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On non-normality points and metrizable crowded spaces

Sergei Logunov

Abstract. βX −{p} is non-normal for any metrizable crowded space X and an arbitrary
point p ∈ X∗.
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point

Classification: 54D35

1. Introduction

We investigate non-normality points in Čech-Stone remainders X∗ = βX − X
of metrizable spaces.

There are several simple proofs that, under CH, ω∗ − {p} is not normal for
any p ∈ ω∗ [7], [8]. “Naively” it is known only for special points of ω∗. If p is
an accumulation point of some countable discrete subset of ω∗, or if p is a strong
R-point , or if p is a Kunen’s point , then ω∗ − {p} is not normal (Blaszczyk and
Szymanski [1], Gryzlov [2], van Douwen respectively).

What about realcompact crowded spaces? Is βX − {p} non-normal whenever
X is realcompact and crowded and p ∈ X∗? Probably, but we are unaware of
any counterexample. On the other hand, the answer is “yes” if X is a locally
compact Lindelöf separable crowded space with πw(X) ≤ ω1 and p is remote
[5]. It is also “yes” if X is a second countable crowded space and either X is
locally compact, or X is zero-dimensional, or p is remote [3], [4], [6]. Using the
regular base of Arhangel’skĭı J. Terasawa has omitted the separability condition
in the last two cases. He has obtained the affirmative answer in case if X is a
metrizable crowded space and either X is strongly zero-dimensional or p is remote
[10]. Here, introducing p-filters into this construction, we answer affirmatively for
all metrizable crowded spaces.

B. Shapirovskij [9] has defined a butterfly-point (or b-point) in a space X . We
call p ∈ X∗ a butterfly-point in βX , if {p} = Cl F∩Cl G for some F, G ⊂ X∗−{p}
with Cl (F ∪ G) ⊂ X∗.

Theorem. Let X be a non-compact metrizable crowded space. Then any point
p ∈ X∗ is a butterfly-point in βX . Hence βX − {p} is not normal.
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2. Proofs

From now on a space X is non-compact, metrizable and crowded, i.e. X has
no isolated points, and p ∈ X∗ is an arbitrary point. We denote by cl- and Cl-
the closure operations in X and βX respectively, 3 = {0, 1, 2}.
Let π and σ be an arbitrary families. A set U ∈ π is called a maximal member

of the family π if U ( V for no V ∈ π. If members of π are mutually disjoint
(with closure), then π is called (strongly) cellular . We write π ≺ σ if U ∩ V 6= ∅
implies U ) V for any U ∈ π and V ∈ σ. We denote by Exp π the set of
subfamilies {F : F ⊂ π}. We define a projection fπ

σ from Exp π to Exp σ by
fπ
σ F = {V ∈ σ :

⋃
F ∩ V 6= ∅} for every F ∈ Exp π.

A maximal locally finite cellular family of open sets is called nice. The intro-
duced in [6] cellular refinement Cel (π) = {

⋂
φ− cl

⋃
(π−φ) : φ ⊂ π} of π is nice,

if π is an open locally finite cover of X .
Let π and σ be nice families. A collection F = {F} of subfamilies F ⊆

π is called a p-filter on π, if p ∈ Cl ∪
⋂n

k=0 Fk for any finite subcollection
{F0, . . . , Fn} ⊂ F . Obviously, the union of any increasing family of p-filters
is also a p-filter . So by Zorn’s lemma there are maximal p-filters or p-ultrafilters
F ′ on π, that is F ′ = G for any p-filter G with F ′ ⊆ G. Adding step-by-step new
subfamilies from Exp π − F to F , while possible, we can embed any p-filter F
into some p-ultrafilter F ′. If p is not a remote point, distinct p-ultrafilters F ′ may
exist. But each of them contains π(O) = {V ∈ π : V ∩ O 6= ∅} for any neighbor-
hood O of p and its image fπ

σF = {fπ
σ F : F ∈ F} is a p-filter on σ. We write

π ≺F σ, if there is F ∈ F with F ≺ σ. We denote
⋂
F∗ =

⋂
{Cl

⋃
F : F ∈ F}.

For every i ∈ N we fix an open locally finite cover Pi of X so that diam U ≤ 1
i

for any U ∈ Pi and {V ∈ Pj : V ∩ U 6= ∅} is finite for each j < i. Then it is easy
to see that

P =
⋃

i∈N

Pi

is a regular base of Arhangel’skĭı, i.e. for any point x ∈ X and for any its neigh-
borhood O ⊂ X there is another neighborhood O′ ⊂ X of x with the following
properties: O′ ⊂ O and at most finitely many members of P meet booth O′ and
X − O simultaneously. Moreover, for any cover π ⊂ P the family of its maximal
members is a locally finite subcover of X .
By induction (see, also, [6]) we define the families of non-empty open sets Dk

and Wk ⊂ P for all k ∈ N as follows:

D1 = Cel (P1).

If a nice family Dk = {U} has been constructed, then

Wk = {U(ν) : U ∈ Dk and ν ∈ 3}
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is strongly cellular with cl U(ν) ⊂ U for any its member and

Dk+1 = Cel (Dk ∪Wk ∪ Pk+1).

By our construction, if U, V ∈
⋃

k∈N
Dk are not disjoint, then either U ⊆ V or

U ⊇ V . For any U ∈ Pk the family Û = {V ∈ Dk : V ∩ U 6= ∅} is locally finite
and nice in U . For any locally finite cover π ⊂ P we denote σ(π) all maximal

members of the family
⋃
{Û : U ∈ π}. Then σ(π) is nice. Define

Σ = {σ(π) : π ⊂ P is a locally finite cover of X}

and put σ(ν) = {U(ν) : U ∈ σ} for any σ ∈ Σ and ν ∈ 3.

Lemma 1. If π is an open locally finite cover of X , then Cel (π) is nice.

Proof: Let φ ⊂ π. If
⋂

φ 6= ∅, then φ is finite. So
⋂

φ and, hence,
⋂

φ−cl (π−φ)
is open.
Let φ, φ′ ⊂ π be different and U ∈ φ − φ′. Then

⋂
φ ⊂ U and

⋂
φ′ ∩ U = ∅,

because U ∈ π − φ′.
Let a neighborhood O of x ∈ X meet finitely many members of π, say U1, . . . ,

Uk. If φ ⊂ π contains some U ∈ π −{U1, . . . , Uk}, then
⋂

φ ⊆ U ⊆ X −O. So O

meets at most 2k members of Cel (π).
As π is a locally finite family of open sets, K =

⋃
{cl U−U : U ∈ π} is nowhere

dense. Let x /∈ K and φ = {U ∈ π : x ∈ U}. Then U /∈ φ implies x /∈ cl U . So
x ∈

⋂
φ − cl

⋃
(π − φ), because π is conservative, and Cel (π) is maximal. Our

proof is complete. �

Lemma 2. There is a well-ordered chain {σα : α < λ} ⊂ Σ and p-ultrafilters Fα

on σα with the following properties for all α < β < λ and fα
β = fσα

σβ
:

(1) p /∈ Cl U for each U ∈ σ0;
(2) fα

β Fα ⊂ Fβ ;

(3) σα ≺Fα
σβ ;

(4) for any σ ∈ Σ− {σα : α < λ} there is α < λ with ¬(σα ≺Fα
σ).

Proof: Let π be all maximal members of the cover {U ∈ P : p /∈ Cl U} and let
F0 be any p-ultrafilter on σ0 = σ(π).
For any ordinal β assume p-ultrafilters Fα on σα ∈ Σ have been constructed

for all α < β. If some σ ∈ Σ − {σα : α < β} satisfies the condition σα ≺Fα
σ

for all α < β, then we put σβ = σ and embed the p-filter
⋃

α<β fα
β Fα into some

p-ultrafilter Fβ on σβ . Otherwise our construction is complete. �

Lemma 3.
⋂
F∗
0 ⊂ X∗.

Proof: Let x ∈ X be an arbitrary point. Then F = {U ∈ σ0 : x /∈ cl U}
satisfies, obviously, x /∈ Cl

⋃
F and F ∈ F0. �
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Lemma 4. If α < β < λ, then
⋂
F∗

β ⊂
⋂
F∗

α.

Proof: There is F ∈ Fα with F ≺ σβ by (3). For any G ∈ Fα we have
G ∩ F ∈ Fα and G ∩ F ≺ σβ . But then

⋂
F∗

β ⊂ Cl fα
β (G ∩ F ) ⊂ Cl (G ∩ F ) ⊂ Cl G.

�

Lemma 5. For any neighbourhood O of p in βX there is α < λ with
⋂
F∗

α ⊂ O.

Proof: Let Cl O′ ⊂ O for a neigbourhood O′ of p and let π be all maximal
members of the cover {U ∈ P : U∩O′ 6= ∅ ⇒ U ⊂ O}. For σ = σ(π) there is α < λ
with ¬(σα ≺Fα

σ) by (3) or (4). As σα(O
′) ∈ Fα then F = {V ∈ σα(O

′) : V ⊆
U for some U ∈ σ} also belongs Fα. So

⋂
F∗

α ⊂ Cl
⋃

F ⊂ Cl
⋃

σ(O′) ⊂ Cl O.
�

Proposition 6. For any α < λ and ν ∈ 3 there is a point pα(ν) ∈
⋂
F∗

α such

that pα(ν) ∈ Cl
⋃

σβ(ν) for all β ∈ λ − α.

Proof: Let α < β0 < . . . < βn < λ be any finite sequence and F ∈ Fα. Our
idea is to find non-empty W ∈

⋃
i≤n σβi

so that

W (ν) ⊆
⋂

i≤n

⋃
σβi
(ν) ∩

⋃
F.

At the first step of induction we put ∆0 = {σβi
: i ≤ n}, Θ0 = ∅ and choose

W0 ∈
⋃
∆0 as follows: We may assume F ≺ σβ0 . For any i < n there is Gi ∈ Fβi

with Gi ≺ σβi+1
. We denote F0 = fα

β0
F ∩ G0 and Fi+1 = fβi

βi+1
Fi ∩ Gi+1. Then

Fi+1 ≻ Fi and
⋃

Fi+1 ⊆
⋃

Fi. Any pairwise intersecting Ui ∈ Fi make up an
embedded sequence Un ⊆ . . . ⊆ U0 ⊆

⋃
F . We define W0 = U0.

For any m < n let ∆m,Θm ⊂ ∆0 and Wm ∈
⋃
∆m has been constructed so

that

(1) ∆m ∩Θm = ∅;
(2) ∆m ∪Θm = ∆0;
(3) Wm ⊆

⋃
F ;

(4) Wm ⊆
⋃

σ(ν) for any σ ∈ Θm;
(5) for any σ ∈ ∆m there is Uσ ∈ σ with Uσ ⊆ Wm.

Let Ωm = {σ ∈ ∆m : Uσ =Wm}.
If ∆m 6= Ωm, then we put ∆m+1 = ∆m −Ωm and Θm+1 = Θm ∪Ωm. As σ ∈

∆m+1 are nice, we can choose U ′
σ ∈ σ so that

⋂
{U ′

σ : σ ∈ ∆m+1} ∩ Wm(ν) 6= ∅.
Then Uσ ( Wm implies U ′

σ ⊆ Wm(ν) by our construction. We define Wm+1 to
be the maximal member of embedded sequence {U ′

σ : σ ∈ ∆m+1}.
If, finally, ∆m = Ωm, then Wm is as required. �
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Proof of Theorem: Define Fν = {pα(ν) : α < λ} for all ν ∈ 3. By our
construction, Fν ⊂

⋂
F∗
0 ⊂ X∗ and for any neighbourhood O of p there is α < λ

with {pβ(ν) : β ∈ λ − α} ⊂
⋂
F∗

α ⊂ O. Then the condition {pβ(ν) : β < α} ⊂
Cl

⋃
σα(ν) implies that the sets Cl Fν − {p} are pairwise disjoint and p ∈ Fν for

no more then one unique Fν . The other two ensure that p is a b-point in βX .
Our proof is complete. �
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