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Antichains in the homomorphism order of graphs

D. Duffus, P.L. Erdős, J. Nešetřil, L. Soukup

Abstract. Let G and D, respectively, denote the partially ordered sets of homomorphism
classes of finite undirected and directed graphs, respectively, both ordered by the homo-
morphism relation. Order theoretic properties of both have been studied extensively, and
have interesting connections to familiar graph properties and parameters. In particular,
the notion of a duality is closely related to the idea of splitting a maximal antichain.
We construct both splitting and non-splitting infinite maximal antichains in G and in
D. The splitting maximal antichains give infinite versions of dualities for graphs and for
directed graphs.

Keywords: partially ordered set, homomorphism order, duality, antichain, splitting pro-
perty

Classification: Primary 06A07; Secondary 05C99

1. Introduction

For any fixed type of finite relational structure, homomorphisms induce an
ordering of the set of all structures. In particular, given two graphs (respectively,
directed graphs) G and H write G ≤ H or G → H provided that there is a
homomorphism from G to H , that is, a map f : V (G) → V (H) such that for
all {x, y} ∈ E(G), {f(x), f(y)} ∈ E(H) (respectively, for all 〈x, y〉 ∈ E(G),
〈f(x), f(y)〉 ∈ E(H)). Then the relation ≤ is a quasi-order and so it induces an
equivalence relation: we say that G and H are homomorphism-equivalent or hom-
equivalent and write G ∼ H if and only ifG ≤ H andH ≤ G. The homomorphism
posets G and D are the partially ordered sets of all equivalence classes of finite
undirected and directed graphs, respectively, ordered by ≤. We will often abuse
notation by replacing the classes that comprise G and D with their members.
These partially ordered sets are of significant intrinsic interest and are use-

ful tools in the study of graph and directed graph properties. For instance, it
is easily seen that both are countable distributive lattices: the supremum, or
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join, of any pair is their disjoint sum, and the infimum, or meet, is their cate-
gorical or relational product. Both G and D are “predominantly” dense — the
former shown by Welzl [20] and the latter, by Nešetřil and Tardif [16]. Both also
embed all countable partially ordered sets — see [19] for a presentation. Basic
order-theoretic properties, such as the existence of suprema and infima for several
natural families in G, are considered in [13].
The maximal chains and antichains of an ordered set are subobjects of inter-

est. In this case, maximal antichains are particularly relevant because of their
relationship to the notion of a homomorphism duality, introduced by Nešetřil and
Pultr [14]: say that an ordered pair 〈F, D〉 of graphs, or directed graphs, is a
duality pair if

(1) F → = 9 D

where F → = {G : F → G} and 9 D = {G : G 9 D}. Equivalently, the set of
all structures is partitioned by the upset (or final segment) F → and the downset
(or initial segment) →D. (Here we also use the other common notation F ↑ and

D↓ for upsets and downsets, respectively.)
One important motivation for consideration of duality pairs is that of an “ob-

struction” to a graph property. For instance, the possibility of a homomorphism
of a graph G to K2, a 2-coloring, is obstructed by the existence of a homomor-
phism of some odd cycle to G. While there are no nontrivial duality pairs in G,
in D, each tree can play the role of F in (1). In fact, in [16], Nešetřil and Tardif
obtain a correspondence between duality pairs and gaps in the homomorphism
order for general relational structures. They use this to characterize duality pairs
and generalize this by describing exactly when the left handside of (1) can be
replaced by a finite union of final segments. They further note in [17] that the
2-element maximal antichains in D are exactly the duality pairs 〈F, D〉 where F
is a tree and D is its dual.
Foniok, Nešetřil and Tardif [10] are concerned with the most general circum-

stance. Let F and D both be finite antichains of structures of fixed type ∆. Call
〈F ,D〉 a generalized duality if

(2)
⋃

F∈F

F → =
⋂

D∈D

9D.

Equivalently, with S denoting the homomorphism poset of ∆-structures, S is
partitioned by

(3) S =

(

⋃

F∈F

F →

)

∪

(

⋃

D∈D

→D

)

.

The generalized dualities are characterized in [10]. They also show that when ∆
consists of one k-ary relation, which contains the graph cases, every finite maximal
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antichain in the lattice of ∆-structures is of the form F∪D. Conversely, for all but
three exceptional cases, the generalized dualities 〈F ,D〉 yield a maximal antichain
F ∪D.
It is quite natural to ask, in more general circumstances, if maximal antichains

possess these sorts of partitions. Indeed, Ahlswede, Erdős and Graham [1] in-
troduced the notion of “splitting” a maximal antichain. Say that a maximal
antichain A of a poset P splits if A can be partitioned into two subsets B and C
such that P = B↑ ∪C↓; say that P has the splitting property if all of its maximal
antichains split. They obtained sufficient conditions for the splitting property,
from which they proved, in particular, that all finite Boolean lattices possess it.
The property is also a useful tool in combinatorial investigations of posets, par-
ticularly distributive lattices; see, for instance [2], [3]. It is also a natural notion
for infinite posets; see [4], [8], [9].
The correspondence between generalized dualities and maximal antichains ob-

tained in [10] and the partition in (3) demonstrate that for ∆ = (k), essentially
all finite maximal antichains in the lattice S of ∆-structures split.
This paper is motivated by two goals. First, we would like to obtain gen-

eral order theoretic conditions on countable posets that ensure antichains split
and, thereby, obtain some of the duality results that had been restricted to finite
maximal antichains, as described above. See Section 4 for applications to G and
Section 5 for results on D. Second, we obtain splitting and non-splitting results
for infinite maximal antichains; in particular, these results underscore differences
between the structures G and D. The necessary results on splitting and related
notions are given in Section 3, which is preceded in Section 2 by a directed version
of what is known as the Sparse Incomparability Lemma.
In addition to the selected papers cited in this section, we refer the reader

to the book [11] by Hell and Nešetřil that is devoted to graph homomorphisms.
Chapter 3 gives a thorough introduction and many of the key results on maximal
antichains and dualities in G and D.

2. A Directed Sparse Incomparability Lemma

Recall that the girth of a graph, girth(G), is the length of a shortest cycle
contained in the graph. In case G is directed, its girth is that of the underlying
undirected graph, that is, of the symmetric version of G. In one of the first appli-
cations of the probabilistic method, in 1959 Paul Erdős [5] showed the existence
of graphs with independently prescribed girth and chromatic number. More pre-
cisely, for all natural numbers k and ℓ there is a graph G such that χ(G) > k and
girth(G) > ℓ.
Based on another probabilistic argument due to Erdős and Hajnal [6], Nešetřil

and Rödl [15] obtained an interesting generalization, referred to as the “Sparse
Incomparability Lemma”: for every pair of graphs H and G such that G → H but
H 9 G, and for every positive integer ℓ there exists a graphH ′ with girth(H ′) > ℓ
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such that H ′ → H and H ′ 9 G.
Here is a formulation from which the Sparse Incomparability Lemma follows,

itself a special case of a more far-reaching generalization.

Theorem 2.1 (Nešetřil-Zhu [18]). For every graphH and for all positive integers
k and ℓ there exists a graph G with the following properties:

(i) girth(G) > ℓ, and
(ii) for every graph H0 with at most k vertices, G → H0 if and only if H →

H0.

Here, we require a directed graph version of Theorem 2.1. The following is a
special case of a Sparse Incomparability Lemma for finite relational structures [12].

Theorem 2.2 (Directed Sparse Incomparability Lemma). For each directed
graph H = (W, F ) and for all integers m, ℓ ∈ N there is a directed graph H ′

such that

(i) girth(H ′) > ℓ,
(ii) for each directed graph G with |V (G)| < m we have H ′ → G if and only
if H → G, and

(iii) H and H ′ have the same numbers of connected components. In particular,

if H is connected then so is H ′.

Regarding the proof of Theorem 2.2, there are both probabilistic and deter-
ministic arguments available. For instance, it is straightforward to adapt the
probabilistic proof of Nešetřil-Rödl. We found an alternative approach based
on what appears to be a new graph parameter. Here is a brief outline of the
argument.
Given a graph G = (V, E) let the bipartite stability number αb(G) be the

maximum integer β such that:

∃A, B ∈ [V ]β with A ∩ B = ∅ and no edge between A and B.

Clearly αb(G) ≥ α(G)/2, where α(G) denotes the usual stability or independence
number of G. The following result is obtained by adjusting the Erdős-Rényi proof
[7] that there are graphs of large girth and small independence number.

Lemma 2.3. For all k, ℓ ∈ N and for all but finitely many n ∈ N there exists a

connected graph G′ = (V, E) with |V | = n, girth(G′) > ℓ and αb(G
′) < n/k.

Let H , m and ℓ be as in the statement of Theorem 2.2. Let k = 3m|W | and
n = kj for sufficiently large j. By Lemma 2.3, there exists a graph G′ = (V, E)
such that

• V =W × [3mj],
• girth(G′) > ℓ,
• αb(G

′) < n/k = j.
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In effect, we “blow up” each vertex of H into a class of 3mj vertices.
Define a directed graph H∗ = (V, E∗) as follows: if 〈h, i〉 ,

〈

h′, i′
〉

∈ V then
〈

〈h, i〉 ,
〈

h′, i′
〉〉

∈ E∗ if and only if (〈h, i〉 ,
〈

h′, i′
〉

) ∈ E and
〈

h, h′
〉

∈ F .
One now argues that if H is connected then H∗ has a large enough connected

component that satisfies (i), (ii) and (iii) of the theorem.

3. The splitting property

In the forthcoming sections we would like to apply some results from [9] to the
posets G and D to obtain antichains with certain properties related to dualities
and partitions of G and D. Concerning G it would be enough just to quote some
theorems from [9], but concerning D we should reformulate them a bit to make
them applicable here.
Let P = (P,≤) be a poset. (We find it useful sometimes to maintain a dis-

tinction between P and the underlying set P .) We say that a subset A ⊂ P is
cut-free in P provided there are no y ∈ A and x, z ∈ P such that x < y < z and
A ∩ [x, z] = A ∩ ([x, y] ∪ [y, z]). An element y ∈ P is called cut-point iff there
are x, z ∈ P such that x < y < z and [x, z] = [x, y] ∪ [y, z]. Clearly there is no
cut-point in a cut-free set.
If P = (P, <) is a poset and A ⊂ P then recall that the upset A↑ and the

downset A↓ of A are the sets

A↑ = {p ∈ P : ∃ a ∈ A a ≤ p}, A↓ = {p ∈ P : ∃a ∈ A p ≤ a};

also, use this natural extension of the notation,

Al = A↑ ∪ A↓.

As usual, we drop the braces and write a↑, a↓, and al in place of {a}↑, {a}↓ and

{a}l, respectively.
A maximal antichain A in P is a set of pairwise incomparable elements (an

antichain) that is maximal with respect to containment. We say that a maximal

antichain A splits if there is a partition (B, C) of A such that P = B↑ ∪ C↓. We
say that A strongly splits if and only if there is a partition (B, C) of A such that

for each p ∈ P \ A either the set B ∩ p↓ or the set C ∩ p↑ is infinite.
To construct maximal antichains with desired properties (for instance, splitting

or non-splitting), it is useful to be able to extend existing finite antichains to
maximal ones in certain special ways. This motivated Erdős and Soukup [9]
to formulate this definition: call P loose if for all x ∈ P and F ∈ [P ]<ω, if

x /∈ F ↑ there is y ∈ x↑ \ {x} that is incomparable to all elements in F . This
property is the key in showing that very familiar infinite distributive lattices,
such as ([ω]<ω,⊆), the lattice of finite subsets of a countably infinite set, do not
have the splitting property. We shall see that the nontrivial part of G has this
property (see Theorem 4.1) but that D requires a sharpening of the definition (see
Theorem 5.1).
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Definition 3.1. Let P = 〈P,≤〉 be a poset and let P ′ ⊂ P . We say that P ′ is a
loose kernel in P if

(LK) for all finite subsets F ⊆ P ′ and x ∈ P \ F ↑ there is y ∈ [x↑ ∩ P ′], y 6= x,
such that each element of F is incomparable to y.

Of course, P is loose if P itself is a loose kernel in P , just as in [9].

Remarks. (1) A loose kernel P ′ in a poset P does not have maximal elements
— just take F = ∅ in (LK) in the definition and any x in P ′ to produce y ∈ P ′

such that y > x. In particular, P ′ is infinite. Also, if P contains a loose kernel
then there is a loose kernel of P that is maximal, with respect to containment.
This is easily shown using Zorn’s Lemma.

(2) Regarding the homomorphism poset D, it is not loose since it has finite
maximal antichains — a finite maximal antichain as F in (LK) shows that (LK)
fails. Moreover, D has infinitely many finite maximal antichains, so we cannot
obtain a loose kernel for D by deleting finitely many elements, as we can for G.
Here is a condition that allows extension of a finite antichain in a particular

special way.

Definition 3.2. Let P = 〈P,≤〉 be a poset and P ′ ⊂ P . We say that P ′ has the
finite antichain extension property (in P) provided

(FAE) for all finite antichains F ⊆ P ′ and x ∈ P \ F there is y ∈ [xl ∩ P ′] such
that each element of F is incomparable to y.

Observation 3.3. If P ′ ⊂ P is both a loose kernel in P = (P,≤) and a loose
kernel in the dual Pd = (P,≥) then P ′ has the finite antichain extension property

in P .

The following observation is a sharpening of [9, Theorem 3.9]. We include the
straightforward proof to illustrate how the FAE property can be applied.

Theorem 3.4. Let P = 〈P,≤〉 be a countably infinite poset, let P ′ ⊂ P have the
finite antichain extension property in P , and let A1 ⊂ P ′ be a finite antichain.

Then there is a strongly splitting P-maximal antichain A such that A1 ⊂ A ⊂ P ′.

Proof: Let {pn : n < ω} be an ω-abundant enumeration of P , that is, the set
{n : pn = p} is infinite for each p ∈ P . Let A1 = {a0, a1, . . . , ar−1}. Proceed by
induction on i ≥ r to construct an infinite antichain A = {ai : i < ω} ⊂ P ′:

• if pi /∈ {aj : j < i} then let ai be comparable to pi;
• if pi ∈ {aj : j < i} then let ni = min{n : pn /∈ {am : m < i}} and let ai

be comparable to pni
.

This construction can be carried out because P ′ has the finite antichain extension
property.
Let p ∈ P \ A. Then the set Ap = {ai : pi = p} is infinite and for each a ∈ Ap

the element a and p are comparable. Let (B, C) be a partition of A such that
|B ∩ Ap| = |C ∩ Ap| = ω for each p ∈ P \ A.
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Then the partition (B, C) has the required property. �

The following results show that the existence of a loose kernel guarantees an
infinite non-splitting maximal antichain. The first is a slight generalization of [9,
Theorem 3.6].

Theorem 3.5. Let P = 〈P,≤〉 be a countably infinite poset, and let P ′ ⊂ P be a
loose kernel in P . Then there exists an infinite non-splitting P-maximal antichain
A ⊂ P ′.

Proof: See [9, Theorem 3.6]. �

Theorem 3.6. Let P = 〈P,≤〉 be a countably infinite poset, let P ′ ⊂ P be a
loose kernel in P , and let A1 ⊂ P ′ be a non-maximal antichain in P . Then there
is an infinite non-splitting P-maximal antichain A such that A1 ⊂ A ⊂ P ′.

Proof: The set P ′ \ A
l
1 is a loose kernel in P \ A

l
1, and P \ A

l
1 6= ∅ because A1

was not a maximal antichain. Hence by Theorem 3.5 there is a P \A1
l-maximal

antichain A′ ⊂ P ′ \ A
l
1 which does not split in P \ A

l
1. Then A = A1 ∪ A′ is a

maximal antichain in P having the required properties. �

4. The homomorphism poset G

The partially ordered set G of hom-equivalence classes of finite undirected
graphs is known to have only two finite maximal antichains — {K1} and {K2}.
Consequently, there are no nontrivial dualities. However, in studying the ordered
set G, it is interesting to know whether maximal antichains split and whether
antichains extend to maximal ones that split.
Let G′ = G \ {K1, K2}. For any bipartite graph G, G → K2, so we know that

all graphs in G′ are hom-equivalent to graphs all of whose connected components
contain odd cycles. The odd girth of a graph G, oddgirth(G), is the length of
the shortest odd cycle contained in the graph. As with girth, if graph does not
contain any odd cycles, its oddgirth is regarded as infinite.
The notion of odd girth is useful in dealing with homomorphism questions

because of this: for graphs G and H , if oddgirth(G) < oddgirth(H) then G 9

H . Also, it is straightforward to construct graphs of prescribed odd girth and
chromatic number using shift graphs — for instance, see [11, Theorem 2.23].
Alternatively, the original Erdős result could be used in the first part of the proof
below.

Theorem 4.1. G′ is both a loose kernel in G and a loose kernel in Gd. Hence,

G′ has the finite antichain extension property in G.

Proof: Let F ⊆ G′ be finite. To see that G′ is a loose kernel in G, let X ∈ G\F↑,
that is, F 9 X for all F ∈ F . Let Y ′ be a graph such that for all F ∈ F ,

(i) oddgirth(Y ′) > oddgirth(F ′) for all components F ′ of F , and
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(ii) χ(Y ′) > χ(F ).

Now let Y = X+Y ′ and let F ∈ F . By (i), F 9 Y , since no component of F has
a homomorphism to Y and F 9 X . By (ii), Y ′ 9 F , so Y 9 F . Hence, (LK)
holds and G′ is loose in G.
Now let us show that G′ is loose in the dual. Let H ∈ G \ F↓, that is, H 9 F

for all F ∈ F . Let k = max {|V (H)|, |V (F )| : F ∈ F} and ℓ = max{oddgirth(F ) :
F ∈ F}+ 1. Here ℓ is finite because F ⊂ G′.
By Theorem 2.1 there is a graph G ∈ G such that girth(G) > ℓ and for all

K ∈ G where |V (K)| ≤ k,

G → K ⇐⇒ H → K.

Therefore G → H but for all F ∈ F we have G 9 F . Since girth(G) >
oddgirth(F ) we have F 9 G for each F ∈ F . Furthermore H 9 K2 there-

fore H ∈ G′, therefore G 9 K2 and so G ∈ G′. Thus (LK) holds for G′ in Gd,
and we can apply Observation 3.3. �

As noted above, it is well-known that G′ has no finite maximal antichains.
We include a short proof to illustrate the relationship between loose kernels and
maximal antichains.

Corollary 4.2. There is no finite maximal antichain in G′.

Proof: Indeed, let F ⊂ G′ be a finite antichain. Then K1 < Fi (for each i)

therefore K1 /∈ F↑. The application of Theorem 4.1 gives us an element of G′,
which is incomparable to F . �

Since there are no finite maximal antichains and every finite antichain extends
to a maximal one, each finite antichain can be extended to an infinite maximal
antichain. The following shows that quite different behavior can be found in the
various extensions.

Corollary 4.3. Let A ⊆ G′ be a finite antichain. Then

(i) there exists a non-splitting maximal antichain A1 ⊂ G′ such that A ⊂ A1,
and

(ii) there exists a strongly splitting maximal antichain A2 ⊂ G′ such that

A ⊂ A2.

Proof: (i) This is a direct consequence of Theorem 3.6, applied to the poset G

and the loose kernel G′.

(ii) We can apply Theorem 3.4 because G′ has the finite antichain extension
property in G. �

The notions of a cut-point and a cut-free subset are closely tied to the splitting
property: see [1] and [9]. They have also been studied independently in the
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context of homomorphism orders of graphs: see [12]. We provide a short proof
that G′ is cut-free, both to illustrate an application of the Sparse Incomparability
Lemma and to highlight differences between G and D that we shall see again in
the next section.

Proposition 4.4. G
′ is cut-free.

Proof: We need to show that for all triples F < G < H , if G ∈ G′ (and therefore
H ∈ G′) then there is a G′ ∈ G′ such that F < G′ < H and G′ is incomparable
to G.

Since oddgirth(G) is finite for G ∈ G′, we can apply Theorem 2.1 to H with
parameters k = max(|V (G)|, |V (F )|) + 1 and ℓ = oddgirth(G) + 1 to get a graph
H ′ such that:

• H ′ → H , since H → H ,
• H ′

9 G, since H 9 G,
• H ′ 9 F , since H 9 F , and
• girth(H ′) > ℓ.

Since oddgirth(G) < ℓ we have X 9 H ′ for each connected component X of G.
Therefore the graph G′ = F +H ′ satisfies the requirements. �

5. The homomorphism poset D

In [10], the complete characterization of finite maximal antichains in the ho-
momorphism poset for finite relational structures with a single relation shows the
crucial role of forests. In the study of G, odd cycles play a crucial role. So, one
might hope that the investigation the two subsets D′ and D∗ of D defined below
would lead to the construction of interesting antichains by verifying the loose ker-
nel or FAE properties, then employing results such as Theorems 3.4–3.6. It turns
out to be a bit more complicated.

Before defining these, it is useful to recall that a finite directed graph X is
a core if every homomorphism of X to itself is bijective. Every directed graph
is homomorphically equivalent to a unique core, and, so, every directed graph
class contains exactly one core (cf. [11]). For the rest of this section, we shall
use “graph” for “directed graph” and, given a directed graph X , X denotes its
undirected version.

We now define the two subsets of D:

• D′ ⊆ D consists of all graph classes with core X such that every connected
component of X contains an odd cycle;

• D∗ ⊆ D consists of all graph classes with core Y such that at least one
connected component of Y has contains an odd cycle.

Of course, D′ ⊆ D∗, while the graph H defined below in the proof of Proposi-
tion 5.2 is in D∗ and not in D′.
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The following result collects some straightforward observations about these
subsets in D. The proofs have been omitted since the methods are not very
different from those encountered in the undirected case.

Proposition 5.1. In the partially ordered set D:

(i) D′ is a loose kernel in D;

(ii) D∗ is a cut-free subset of D; and,

(iii) D∗ is loose in (D∗)d.

Unfortunately, we can also prove that

Proposition 5.2. In the partially ordered set D:

(i) D′ does not have the finite antichain extension property in D; and

(ii) D∗ does not have the finite antichain extension property in D.

Proof: (i) Let ~T3 be the transitive tournament on three vertices and let ~P3 =
(W, F ) be the directed path on four vertices: W = {x0, x1, x2, x3} and F =

{〈xi, xi+1〉 : i = 0, 1, 2}. Now let H = ~T3 + ~P3, the disjoint union of T and P3.

Then H is a core in D. Also, ~T3 ∈ D′, is a core and ~T3 < H . Regard {~T3} as an
antichain. If D′ had the (FAE) property there would exist a core H ′ ∈ D′ such

that H ′ is incomparable to ~T3 and H ′ < H . However, every connected component

of H ′ contains an odd cycle, so H ′ < H implies that H ′ ≤ ~T3 since no component

of H ′ can be mapped by a homomorphism into ~P3.

(ii) We can base an example on any oriented tree T but to be a bit more specific

let T = ~Pk be a directed path on k vertices. Then the dual D(~Pk) is the transitive

tournament ~Tk on k vertices (see, for instance [11, Proposition 1.20]). Let H =
~Tk + ~Pk. As long as k ≥ 3, H ∈ D∗. Also, H and ~Tk are cores in D and ~Tk < H .
Regard {H} as an antichain. If D

∗ had the (FAE) property there would exist a

core H ′ ∈ D∗ such that H ′ is incomparable to H and ~Tk < H ′. But (~Pk, ~Tk) is

a dual pair, so the fact that H ′ is not below ~Tk implies ~Pk < H ′ — just apply

equation (3) in this special case. From this it would follow thatH = ~Tk+ ~Pk < H ′,
a contradiction. �

Fortunately there is another subset Dc of D which is both an upward loose
kernel in D and has the finite antichain extension property in D. To discuss it,

first we need an easy observation. A finite directed graph ~C is a directed cycle if it
is connected and each vertex has indegree and outdegree 1. It is easily seen that

each directed cycle is a core. Use ~Ck to denote the directed cycle on k vertices.

Proposition 5.3. Let ~C be a directed cycle and T be a graph such that T is an

arbitrary tree. Then T → ~C.

Proof: Map a vertex v of T to any vertex of the cycle. Next the vertices adjacent

to v in T can be mapped into vertices of ~C so that directed edges are preserved.
Since there is no cycle in T we can finish the process easily. �



Antichains in the homomorphism order of graphs 581

Let Dc be the set of all homomorphism classes in D whose coreX has the property

that for some ~C, ~C → X . Here is a direct consequence of Proposition 5.3.

Observation 5.4. Let G ∈ D
c and let T ∈ D be an oriented tree. Then G+T ∼

G.

Hence we can assume that no component of an element of Dc can be embedded
into a tree. Therefore from now on we assume that each component X of each
element of Dc has the property that X contains a cycle.

Theorem 5.5. Dc is a loose kernel in D.

Proof: Let F ⊆ Dc be finite, and X ∈ D but X /∈ F↑. We are going to find a
Y ∈ D

c such that X → Y , Y 9 X , and Y is incomparable to each F ∈ F .
Let n := max{|X |, |F | : F ∈ F}. Using the Erdős theorem, obtain a graph Z

such that χ(Z) > n, girth(Z) > n, Z is connected, and Z contains at least one
directed cycle. Then Z ∈ Dc. Let Y = X + Z. Since Z ∈ Dc therefore Y ∈ Dc as
well. Clearly X → Y while Y 9 X because χ(Y ) > |X |.
Assume that f is a homomorphism of F to Y . Then there is a component K

of F such that f [K] ⊆ Z. But |V (K)| ≤ n while girth(Z) > n, hence the image
f [K] is a tree, which contradicts the assumption that no component of an element
of Dc can be mapped into a tree. �

Theorem 5.6. Let A1 ⊆ Dc be a finite antichain. Then there is a non-splitting

antichain A such that A1 ⊆ A ⊆ Dc and A is maximal in D.

Proof: Since Dc is an upward loose kernel it can be used in Theorem 3.5 to
extend a non-maximal antichain into a non-splitting antichain, maximal in D.

�

Theorem 5.7. Dc has the finite antichain extension property in D.

Proof: Let F ⊆ D
c be a finite antichain and X ∈ D. We need to find Y ∈

(Xl ∩ Dc) \ Fl. In case X /∈ F↑ then Theorem 5.5 provides the required Y .

Assume now that X ∈ F↑. Then X ∈ D
c because there exists F ∈ F with

F → X and the image of its directed cycle of F is a directed cycle in X . Let us

assume that X contains the directed cycle ~Ck.
Let n = max{|X |, |F | : F ∈ F}. Apply Theorem 2.2 with H = X and

m = ℓ = n to obtain X ′ = H ′. Now let Y = X ′ + ~Ckn. Then X ′ → X and
~Ckn → ~Ck therefore Y → X . At the same time X 9 Y since girth(Y ) > ℓ ≥ |X |.

Thus, the cycle ~Ck of X cannot be embedded into Y . The same applies for the
directed cycles in each F ∈ F . Therefore, F 9 Y . Finally we have X 9 F and
so Y 9 F . �

Corollary 5.8. Dc does not contain finite maximal antichains.

We recall that a full description of the finite maximal antichains in D is given
in [10].
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Corollary 5.9. Let A1 ⊆ Dc be a finite antichain in D. Then there is a strongly

splitting D-maximal antichain A1 ⊂ A ⊂ Dc.

Proof: This is just the direct application of Theorem 3.4 to the posets D and Dc.
�

Here is a final use of our methods in describing the order structure of D.

Theorem 5.10. D
c is cut-free in D.

Proof: Let F < G < H where G ∈ Dc (and therefore H ∈ Dc as well). We need
a G′ ∈ Dc, which is incomparable to G but F < G′ < H .
Let n = max{|F |, |G|, |H |}. Apply Theorem 2.2 to H with parameters m =

ℓ = n to obtain the directed graph H ′. Since H ∈ Dc, there is k such that ~Ck is

a subgraph of H . Let G′ = F +H ′ + ~Ckn.
Then F → G′ since F is a subgraph of G′. Furthermore H ′ → H due to

the fact that |H | = n ≤ m and H → H . Due to our assumption on Dc, each
component of the graph G contains cycles, and at least one of them, say K,
cannot be embedded into F . Therefore if G → Y then for this component we
have K → H ′+Cnk. However, girth(H

′+Cnk) > |K|, hence K is embedded into
a tree, a contradiction. �
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