## Commentationes Mathematicae Universitatis Carolinae

## Barbara Majcher-Iwanow <br> Strong boundedness and algebraically closed groups

Commentationes Mathematicae Universitatis Carolinae, Vol. 48 (2007), No. 2, 205--209

Persistent URL: http://dml.cz/dmlcz/119650

## Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2007

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

# Strong boundedness and algebraically closed groups 

Barbara Majcher-Iwanow


#### Abstract

Let $G$ be a non-trivial algebraically closed group and $X$ be a subset of $G$ generating $G$ in infinitely many steps. We give a construction of a binary tree associated with $(G, X)$. Using this we show that if $G$ is $\omega_{1}$-existentially closed then it is strongly bounded.


Keywords: strongly bounded groups, existentially closed groups
Classification: 20E08, 20F65, 20A15

## Introduction

Definition ([1], [2]). A group $G$ is Cayley bounded if for every generating subset $U \subset G$ there exists $n \in \omega$ such that every element of $G$ is a product of $n$ elements of $U \cup U^{-1} \cup\{1\}$. A group is strongly bounded if it is Cayley bounded and cannot be presented as the union of a strictly increasing chain $\left\{H_{n}: n \in \omega\right\}$ of proper subgroups (has cofinality $>\omega$ ).

It is shown in [2], that strongly bounded groups have property (FH) that every affine isometric action of $G$ on a Hilbert space has a fixed point [3]. Recent papers [1], [2], [6] and [7] contain a number of uncountable examples of strongly bounded groups. Most of them can be presented as closed subgroups of the group $\operatorname{Sym}(\omega)$ of all permutations of the set of natural numbers $\omega$. The paper [7] contains some other examples (for example, the group of Lipschitz homeomorphisms of the Baire space), but the proof of their strong boundedness uses some reductions to automorphism groups of countable structures.
$\omega_{1}$-existentially closed groups provide a different construction of uncountable strongly bounded groups. In this case the property of strong boundedness has been obtained in [2] (where the author of [2] mentions that A. Khelif has also proved this).

We study non-trivial algebraically closed groups. Our main result (Proposition 2) associates an infinite binary tree with any set generating $G$ in infinitely many steps. Using this we give another proof that $\omega_{1}$-existentially closed groups are strongly bounded. Our proof follows the approach of [6] and [7].

When these results were obtained the author did not know that Y. de Cornulier extended the first version of [2] by the material about algebraically closed groups.

The author is grateful to the referee for helpful remarks. In particular, the idea of using a theorem of Ziegler from [10] is due to the referee.

## Algebraically closed groups

A group $G$ is algebraically closed if any finite system of equations $\Sigma(\bar{x}, \bar{a})$ with parameters $\bar{a}$ from $G$ and having a solution in some group extending $G$, already has a solution in $G$. It is well-known that a non-trivial algebraically closed group is existentially closed, i.e. any quantifier free formula $\phi(\bar{x}, \bar{a})$ (where we may assume that $\phi(\bar{x}, \bar{a})$ is a conjunction of equalities and inequalities of the form $w(\bar{x})=(\neq) 1)$ with parameters from $G$ and having a solution in some group extending $G$, already has a solution in $G$ (see [8]).

A group $G$ is $\omega_{1}$-existentially closed if for every set $\Sigma(\bar{x})$ of equalities and inequalities of the form $w(\bar{x}, \bar{a})=(\neq) 1$ depending on variables $\bar{x}$ and at most countably many parameters from $G$, if $\Sigma(\bar{x})$ has a solution in some group extending $G$, then it is satisfied already in $G$. Every group embeds into an $\omega_{1}$-existentially closed group [9]. The following theorem has been already proved in [2].

Theorem 1. Every $\omega_{1}$-existentially closed group $G$ is strongly bounded.
We have found that Theorem 1 can be proved by methods resembling those of [6] and [7] (which in turn is based on the proof of Theorem 6.1 of [5]). We will use the following statement from [1, Lemma 10] and [2, Proposition 2.7].

A group $G$ is strongly bounded if and only if for every presentation of $G$ as $G=\bigcup X_{n}$ for an increasing sequence $X_{n}, n \in \omega$, with $\{1\} \cup X_{n}^{-1} \cup X_{n} \cdot X_{n} \subseteq$ $X_{n+1}$ there is a number $n$ such that $X_{n}=G$.

Our proof of Theorem 1 is based on the following proposition.
Proposition 2. Let $G$ be an existentially closed group. Let a sequence $\left\{X_{n}\right\}$ define a presentation of $G$ as above and $G \neq X_{n}$ for all $n$. Then there is a binary tree $\left\{g_{s}: s \in 2^{<\omega}\right\} \subset G$ such that all $g_{s}$ generate in $G$ the free product of groups $\left\langle g_{s}\right\rangle$ where $\left|g_{s}\right|=\infty$. After possibly replacing $X_{n}, n \in \omega$, by a subsequence, the tree satisfies the following property: for every $s \in 2^{<\omega}$ with $|s|=n, g_{s 0} \in X_{n}$ and $g_{s 1} \in G \backslash X_{n+2}$.

Before the proof we note that in the formulation $G$ may be countable. In this case a sequence $X_{n}, n \in \omega$, as above (and the corresponding tree) can be easily found.

The proof below uses a fundamental theorem of Ziegler [10] (or see Theorem 3.3.7 of [4]). We give it in a form appropriate for our applications:

Let $\Phi(\bar{x})$ be a recursively enumerable set of quantifier-free Horn formulas of the following form (strict Horn formulas):

$$
\bigwedge_{i=1}^{k} w_{i}(\bar{x})=1 \rightarrow w_{0}(\bar{x})=1
$$

where $w_{i}$ are group words depending on variables $\bar{x}$. Then there is a formula $\phi(\bar{x})$ of the form $\exists \bar{y}\left(\bigwedge_{j=1}^{l} w_{j}^{\prime}(\bar{x}, \bar{y})=1\right)$, such that a tuple $\bar{c} \in G$ satisfies $\Phi(\bar{x})$ if and only if $\phi(\bar{c})$ is satisfied in some group extending $G$. If $G$ is existentially closed then $\Phi(\bar{x})$ is equivalent to $\phi(\bar{x})$ in $G$.

Proof: Assume that all $g_{s}$ with $|s| \leq n$ are already defined. To define all $g_{s 0}$ and $g_{s 1}$ with $|s|=n$ we firstly find a tuple $h_{1}^{\prime}, \ldots, h_{2^{n}}^{\prime} \in X_{n}$ such that the set $\left\{h_{1}^{\prime}, \ldots, h_{2^{n}}^{\prime}\right\} \cup\left\{g_{r}:|r| \leq n\right\}$ freely generates (as a basis) in $G$ a free subgroup. To see that such a tuple exists take the set $\Phi\left(x_{1}^{\prime}, \ldots, x_{2^{n}}^{\prime}, z, \bar{z}\right)$ of all strict Horn formulas of the form

$$
w\left(x_{1}^{\prime}, \ldots, x_{2^{n}}^{\prime}, \bar{z}\right)=1 \rightarrow z=1
$$

where the tuple $\bar{z}$ consists of all $z_{r}$ with $r \in 2^{\leq n}$, and $w\left(\bar{x}^{\prime}, \bar{z}\right)$ is a non-trivial reduced word. By Ziegler's theorem there is a formula $\phi\left(\bar{x}^{\prime}, z, \bar{z}\right)$ of the form above, which is equivalent to $\Phi\left(\bar{x}^{\prime}, z, \bar{z}\right)$ in $G$. Note that $\phi\left(\bar{x}^{\prime}, h, \bar{g}\right)$ is realized in some group extending $G *\left\langle x_{1}, \ldots, x_{2^{n}}\right\rangle$, where $h \in G \backslash\{1\}$ is arbitrary. Since $G$ is existentially closed we can find a required tuple $h_{1}^{\prime}, \ldots, h_{2^{n}}^{\prime}$ in $G$ (using $\phi$ and parameters from $\{h\} \cup\left\{g_{r}:|r| \leq n\right\}$ ).

As $\bigcup X_{i}=G$, after possible changing of the enumeration $\left\{X_{n}\right\}$ we can arrange that $h_{1}^{\prime}, \ldots, h_{2^{n}}^{\prime} \in X_{n}$.

Now consider the complement of $X_{n+2}$.
Lemma 3. The set $G \backslash X_{n+2}$ contains a tuple $h_{1}, \ldots, h_{2^{n}}$ such that the elements $\left\{h_{1}, \ldots, h_{2^{n}}, h_{1}^{\prime}, \ldots, h_{2^{n}}^{\prime}\right\} \cup\left\{g_{r}:|r| \leq n\right\}$ freely generate in $G$ a free subgroup.
Proof: Assuming the contrary we find the maximal $i$ such that there are $h_{1}, \ldots$, $h_{i} \in G \backslash X_{n+2}$ such that $\left\{h_{1}, \ldots, h_{i}, h_{1}^{\prime}, \ldots, h_{2^{n}}^{\prime}\right\} \cup\left\{g_{r}:|r| \leq n\right\}$ freely generate in $G$ a free subgroup. Thus $i<2^{n}$. We claim that

For any $g \in G \backslash\left\langle\left\{h_{1}, \ldots, h_{i}, h_{1}^{\prime}, \ldots, h_{2^{n}}^{\prime}\right\} \cup\left\{g_{r}:|r| \leq n\right\}\right\rangle$ there are $h_{i+1}$ and $h_{i+2}$ satisfying the following conditions: $g=h_{i+1} h_{i+2}$ and each of the sets $\left\{h_{1}, \ldots, h_{i}, h_{i+1}, h_{1}^{\prime}, \ldots, h_{2^{n}}^{\prime}\right\} \cup\left\{g_{r}:|r| \leq n\right\}$ and $\left\{h_{1}, \ldots, h_{i}, h_{i+2}, h_{1}^{\prime}, \ldots, h_{2^{n}}^{\prime}\right\} \cup$ $\left\{g_{r}:|r| \leq n\right\}$ freely generates in $G$ a free subgroup.

Indeed, let

$$
H=\left\langle y_{1}\right\rangle *\left\langle\left\{g, h_{1}, \ldots, h_{i}, h_{1}^{\prime}, \ldots, h_{2^{n}}^{\prime}\right\} \cup\left\{g_{r}:|r| \leq n\right\}\right\rangle .
$$

Then the subgroup of $H$ generated by $\left\{y_{1}, h_{1}, \ldots, h_{i}, h_{1}^{\prime}, \ldots, h_{2^{n}}^{\prime}\right\} \cup\left\{g_{r}:|r| \leq n\right\}$ is the free product $P=\left\langle y_{1}\right\rangle *\left\langle\left\{h_{1}, \ldots, h_{i}, h_{1}^{\prime}, \ldots, h_{2^{n}}^{\prime}\right\} \cup\left\{g_{r}:|r| \leq n\right\}\right\rangle$. Let $y_{2}=y_{1}^{-1} \cdot g$. Then the subgroup of $H$ generated by $\left\{y_{2}, h_{1}, \ldots, h_{i}, h_{1}^{\prime}, \ldots, h_{2^{n}}^{\prime}\right\} \cup$ $\left\{g_{r}:|r| \leq n\right\}$ is the free product $\left\langle y_{2}\right\rangle *\left\langle\left\{h_{1}, \ldots, h_{i}\right\} \cup\left\{g_{r}:|r| \leq n\right\}\right\rangle$. To verify this take any non-trivial reduced word $w\left(y_{2}, \bar{h}, \bar{g}\right)$ and replace all occurrences of $y_{2}$ by $y_{1}^{-1} \cdot g$. It is easy to see that no occurrence of $y_{1}$ can be reduced in this word. Thus $w\left(y_{2}, \bar{h}, \bar{g}\right)$ cannot be equal to 1 in $H$.

Let $\Phi\left(y, z, x_{1}, \ldots, x_{i}, x_{1}^{\prime}, \ldots, x_{2^{n}}^{\prime}, \ldots, z_{r}, \ldots\right), r \in 2^{\leq n}$, be a set of strict quan-tifier-free Horn formulas describing the property that $\left\{y, z, x_{1}, \ldots, x_{i}, x_{1}^{\prime}, \ldots, x_{2^{n}}^{\prime}\right.$, $\left.\ldots, z_{r}, \ldots\right\}$ generates the free product $\langle y\rangle *\left\langle z, x_{1}, \ldots, x_{i}, x_{1}^{\prime}, \ldots, x_{2^{n}}^{\prime}, \ldots, z_{r}, \ldots\right\rangle$. Applying Ziegler's theorem and the fact that $G$ is existentially closed to $\Phi$ and an appropriate extension of $G *\left\langle y_{1}\right\rangle$, we find $h_{i+1}$ and $h_{i+2} \in G$ satisfying the same equations with $y_{1}$ and $y_{2}$ over $\left\{g, h_{1}, \ldots, h_{i}, h_{1}^{\prime}, \ldots, h_{2^{n}}^{\prime}\right\} \cup\left\{g_{r}:|r| \leq n\right\}$. These elements satisfy the statement of the claim.

By the assumptions on $h_{i}, \ldots, h_{i}$ the claim implies that the set

$$
G \backslash\left\langle\left\{h_{1}, \ldots, h_{i}, h_{1}^{\prime}, \ldots, h_{2^{n}}^{\prime}\right\} \cup\left\{g_{r}:|r| \leq n\right\}\right\rangle
$$

is a subset of $X_{n+2} \cdot X_{n+2} \subseteq X_{n+3}$. Since this set is non-trivial, we see that $G \subseteq X_{n+3} \cdot X_{n+3} \subseteq X_{n+4}$. This is a contradiction with the assumptions of the proposition.

We now finish the proof of Proposition 2 as follows. Define $g_{s 0} \in X_{n},|s|=n$, to be $h_{i}^{\prime}$, where $i-1$ is $\{0,1\}$-presented by $s$. Define $g_{s 1} \in G \backslash X_{n+2}$ to be the corresponding $h_{i}$. The statement of the proposition is obvious.

We now notice that the assumptions of Proposition 2 also imply existence of $a$ binary tree $\gamma_{s} \in G, s \in 2^{<\omega}$, so that for all $s, g_{s 1}^{\gamma_{s 1}}=g_{s 0}^{\gamma_{s 0}}=g_{s 0}^{\gamma_{s}}$.

Indeed, assume that all $\gamma_{s}$ with $|s|=n$ are defined. Let $f_{s} \in G$ conjugate $g_{s 1}$ to $g_{s 0}$ and commute with each $g_{r}$ where $r$ is an initial segment of $s$. The existence of such $f_{s}$ follows by an obvious argument involving HNN-extensions and existential closure. Let $\gamma_{s 0}=\gamma_{s}$ and $\gamma_{s 1}=f_{s} \cdot \gamma_{s}$.

Proof of Theorem 1: Find trees $\left\{g_{s}: s \in 2^{<\omega}\right\}$ (as in Proposition 2) and $\left\{\gamma_{s}: s \in 2^{<\omega}\right\}$ as above. Since $G$ is $\omega_{1}$-existentially closed there are $\gamma_{\sigma} \in G$, $\sigma \in 2^{\omega}$, satisfying $g_{s}^{\gamma_{\sigma}}=g_{s}^{\gamma_{s}}$ for all $s$ of the form $\sigma \mid n$. For $\sigma \neq \tau$ with $\sigma \mid n=s 0$ and $\tau \mid n=s 1$ we have $g_{s 0}^{\gamma_{\sigma}}=g_{s 0}^{\gamma_{s 0}}=g_{s 0}^{\gamma_{s}}$ and $g_{s 1}^{\gamma_{\tau}}=g_{s 1}^{\gamma_{s 1}}=g_{s 0}^{\gamma_{s}}$. Since $g_{s 0} \in X_{n}$ and $g_{s 1} \notin X_{n+2}$, we see that $\gamma_{\sigma} \gamma_{\tau}^{-1} \notin X_{n}$. On the other hand, as $G=\bigcup X_{n}$, we may assume that $X_{n-2}$ contains uncountably many elements $\gamma_{\delta}$. Thus we may assume that $\gamma_{\sigma}$ and $\gamma_{\tau}$ as above are in $X_{n-2}$. This gives a contradiction with the condition $\gamma_{\sigma} \gamma_{\tau}^{-1} \notin X_{n}$.

## References

[1] Bergman G., Generating infinite symmetric groups, Bull. London Math. Soc. 38 (2006), 429-440.
[2] de Cornulier Y., Strongly bounded groups and infinite powers of finite groups, Comm. Algebra 34 (2006), 2337-2345.
[3] de la Harpe P., Valette A., La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque 175, SMF, 1989.
[4] Hodges W., Building Models by Games, Cambridge University Press, Cambridge, 1985.
[5] Hodges W., Hodkinson I., Lascar D., Shelah S., The small index property for $\omega$-stable $\omega$-categorical structures and for the random graph, J. London Math. Soc. (2) 48 (1993), 204-218.
[6] Ivanov A., Strongly bounded automorphism groups, Colloq. Math. 105 (2006), 57-67.
[7] Kechris A., Rosendal Ch., Turbulence, amalgamation and generic automorphisms of homogeneous structures, to appear in Proc. London Math. Soc. (arXiv:math.LO/0409567 v3 18 Oct 2004).
[8] Macintyre A., Model completeness, in: Handbook of Mathematical Logic (edited by Jon Barwise), North-Holland, Amsterdam, 1977, pp. 139-180.
[9] Scott W.R., Algebraically closed groups, Proc. Amer. Math. Soc. 2 (1951), 118-121.
[10] Ziegler M., Algebraisch abgeschlossene Gruppen, in: World Problems II (edited by S. Adian et al.), North-Holland, 1980, pp. 449-576.

Institute of Mathematics of Wrocław University, pl. Grunwaldzki 2/4, 50-384 Wroceaw, Poland

E-mail: ivanov@math.uni.wroc.pl
(Received October 17, 2005, revised February 11, 2007)

