a ∈ G2(n, k),

(4.2)

r
∏

i=1

AiBi = 1,

where Ai and Bi are defined as in Theorem 3.2. Equation (4.2) holds if and only
if Ai = Bi = 1 for i = 1, 2, . . . , r. If a ≡ 0 (mod pi), then Ai = Bi = 1. We
further note that if pi is any prime such that 1 ≤ i ≤ r, then there exists a vertex
a ∈ G2(n, k) such that a 6≡ 0 (mod pi). In this case, αi = 1, βi = 0, ti = 0,
Ai = 1, and

Bi = gcd(λ(pi), k).

Hence, G2(n, k) is regular if and only if

(4.3) gcd(λ(pi), k) = 1

for i = 1, 2 . . . , r. However, (4.3) holds if and only if

gcd(λ(n), k) = 1.

The result now follows.
(iii) This is a consequence of (i) and (ii). �
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Remark 4.2. Part (i) of Theorem 4.1 was also proved in [6, p. 232].

Theorem 4.3. Let k ≥ 2 be an integer and let n ≥ 2 have the canonical factor-
ization given in (1.2). If gcd(λ(n), k) > 1, then G1(n, k) is semiregular but not
regular. If a ∈ G1(n, k) and indeg(a) > 0, then

(4.4) indeg(a) = ε

r
∏

i=1

gcd(λ(pαi

i ), k),

where ε = 2 if 2 | k and 8 | n, and ε = 1 otherwise.

Proof: By Theorem 4.1, G1(n, k) is not regular if gcd(λ(n), k) > 1. By Theo-
rem 3.1, G1(n, k) is semiregular and (4.4) holds. �

Theorems 4.1 and 4.3 completely specify when the digraph G1(n, k) is either
regular or semiregular. Theorem 4.4 will determine exactly when the digraphs
G2(n, k) and G(n, k) are semiregular. We can then use Theorem 4.1 to separate
out the cases in which G2(n, k) and G(n, k) are also regular. We use the notation
∏0

i=1 ai to denote that the corresponding product is empty and set equal to 1 by
convention.

Theorem 4.4. Let k ≥ 2 be a fixed integer with the factorization

(4.5) k = Q
ℓ

∏

i=1

pαi

i ,

where each pi is a prime such that gcd(pi − 1, k) = 1 and in addition, ℓ ≥ 1,
αi ≥ 1, gcd(Q, p1p2 · · · pℓ) = 1, and gcd(q− 1, k) > 1 for each prime q dividing Q.
Let n ≥ 2 have the prime power factorization

n =

ℓ
∏

i=1

p
βi

i

m
∏

i=1

q
γi

i

s
∏

i=1

hδi

i ,

where βi ≥ 0, m ≥ 0, s ≥ 0, γi ≥ 1, δi ≥ 1, gcd(qi(qi−1), k) = 1 for i = 1, 2, . . . , r,
and gcd(hi − 1, k) > 1 for i = 1, 2, . . . , s.
(i) G2(n, k) is semiregular if and only if one of the following conditions holds:

(a) n =
∏ℓ

i=1 pβi

i

∏m
i=1 qi for 0 ≤ βi ≤ αi + 1 and ω(n) ≥ 2,

(b) n = p
βi

i for some i ∈ {1, 2, . . . , ℓ}, where 1 ≤ βi ≤ k+αi+1 and pi is odd,

(c) n = q
γ1
1 for 1 ≤ γ1 ≤ k + 1,

(d) n = hδi

i for 1 ≤ δi ≤ k,

(e) n = 2β1 for β1 ∈ {1, 2, 3, 4, 6} when k = 2,

(f) n = 2β1 for 1 ≤ β1 ≤ 9 when k = 22,

(g) n = 2β1 for 1 ≤ β1 ≤ k + α1 + 2 when p1 = 2 and k ≥ 6,
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(ii) G(n, k) is semiregular if and only if one of the following conditions holds:

(a) n =
∏ℓ

i=1 pβi

i

∏m
i=1 qi for 0 ≤ βi ≤ αi + 1 and m ≥ 0 when pi is odd for

each i ∈ {1, 2, . . . , ℓ},

(b) n = 2β1 for β1 ∈ {1, 2, 4} when k = 2,

(c) n = 2β1 for 1 ≤ β1 ≤ 5 when k = 22,

(d) n = 2β1 for 1 ≤ β1 ≤ α1 + 2 when p1 = 2 and k ≥ 6.

Remark 4.5. Note that in the hypotheses of Theorem 4.4, there exists at least
one prime p1 dividing k such that gcd(p1 − 1, k) = 1. Simply choose p1 to be the
least prime dividing k. We further observe that if 2 | k, there does not exist a
prime qi such that gcd(qi(qi − 1), k) = 1. We finally notice that in Theorem 4.4,
we allow both the possibility that hi does divide k and also the possibility that
hi does not divide k, where 1 ≤ i ≤ s.

Proof of Theorem 4.4: (i) The necessity and sufficiency of condition (e) for
the case in which k = 2 were shown in [4]. For the remainder of the proof of (i),
we assume that k 6= 2 and treat only conditions (a)–(d) and (f)–(g).

Let q be a prime. If 1 ≤ β ≤ k, then clearly G2(q
β , k) is semiregular, since the

only vertex in G2(q
β , k) having positive indegree is the vertex 0. From here on,

when we consider digraphs G2(n, k) we assume that either ω(n) ≥ 2 or n is of the

form qβ for β ≥ k + 1.
We note for future reference that if n = qβ , where q is a fixed prime and the

positive integer β varies, then the function

indeg(qβ) = N(qβ , k, qβ) = qβ−⌈β/k⌉

is nondecreasing as β increases. We will also frequently make use of the facts
that both N(n, k, 0) > 0 and N(n, k, 1) > 0 for all n and k, and in addition

N(pα, k, pjk) > 0 when p is a prime and α > jk.
First assume that ω(n) ≥ 2. We show that G2(n, k) is semiregular if and only

if G(qνq(n), k) is semiregular for every prime q dividing n, where νq(n) is the

exponent β such that qβ | n but qβ+1 ∤ n, that is qνq(n)‖n. For each prime q

dividing n, let q(n) = qνq(n). Since, by (1.4),

indegn(a) =
∏

q|n

indegq(n)(a)

for each vertex a ∈ G2(n, k), we see that G2(n, k) is semiregular if G(qνq(n), k) is
semiregular for each prime q dividing n.

Now suppose that q | n and G(qνq(n), k) is not semiregular. Then there exist

nonnegative integers a and b, each having positive indegree in G(qνq(n), k), such

that indegq(n)(a) 6= indegq(n)(b). Let n = qνq(n)M , where M > 1 and q ∤ M . By
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the Chinese remainder theorem, we can find vertices a1 and a2 in G2(n, k) such

that a1 ≡ a (mod qνq(n)), a1 ≡ 0 (mod M), and a2 ≡ b (mod qνq(n)), a2 ≡ 0
(mod M). Then

indegn(a1) = indegq(n)(a) indegM (0) 6= indegn(a2) = indegq(n)(b) indegM (0),

and G2(n, k) is not semiregular.
Note that the above arguments also show that when ω(n) ≥ 2, G2(n, k) is

semiregular if and only if G(n, k) is semiregular.
We now prove that no prime h1 divides n when ω(n) ≥ 2 and G2(n, k) is

semiregular. Suppose that hδ1
1 ‖n, where δ1 ≥ 1. Note that by definition, h1 6= 2.

Then by Theorems 3.1 and 3.2,

N(hδ1
1 , k, 0) = h

δ1−⌈δ1/k⌉
1

and
N(hδ1

1 , k, 1) = gcd(λ(hδ1
1 ), k) = gcd(h

δ1−1
1 (h1 − 1), k).

Since gcd(h1−1, k) > 1, there exists a prime p such that p | gcd(h1−1, k). Hence,

p | N(hδ1
1 , k, 1), but p ∤ N(hδ1

1 , k, 0). Thus, G(hδ1
1 , k) is not semiregular, which

implies that G2(n, k) is not semiregular. Consequently, if G2(n, k) is semiregular
and ω(n) ≥ 2, then gcd(q − 1, k) = 1 for each prime q dividing n. Thus, pi 6= 2
for 1 ≤ i ≤ ℓ if G2(n, k) is semiregular and ω(n) ≥ 2.
Next suppose that G2(n, k) is semiregular and q2i | n for some i ∈ {1, 2, . . . , m}.

Then
N(q

γi

i , k, 1) = gcd(λ(q
γi

i ), k) = gcd(q
γi−1
i (qi − 1), k) = 1,

whereas

qi | N(qγi

i , k, qγi

i ) = q
γi−⌈γi/k⌉
i .

Hence, G(q
γi

i , k) is not semiregular, which again implies that G2(n, k) is not
semiregular.
We observe by Theorem 4.1 that G(qi, k) is regular and thus semiregular for

1 ≤ i ≤ m. We now show that G(pβi

i , k) is semiregular for 1 ≤ i ≤ ℓ when pi

is odd and 1 ≤ βi ≤ αi + 1. This will establish the sufficiency of condition (a)
when ω(n) ≥ 2. Clearly, if βi ≤ αi + 1, then βi < pαi

i ≤ k for pi an odd prime.

Then indeg(a) > 0 for a ∈ G2(p
βi

i , k) if and only if a = 0. If c ∈ G1(p
βi

i , k) and
indeg(c) > 0, then by Theorems 3.1 and 3.2,

indeg(c) = gcd(λ(pβi

i ), k) = gcd(p
βi−1
i (pi − 1), k) = pβi−1

i = indeg(0),

and G(p
βi

i , k) is semiregular.
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At this point, we assume that pαi+2
i |n. By our earlier observation, pi 6= 2.

Noting that gcd(pi − 1, k) = 1 and βi ≥ αi + 2, we see by (4.5) that

(4.6)

N(p
βi

i , k, 1) = gcd(λ(p
βi

i ), k) = gcd(p
βi−1
i (pi − 1), k)

= pαi

i < N(pαi+2
i , k, pαi+2

i ) = p
αi+2−⌈(αi+2)/k⌉
i

= pαi+1
i ≤ N(pβi

i , k, pβi

i ).

In the last equality in (4.6), we made use of the fact that if pαi

i ‖k, where αi ≥ 1,

then αi + 2 ≤ pαi

i ≤ k when pi is an odd prime. Thus, G(p
βi

i , k) is not semire-
gular in this case. We have now established the necessity of condition (a) when
ω(n) ≥ 2.

We assume from here on that ω(n) = 1. First suppose that n = hδ1
1 , where

δ1 ≥ k + 1. Let p be a prime such that p | gcd(h1 − 1, k). Then by Theorem 3.2,

p ∤ N(hδ1
1 , k, hδ1

1 ) = h
δ1−⌈δ1/k⌉
1 ,

whereas

p | N(hδ1
1 , k, hk

1) = hk−1
1 gcd(λ(hδ1−k

1 ), k) = hk−1
1 gcd(hδ1−k−1

1 (h1 − 1), k).

Thus, G2(h
δ1
1 , k) is not semiregular in this case. We have now established condi-

tion (d).
Now assume that n = qγ1

1 , where γ1 ≥ k + 2. Then by Theorems 3.1 and 3.2,

(4.7)

N(qγ1
1 , k, qk

1 ) = qk−1
1 gcd(λ(qγ1−k

1 ), k) = qk−1
1 gcd(qγ1−k−e1

1 (q1 − 1), k)

= qk−1
1 < N(qk+2

1 , k, qk+2
1 ) = q

k+2−⌈(k+2)/k⌉
1

= qk
1 ≤ N(qγ1

1 , k, qγ1
1 ),

where e1 = 2 if q1 = 2 and γ1 − k ≥ 3 and e1 = 1 otherwise. The last equality in
(4.7) follows from the fact that k + 2 ≤ 2k, since k ≥ 2. Thus G2(q

γ1
1 , k) is not

semiregular in this case.
We note that G2(q

γ1
1 , k) is semiregular when γ1 = k + 1. Observe that

indeg(a) > 0 for a ∈ G2(q
k+1
1 , k) only if qk

1‖a or a ≡ 0 (mod qk+1
1 ). Then

N(qk+1
1 , k, qk) = qk−1

1 gcd(λ(qk+1−k
1 ), k) = qk−1

1 gcd(q1 − 1, k) = qk−1
1

= N(qk+1
1 , k, qk+1

1 ) = q
k+1−⌈(k+1)/k⌉
1 = qk−1

1 .

Hence, G2(q
k+1
1 , k) is semiregular by Theorem 3.2. We have now established

condition (c).
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Further, assume that n = p
βi

i , where i ∈ {1, 2, . . . , ℓ} and either pi is odd or
pi = 2 and k ≥ 6. First suppose that βi ≥ k + αi + 2 + µ(pi), where µ(pi) = 0 if
pi is odd and µ(pi) = 1 if pi = 2. Note that αi + 2 + µ(pi) ≤ pαi

i ≤ k if pi is odd
and αi + 2 + µ(pi) < k if pi = 2. Then by Theorem 3.2,

(4.8)

N(p
βi

i , k, pk) = pk−1
i εi gcd(λ(p

βi−k
i ), k) = pk−1

i εi gcd(p
βi−k−εi

i (pi − 1), k)

= pk+αi−1
i < N(p

k+αi+2+µ(pi)
i , k, p

k+αi+2+µ(pi)
i )

= p
k+αi+2+µ(pi)−⌈(k+αi+2+µ(pi))/k⌉
i

= p
k+αi+µ(pi)
i ≤ N(pβi

i , k, pβi

i ),

where εi = 2 if p = 2 and βi − k ≥ 3, and εi = 1 otherwise. Therefore, G2(p
βi

i , k)
is not semiregular in this case.
Now suppose that k+1 ≤ βi ≤ k+αi+1+µ(pi). Since k < βi ≤ k+αi+1+

µ(pi) < 2k for i ∈ {1, 2, . . . , ℓ}, we see that indeg(a) > 0 for a ∈ G2(p
βi

i , k) only

if pk
i ‖a or a ≡ 0 (mod pβi

i ). Similarly to (4.8) we get

N(pβi

i , k, pk) = pk−1
i εi gcd(p

βi−k−εi

i (pi − 1), k)

= pk−1
i εip

βi−k−εi

i = pβi−2
i = N(pβi

i , k, pβi

i )

= p
β−⌈βi/k⌉
i = p

βi−2
i ,

where εi is defined as before. Thus G2(p
βi

i , k) is semiregular in this instance.
Conditions (b) and (g) are now established.
It only remains to show that when k = 4, then G2(n, 4) is semiregular if and

only if condition (f) holds. First suppose that k = 4 and n = 2
β
1 , where β1 ≥ 10.

Then, by Theorem 3.2,

N(2βi , 4, 24) = 23 · 2 · gcd(λ(2β1−4), 22) = 23 · 2 · 22 = 26 < N(210, 4, 210)

= 210−⌈10/4⌉ = 27 ≤ N(2β1 , 4, 2β1)

and G2(2
β1 , 4) is not semiregular.

Finally, we show that G2(2
β1 , 4) is semiregular when 5 ≤ β1 ≤ 9. First assume

that 5 ≤ β1 ≤ 8. Then indeg(a) > 0 for a ∈ G2(2
β1 , 4) only if 24‖a or a ≡ 0

(mod 2β1). Observe that

N(2β1 , 4, 24) = 23 · ε1 · gcd(λ(2
β1−4), 22) = 23 · ε1 · 2

β1−4−ε1 = 2β1−2

= 2β1−⌈β1/4⌉ = N(2β1, 4, 2β1)
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where ε1 = 2 if β1 − 4 ≥ 3 and ε1 = 1 otherwise. Therefore, G2(2
β1 , 4) is

semiregular in this case.
Now assume that β1 = 9. Then indeg(a) > 0 for a ∈ G2(2

9, 4) only if 24‖a, or
28‖a, or a ≡ 0 (mod 29). Then by Theorem 3.2,

N(29, 4, 24) = 23 · 2 · gcd(λ(29−4), 22) = 23 · 2 · 22 = 26

= N(29, 4, 28) = 23·2 gcd(λ(29−8), 22) = 26 gcd(1, 4) = 26 = 29−⌈9/4⌉

= N(29, 4, 29),

and G2(2
9, 4) is also semiregular. Condition (f) is now established and part (i) is

proved.
(ii) Note that G(n, k) is semiregular if and only if G1(n, k) and G2(n, k) are

both semiregular, and for any two vertices a ∈ G1(n, k) and b ∈ G2(n, k) having
positive indegree, indeg(a) = indeg(b). Part (ii) now follows from the proof of
part (i) of this theorem and from Theorems 4.1 and 4.3. �

5. Digraphs for which some components are semiregular

We saw in Theorems 4.1 and 4.3 that G1(n, k) is always semiregular for any n
and k. By Theorem 4.4, G2(n, k) is, in general, not semiregular. Theorems 5.1
and 5.4 below present cases in which some but not necessarily all of the compo-
nents of G2(n, k) are semiregular or regular. We also determine when all of the
components of G2(n, k) are semiregular even if G2(n, k) is not itself necessarily
semiregular. By our comments above, if each component of G2(n, k) is semiregu-
lar, so is each component of G(n, k). Clearly, G(n, k) is regular if and only if each
component of G(n, k) is regular.
Before presenting Theorems 5.1 and 5.4, we need to define some subdigraphs

of G2(n, k) as given in [6]. Let P = {p1, p2, . . . , pr} be the set of prime divisors
of n ≥ 2 and consider a partition of this set given by P = P1 ∪ P2, where P1
and P2 are disjoint and P1 is nonempty. Let G∗

P1
(n, k) be the subdigraph of

G(n, k) induced by the vertices which are multiples of
∏

p∈P1
p and which are

also relatively prime to all primes q ∈ P2. Let ℓ be a prime and m a positive
integer. Noting that gcd(a, ℓm) > 1 if and only if gcd(ak, ℓm) > 1, we see by the
Chinese remainder theorem that G∗

P1
(n, k) is a union of components of G2(n, k)

for all nonempty subsets P1 of P . It is also evident that G2(n, k) is the disjoint
union of G∗

P1
(n, k) as P1 ranges over all nonempty subsets of P . One further

sees that if a ∈ G∗
P1
(n, k), then a ∈ G2(p

νp(n), k) for each prime p ∈ P1 and

a ∈ G1(q
νq(n), k) for each prime q ∈ P2. Moreover, if a is a cycle vertex of

G∗
P1
(n, k) and p ∈ P1, then a ≡ 0 (mod pνp(n)). This follows since if a is part of

a t-cycle in G∗
P1
(n, k) and p ∈ P1, then akt

≡ a (mod pνp(n)), which implies that

akt

− a = a(akt−1 − 1) ≡ 0 (mod pνp(n)).
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Since gcd(a, akt−1 − 1) = 1 and p | a, we see that pνp(n) | a.

Theorem 5.1. The digraph G∗
P1
(n, k) is semiregular if and only if G2(p

νp(n), k)
is semiregular for each prime p ∈ P1.

Proof: First suppose that G2(p
νp(n), k) is semiregular for each p ∈ P1. Let a and

b be vertices in G∗
P1
(n, k) such that indeg(a) > 0 and indeg(b) > 0. Then both

a and b are vertices in G2(p
νp(n), k) for p ∈ P1, and a and b are both vertices

in G1(q
νq(n), k) for q ∈ P2. Since G1(q

νq(n), k) is semiregular for all q ∈ P2
by Theorems 4.1 and 4.3, we see by (1.4) that indegn(a) = indegn(b). Thus,
G∗
P1
(n, k) is semiregular.

We now prove that if any component of G∗
P1
(n, k) is semiregular, then the

digraph G2(p
νp(n), k) is semiregular for each prime p ∈ P1. This is a somewhat

stronger result than the converse implication. Let C be a semiregular component
in G∗

P1
(n, k). Let

n =

r
∏

i=1

pαi

i

and Qi = pαi

i . By way of contradiction, we can assume without loss of generality

that p1 ∈ P1 and G2(p
α1
1 , k) is not semiregular. By relabeling the primes dividing

n if necessary, we can also assume that p1, p2, . . . , ps ∈ P1 and ps+1, ps+2, . . . , pr ∈
P2.
Suppose that a1 and b1 are vertices in G2(p

α1
1 , k) having positive indegree such

that indegQ1(a1) 6= indegQ1(b1). Since p1 divides both a1 and b1, there exists a
least nonnegative integer h such that

akh

1 ≡ bkh

1 ≡ 0 (mod pα1
1 ).

Let c be a cycle vertex in C. Let ch be the cycle vertex in C which is h vertices

before c, that is, ckh
≡ c (mod n). Note that c ≡ 0 (mod Qi) for i = 1, 2, . . . , s

and gcd(ch, Qi) = gcd(c, Qi) = 1 for i = s + 1, s + 2, . . . , r. By the Chinese
remainder theorem, we can find vertices a2 and b2 in G∗

P1
(n, k) such that a2 ≡ a1

(mod Q1), b2 ≡ b1 (mod Q1), a2 ≡ b2 ≡ 0 (mod Qi) for 2 ≤ i ≤ s, and a2 ≡
b2 ≡ ch (mod Qi) for s+ 1 ≤ i ≤ r. Then

akh

2 ≡ bkh

2 ≡ 0 (mod Qi)

for 1 ≤ i ≤ s, and

akh

2 ≡ bkh

2 ≡ ckh

h ≡ c (mod Qi)

for s+ 1 ≤ i ≤ r. Applying the Chinese remainder theorem again, one sees that

akh

2 ≡ bkh

2 ≡ c (mod n), and both a2 and b2 are vertices in the component C.
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By (1.4),

indegn(a2) = indegQ1(a1)

s
∏

i=2

indegQi
(0)

r
∏

i=s+1

indegQi
(ch)

and

indegn(b2) = indegQ1(b1)

s
∏

i=2

indegQi
(0)

r
∏

i=s+1

indegQi
(ch).

Since 0 is a cycle vertex in G2(Qi, k) for 2 ≤ i ≤ s and ch is a cycle vertex in
G1(Qi, k) for s+ 1 ≤ i ≤ r, we see that both the vertices a2 and b2 have positive
indegree in the component C and indegn(a2) 6= indegn(b1). Thus, the component
C is not semiregular, which is a contradiction. The result now follows. �

By the proof and the discussion preceding Theorem 5.1, we have the following
two immediate corollaries.

Corollary 5.2. The digraph G∗
P1
(n, k) is semiregular if and only if at least one

of its components is semiregular.

Corollary 5.3. Each component of G(n, k) is semiregular if and only if the

digraph G2(p
νp(n), k) is semiregular for each prime p dividing n.

Theorem 5.4. Let n = n1n2, where

n1 =
∏

p∈P1

pνp(n) and n2 =
∏

p∈P2

pνp(n).

Then G∗
P1
(n, k) is regular if and only if n1 is square-free and gcd(λ(n2), k) = 1.

Proof: First suppose that n1 is square-free and gcd(λ(n2), k) = 1. Then

νp(n) = 1 for each prime p ∈ P1 and thus by Theorem 4.1(ii), G2(p
νp(n), k)

is regular for each p ∈ P1. Moreover, by the definition of the Carmichael lambda-

function, λ(pνp(n)) | λ(n2) and hence, gcd(λ(p
νp(n)), k) = 1 for each prime p ∈ P2.

Therefore, by Theorem 4.1, G1(p
νp(n), k) is regular for each p ∈ P2. Let a be a

vertex in G∗
P1
(n, k). Then a ∈ G2(p

νp(n), k) for p ∈ P1 and a ∈ G1(p
νp(n), k) for

p ∈ P2. By (1.4),

indegn(a) =
∏

p∈P1

N(pνp(n), k, a) ·
∏

p∈P2

N(pνp(n), k, a) =
∏

p∈P1

1 ·
∏

p∈P2

1 = 1.

Consequently, we see by Remark 1.1 that G∗
P1
(n, k) is regular.

We now suppose that C is a regular component in G∗
P1
(n, k). We will show

that n1 is square-free and gcd(λ(n2), k) = 1. We can assume without loss of
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generality that p1, p2, . . . , ps ∈ P1 and ps+1, ps+2, . . . , pr ∈ P2. Let c be a cycle

vertex of C. Then c ≡ 0 (mod pνp(n)) for each p ∈ P1. Let the factorization of n
be as given in (1.2). Then

indegn(c) = 1 =

s
∏

i=1

N(pαi

i , k, 0) ·

r
∏

i=s+1

N(pαi

i , k, c).

Hence, N(pαi

i , k, 0) = 1 for 1 ≤ i ≤ s and N(pαi

i , k, c) = 1 for s + 1 ≤ i ≤ r. If
αi ≥ 2 for some i ∈ {1, 2, . . . , s}, then by Theorem 3.2,

N(pαi

i , k, 0) = p
αi−⌈αi/k⌉
i ≥ p > 1,

which is a contradiction. Thus, αi = 1 for 1 ≤ i ≤ s, and consequently, n1 is
square-free. Since N(pαi

i , k, c) = 1 for s+ 1 ≤ i ≤ r, it follows from Theorem 3.1

that gcd(λ(pαi

i ), k) = 1 for s+ 1 ≤ i ≤ r. Since

n2 =

r
∏

i=s+1

pαi

i ,

it follows from the definition of λ that

λ(n2) |

r
∏

i=s+1

λ(pαi

i ).

Hence, gcd(λ(n2), k) = 1. �

By the proof of Theorem 5.4 we have the following corollary.

Corollary 5.5. The digraph G∗
P1
(n, k) is regular if and only if at least one com-

ponent of G∗
P1
(n, k) is regular.
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