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On the lattices of quasivarieties of differential groupoids

A.V. Kravchenko

Abstract. The main result of Romanowska A., Roszkowska B., On some groupoid modes,
Demonstratio Math. 20 (1987), no. 1–2, 277–290, provides us with an explicit description
of the lattice of varieties of differential groupoids. In the present article, we show that
this variety is Q-universal, which means that there is no convenient explicit description
for the lattice of quasivarieties of differential groupoids. We also find an example of a
subvariety of differential groupoids with a finite number of subquasivarieties.

Keywords: mode, differential groupoid, lattice of subquasivarieties, Q-universal quasi-
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Introduction

A differential groupoid is a structure with one fundamental binary operation
satisfying the identities

x · x = x,(I)

(x · y) · (z · t) = (x · z) · (y · t),(E)

x · (x · y) = x.(D)

Let Dm denote the variety of differential groupoids.
Many authors use the term medial groupoid instead of entropic, i.e., satisfy-

ing (E), see [3]. Differential groupoids were studied in [5]–[7], where they were
called LIR-groupoids (left normal, idempotent, and reductive groupoids) and a
different basis for identities was used. The term differential groupoid appeared
in [8]. For more information, the reader is referred to the monograph [9].

For i > 0 and n > 0, let Di,n denote the subvariety of Dm defined by the
identity

(1) xyi+n = xyi,

where xyk = (. . . ((x · y) · y) . . . ) · y
︸ ︷︷ ︸

k times

. The structure of the lattice Lv(Dm) of

subvarieties of Dm is described by [6, Theorem 5.3], cf. also [9, Theorem 8.4.14].

The work was partially supported by INTAS (grant 03-51-4110) and the Russian Council for
Support of Leading Scientific Schools (grant NSh-4787.2006.1).
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Proposition 1. Let Nc denote the lattice of natural numbers with the usual

order and let Nd denote the lattice of positive integers ordered by the divisibility

relation.

Proper subvarieties of Dm form a lattice which is isomorphic to the direct

product Nc × Nd. Moreover, a pair (i, n) corresponds to the variety Di,n.

A quasivariety K of groupoids is said to be Q-universal if, for every quasivari-
ety K′ of structures of finite type, the lattice Lq(K′) of subquasivarieties of K′ is
a homomorphic image of some sublattice of the lattice Lq(K) of subquasivarieties
of K. For every Q-universal quasivariety K, the lattice Lq(K) is highly compli-
cated. Namely, |Lq(K)| = 2ω; moreover, this lattice satisfies no nontrivial lattice
identity and contains a sublattice that is isomorphic to the ideal lattice of a free
ω-generated lattice.

In Section 1, we prove that the variety Dm is Q-universal. This shows that
there is no convenient description for the lattice Lq(Dm). The following ques-
tion naturally arises: Which proper subvarieties of differential groupoids are Q-
universal? In Section 2, we show that D1,1 is not Q-universal.

1. The variety Dm is Q-universal

We use the standard notation for class operators. Namely, Q stands for tak-
ing the least quasivariety containing a given class, while Ps, S, and H stand for
formation of subdirect products, subgroupoids, and homomorphic images, respec-
tively. For every class operator O and classes X and K, we denote by (O∩K)(X)
the class O(X) ∩K.

Our proof is based on the following sufficient condition for Q-universality (cf. [2,
Theorem 5.4.26]).

Proposition 2. A quasivariety K of groupoids is Q-universal if there exist a
subclass B of K and a family (Ai)i<ω of finite groupoids in B such that the

following conditions are satisfied.

(Q1) For every n < ω and B-congruences θ and θ′ on An, if An/θ
′ is embed-

dable into An/θ then either θ = θ′ or An/θ
′ is a trivial groupoid.

(Q2) For every n < ω, the meet semilattice Ln of B-congruences on An is a

subsemilattice of the meet semilattice of congruences on An. Moreover,

the meet semilattice of subsets of an n-element set is embeddable into Ln.

(Q3) If m 6= n then the class An ∩ S(Am), where An = H(An) ∩ B, consists
of trivial groupoids only.

(Q4) For every X ⊆K and n < ω, we have

Q(X) ∩An = (Ps ∩An)(S ∩An)(X).

For more information on Q-universal quasivarieties, the reader is referred to [1,
Section 5].
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Recall that a groupoid G is called a left zero band if G satisfies the identity
x · y = x, i.e., if G ∈ D0,1. We say that a groupoid G is an Lz-Lz-sum (of
left zero bands Gi over a left zero band I) satisfying the left normal law if there
exists a partition G =

⋃

i∈I Gi and, for every pair (i, j) ∈ I2, there exists a map
hij : Gi → Gi such that the following conditions are satisfied:

(i) hii is the identity map for every i ∈ I,
(ii) hij(hik(x)) = hik(hij(x)) for all i, j, k ∈ I and x ∈ Gi,

(iii) ai · aj = hij(ai) for all i, j ∈ I, ai ∈ Gi, and aj ∈ Gj .

The structure of differential groupoids was completely described in [6, Sec-
tion 2], cf. also [4, 5, 7]. Namely, we have G ∈ Dm if and only if G is an
Lz-Lz-sum satisfying the left normal law.

Let C0 denote the trivial groupoid whose universe is {∞}. For every n > 0,
let Cn denote the Lz-Lz-sum of G1 = {0, 1, . . . , n − 1} and G2 = {∞}, where
h12(k) ≡ k+ 1 (mod n) and h21 is the identity map. We have Cn ∈ Dm for each
n > 0.

We describe congruences on the constructed groupoids. Let m divide n. For
every k < n, let rk denote the remainder in the division of k by m. It is easy to
see that the map defined by the rule

∞ 7→ ∞, k 7→ rk

is a homomorphism from Cn onto Cm. Let θm denote the kernel of this homomor-
phism.

Lemma 3. Let n > 0 and let θ be a congruence on Cn. Then either Cn/θ is a
trivial groupoid or θ = θm for some divisor m of n.

Proof: If (∞, k) ∈ θ, where 0 6 k < n, then, as in [4, p. 378], we find that
Cn/θ is a trivial groupoid. If (∞, k) /∈ θ for all k with 0 6 k < n then θ 6 θ1.
By [7, Propositions 2.2 and 2.5], we conclude that the restriction of θ to G1 is
a congruence on a cyclic abelian group of order n. Hence, θ = θm for some m
dividing n. �

Let B denote the subclass ofDm consisting of trivial groupoids and differential
groupoids that are not left zero bands. We have Cn ∈ B if and only if n 6= 1.

Let P denote the set of prime numbers. Consider a partition P =
⋃

i<ω Pi with
|Pi| = i + 1 for all i < ω and Pi ∩ Pj = ∅ for all i 6= j. Let ki =

∏

p∈Pi
p. Put

Ai = Cki
for i < ω.

Theorem 4. The class B and the family (Ai)i<ω satisfy conditions (Q1)–(Q4)
of Proposition 2. Hence, Dm is a Q-universal quasivariety.

Proof: We have (Ai)i<ω ⊆ B. It is easy to see that, for i, j < ω, the groupoid
Ci is embeddable into the groupoid Cj if and only if i = j. By Lemma 3, this
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immediately implies (Q1) and (Q3). Since Li is obtained from the meet semilattice
of congruences on Ai by removing the congruence θ1, we also obtain (Q2).

We prove (Q4). Let X ⊆ Dm and let n < ω. The inclusion Q(X) ∩ An ⊇
(Ps ∩An)(S ∩An)(X) is obvious.

Consider a nontrivial groupoid B ∈ Q(X)∩An. By [2, Corollary 2.3.4], we have
Q(X) = SPuP(X), whereP andPu are the class operators for formation of direct
products and ultraproducts. Hence, there exists a family (Bi)i∈I of groupoids and
an ultrafilter U over I such that B is a subgroupoid of the ultraproduct

∏

i∈I Bi/U .
Moreover, each Bi is the direct product of a family (Bij)j∈Ii

of groupoids in X.
Since B is a homomorphic image of the finite groupoid An, we conclude that B

is a finite groupoid too. There exists a first-order sentence ϕ such that, for every
groupoid X , the following two conditions are equivalent: (a) X satisfies ϕ; (b) B
is embeddable into X . In particular,

∏

i∈I Bi/U satisfies ϕ. By the  Loś Theorem,
there exists an i ∈ I such that Bi satisfies ϕ. Hence, there exists an embedding
α : B → Bi.

Let πj :
∏

j∈Ii
Bij → Bij be the jth projection map. Denote by ψj the com-

position πj ◦ α of homomorphisms. For every j ∈ Ii, let Gj be the homomorphic
image of B with respect to ψj . Then Gj is a subgroupoid of Bij and a homomor-
phic image of An.

We show that B is a subdirect product of the family (Gj)j∈Ii
, i.e., if x, y ∈ B

and x 6= y then there exists a j ∈ Ii such that ψj(x) 6= ψj(y) (or, which is
equivalent,

⋂

j∈Ii
kerψj is the equality relation ∆B on B). Indeed, since α is an

embedding, we have α(x) 6= α(y). Since each πj , j ∈ Ii, is a projection, we have
ψj(x) = πj(α(x)) 6= πj(α(y)) = ψj(y) for at least one j ∈ Ii.

Let J = {j ∈ Ii : Gj /∈ D0,1}. If J = ∅ then B is a left zero band, a
contradiction. By Lemma 3, we have kerψj ⊆ kerψk for all j ∈ J and k ∈ Ii \ J .
Hence

⋂

j∈J kerψj =
⋂

j∈Ii
kerψj = ∆B . Therefore, B is a subdirect product of

the family (Gj)j∈J ⊆ B. Consequently, B ∈ (Ps ∩An)(S ∩An)(X). �

2. The variety D1,1 is not Q-universal

In this section, we find subdirectly irreducible groupoids in D1,1 and show that
the lattice Lq(D1,1) is finite.

For i = n = 1, identity (1) has the following form:

(1′) xy2 = xy.

Define a relation 6 on G as follows:

a 6 b ⇐⇒ b = ax1 . . . xn for some x1, . . . , xn ∈ G,

where, ax1 . . . xn = (. . . ((a · x1) · x2) . . . · xn). Using the left normal law

(L) (x · y) · z = (x · z) · y
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(see [9, Proposition 5.6.2]) and (1′), it is easy to check that the relation 6 is a
partial order on G and

(2) x 6 y implies xz 6 yz

for all x, y, z ∈ G.
Assume that G is a finite groupoid. Let M denote the set of maximal elements

with respect to the order 6 and, for every m ∈M , let Gm denote the order ideal
generated by m (or the orbit of m). It is easy to see that m1 6= m2 implies that
Gm1 ∩Gm2 = ∅.

As in [9, p. 537] (cf. also [5]), let β denote the congruence on G defined as
follows:

(a, b) ∈ β ⇐⇒ a, b ∈ Gm for some m ∈M.

Then G is an Lz-Lz-sum of its β-orbits.
Let G0 denote the two-element left zero band with the universe {0, 1}. Let G1

denote the Lz-Lz-sum of β-orbits {0, 1} and {2}, where 0 < 1, i.e., 0 · 2 = 1 and
x · y = x if the pair (x, y) is different from (0, 2).

Theorem 5. A finite groupoid G is subdirectly irreducible in D1,1 if and only if

G is isomorphic to either G0 or G1.

Proof: It is easy to see that G0 and G1 are subdirectly irreducible inD1,1 because
0 and 1 cannot be separated by proper homomorphisms, i.e., homomorphisms that
are not isomorphisms.

We prove the “only if” part.
(i) Let G ∈ D1,1 and let J = {m ∈ M : |Gm| > 1}. Notice that, for every

groupoid G that is subdirectly irreducible in D1,1, we have |J | 6 1.
Indeed, let there exist m1,m2 ∈M such that m1 6= m2 and |Gm1 |, |Gm2 | > 1.

For j = 1, 2, consider the map ψj defined by the rule

(3) ψj(x) =

{
x, x /∈ Gmj

,

mj , x ∈ Gmj
.

Since mj is a maximal element and Gmj
is a non-singleton orbit, ψj is a proper

homomorphism, j = 1, 2. It is easy to see that kerψ1 ∩ kerψ2 is the equality
relation ∆G, i.e., the homomorphisms ψ1 and ψ2 separate points of G. Therefore,
if |J | > 1 then G is not subdirectly irreducible.

(ii) If J = ∅ then G ∈ D0,1, i.e., G is a left zero band. Each subdirectly
irreducible groupoid in D0,1 is isomorphic to G0. In the sequel, we only consider
subdirectly irreducible groupoids in D1,1 that are not left zero bands and assume
that |J | = 1, i.e.,

G =
⋃

16i6n

Gi, where |G1| > 1 and Gi = {gi} for i > 1.
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(iii) Let x, y ∈ G and let x 6= y. We show that x and y are separated by
homomorphisms to G1.

If either x = gi or y = gi, 2 6 i 6 n, then it suffices to consider the homomor-
phism ψ1 from (3).

Assume that x, y ∈ G1 and y 66 x. Define a map ϕxy as follows:

ϕxy(a) =







0, a 6 x,

1, either a ∈ G1 with a 66 x or a = gk with xgk = x,

2, a = gk with xgk 6= x.

It is clear that ϕxy is a map from G onto G1 and ϕxy(x) = 0 6= 1 = ϕxy(y). It
remains to prove that ϕxy is a homomorphism.

We show that ϕxy(ab) = ϕxy(a)ϕxy(b). Three cases are possible.

(a) Let ϕxy(a) = 0, i.e., let a 6 x.

If b ∈ G1 then ab = a and ϕxy(a)ϕxy(b) = 0 · z = 0 = ϕxy(a) = ϕxy(ab), where
z ∈ {0, 1}.

If ϕxy(b) = 1 and b /∈ G1 then b = gi with xgi = x. Since a 6 x, we have
ab = agi 6 xgi = x by (2). Hence, ϕxy(ab) = 0 = 0 · 1 = ϕxy(a)ϕxy(b).

If ϕxy(b) = 2 then b = gi with xgi 6= x. Assume that ab = agi 6 x. Since
a 6 x, there exist y1, . . . , yn ∈ G such that ay1 . . . yn = x. We obtain xgi =
ay1 . . . yngi = agiy1 . . . yn 6 xy1 . . . yn = x by using (L), (2), and (1′). Hence,
xgi 6 x. By definition, x 6 xgi, which implies x = xgi, a contradiction. Thus,
ab 66 x and ϕxy(ab) = 1 = 0 · 2 = ϕxy(a)ϕxy(b).

(b) Let a ∈ G1 and let a 66 x.

For every b ∈ G, we have ab ∈ G1 and ab 66 x. Since 1 · z = 1 in G1, we obtain
ϕxy(ab) = 1 = 1 · z = ϕxy(a) · ϕxy(b) for every b ∈ G.

(c) Let a = gi.

For every b ∈ G, we have ab = a. Since 1 · z = 1 and 2 · z = 2 in G1, we obtain
ϕxy(ab) = t = t · z = ϕxy(a) · ϕxy(b) for every b ∈ G, where t ∈ {1, 2}.

Thus, if |G| > 3 then all points of G are separated by proper homomorphisms
to G1; hence, G cannot be subdirectly irreducible in D1,1. �

Lemma 6. If G ∈ D1,1 \D0,1 then G1 is embeddable into G.

Proof: Since G /∈ D0,1, there exist a, b ∈ G such that ab 6= a. Define a map
from G1 into G as follows:

0 7→ a, 1 7→ ab, 2 7→ ba.

It is easy to see that this is the required embedding. �
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Theorem 7. The lattice Lq(D1,1) is a three-element chain.

Proof: Since D1,1 is locally finite and has finitely many finite subdirectly irre-
ducible groupoids, there are no infinite subdirectly irreducible groupoids in D1,1.
By the Birkhoff Subdirect Representation Theorem and Theorem 5, D1,1 is the
quasivariety generated by G1. The lattice Lq(D0,1) is a two-element chain. By
Lemma 6, if a subquasivariety K of D1,1 contains a groupoid G that is not a left
zero band then K = D1,1. �

3. Concluding remarks

We have proven that the variety Dm is Q-universal. It is easy to see that the
method used in the proof of Theorem 4 does not allow us to prove that some
subvariety of the form Di,n is Q-universal. Indeed, the family (Ai)i<ω does not
belong to such a subvariety. We have also shown that the variety D1,1 is not
Q-universal. The following problem seems to be of an interest: Determine the
borderline between simple and Q-universal varieties of differential groupoids.
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the text.
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