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Moufang loops of odd order

p1p2 · · · pnq
3 with non-trivial nucleus

Andrew Rajah, Kam-Yoon Chong

Abstract. It has been proven by F. Leong and the first author (J. Algebra 190 (1997),

474–486) that all Moufang loops of order pαq
β1
1

q
β2
2

· · ·qβn

n where p and qi are odd primes,
are associative if p < q1 < q2 < · · · < qn, and

(i) α ≤ 3, βi ≤ 2; or
(ii) p ≥ 5, α ≤ 4, βi ≤ 2.

The first author also proved that if p and q are distinct odd primes, then all Moufang
loops of order pq3 are associative if and only if q 6≡ 1(mod p) (J. Algebra 235 (2001),
66–93). In this paper, we prove that all Moufang loops of order p1p2 · · · pnq3 where
pi and q are odd primes, are associative if p1 < p2 < · · · < pn < q, q 6≡ 1(mod pi),
pi 6≡ 1(mod pj) and the nucleus is not trivial.

Keywords: Moufang loop, order, nonassociative

Classification: Primary 20N05

1. Introduction

A binary system 〈L, ·〉 in which specification of any two of the values x, y, z in
the equation x·y = z uniquely determines the third value is called a quasigroup. If
it further contains a (two-sided) identity element, then it is called a loop. A loop
〈L, ·〉 is a Moufang loop if it satisfies any one of the following four (equivalent)
Moufang identities:

xy · zx = (x · yz)x First Middle Moufang identity

xy · zx = x(yz · x) Second Middle Moufang identity

x(y · xz) = (xy · x)z Left Moufang identity

(zx · y)x = z(x · yx) Right Moufang identity.

From now on, L is defined as a finite Moufang loop.

The research of the first author was supported by grant no. 203/PMATHS/671189 of the
Fundamental Research Grant Scheme.
The research of the second author was supported by funding under the Graduate Assistant

Scheme from Universiti Sains Malaysia.



302 A.Rajah, K.Y.Chong

In [2], O. Chein proved that all Moufang loops of order p, p2, pq and p3 are
groups when p and q are primes. M. Purtill in [13] showed that all Moufang loops
of odd order pqr and pq2 are associative for distinct primes p, q and r. Though
an error was discovered in his proof of the result for the case p < q (see [14]), this
case was later resolved by F. Leong and A. Rajah (see [8]) in 1995.

Soon after this, F. Leong and A. Rajah continued extending that result to
Moufang loops of orders with higher powers of primes, that is of orders p21p

2
2 · · · p

2
m

and p4q1q2 · · · qn (see [9] and [10]). Finally, in [15], they proved that all Moufang

loops of odd order pαqβ1
1 qβ2
2 · · · qβn

n where p and qi are odd primes, are associative
if p < q1 < q2 < · · · < qn, and

(i) α ≤ 3, βi ≤ 2; or
(ii) p ≥ 5, α ≤ 4, βi ≤ 2.

In year 2001, A. Rajah proved that if p and q are distinct odd primes, then
all Moufang loops of order pq3 are associative if and only if q 6≡ 1(mod p) (see
[15]). A natural question that follows from this result is: “Are all Moufang loops
of odd order p1p2 · · · pnq3 where pi and q are odd primes, p1 < p2 < · · · < pn < q,
q 6≡ 1(mod pi) associative as well?” In this paper, we give a positive answer for
this question when pi 6≡ 1(mod pj) and the nucleus is not trivial.

[Note: An inaccurate version of the above result was presented during the
Conference Loops ’07. However, in the process of writing this paper, we have
corrected the mistake by adding the requirement of a non-trivial nucleus.]

2. Definitions

1. Define

zR(x, y) = (zx · y)(xy)−1,

zL(x, y) = (yx)−1(y · xz),

zT (x) = x−1 · zx.

I(L) = 〈R(x, y), L(x, y), T (x)|x, y ∈ L〉 is called the inner mapping group
of L.

2. La, the associator subloop of L, is the subloop generated by all the as-
sociators (x, y, z) in L where (x, y, z) = (x · yz)−1(xy · z). We shall also
denote La = (L, L, L) = 〈(l1, l2, l3)|li ∈ L〉. Clearly L is associative if and
only if La = {1}.

3. Let K be a subloop of L and π a set of primes.

(i) K is a proper subloop of L if K 6= L.
(ii) K is a normal subloop of L (K ⊳ L) if Kθ = {kθ |k ∈ K} = K for
all θ ∈ I(L).
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(iii) A positive integer n is a π-number if every prime divisor of n lies
in π.

(iv) For each positive integer n, we let nπ be the largest π-number that
divides n.

(v) K is a π-loop if the order of every element of K is a π-number.

(vi) K is a Hall π-subloop of L if |K| = |L|π.

(vii) K is a Sylow p-subloop of L if K is a Hall π-subloop of L and
π = {p}.

4. Let K be a non-trivial normal subloop of L.

(i) L/K is a proper quotient loop of L.

(ii) K is a minimal normal subloop of L if for every non-trivial normal
subloop M of L, M ⊂ K ⇒ M = K.

5. Let K be a proper normal subloop of L. K is a maximal normal subloop
of L if for every proper normal subloop M of L, K ⊂ M ⇒ M = K.

6. All other definitions follow those in [1].

3. Known results on Moufang loops and groups

Let L be a finite Moufang loop and G a finite group.

(R1) L is diassociative, that is, 〈x, y〉 is a group for any x, y ∈ L. Moreover,
if (x, y, z) = 1 for some x, y, z ∈ L, then 〈x, y, z〉 is a group. [1, p. 117,
Moufang’s theorem]

(R2) |K| divides |L| for every subloop K of L. [6, p. 50, Theorem 2]
(R3) Suppose |L| is odd, K is a subloop of L, and π is a set of primes. Then

(a) K is a minimal normal subloop of L ⇒ K is an elementary abelian
group and (K, K, L) = 〈(k1, k2, l)|ki ∈ K, l ∈ L〉 = {1}. [5, p. 402,
Theorem 7]

(b) L contains a Hall π-subloop. [5, p. 409, Theorem 12]

(c) L is solvable. [5, p. 413, Theorem 16]

(R4) Suppose |L| is odd and every proper subloop of L is a group. If there
exists a minimal normal Sylow subloop of L, then L is a group. [8, p. 268,
Lemma 2]

(R5) Let L be a Moufang loop of odd order such that every proper subloop and
quotient loop of L is a group. Suppose Q is a Hall subloop of L such that
(|La|, |Q|) = 1 and Q ⊳ LaQ. Then L is a group. [10, p. 564, Lemmas 3
and 9, p. 478, Lemma 1(a)]

(R6) Let L be a nonassociative Moufang loop of odd order such that all proper
quotient loops of L are groups. Then:

(a) La is a minimal normal subloop of L; and
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(b) La lies in every maximal normal subloop M of L. Moreover, L =
M 〈x〉 for any x ∈ L − M .

[11, p. 478, Lemma 1]

(R7) Suppose |L| = p3 where p is a prime. Then L is a group. [2, p. 34,
Proposition 1]

(R8) Let L be a Moufang loop of odd order pα1
1 pα2
2 · · · pαm

m where p1, p2, . . . , pm

are distinct primes and αi ≤ 2. Then L is a group. [9, p. 882, Theorem]
(R9) Suppose p and q are distinct odd primes. There exists a nonassociative

Moufang loop of order pq3 if and only if q ≡ 1(mod p). [15, p. 78, Theo-
rem 1 and 7, p. 86, Theorem 2]

(R10) |x| divides |L| for every x ∈ L. [1, p. 92, Theorem 1.2]
(R11) Let N denote the nucleus of L. Then N ⊳ L. [1, p. 114, Theorem 2.1]
(R12) (xn, y, z) = (x, yn, z) = (x, y, zn) = (x, y, z) for any x, y, z ∈ L and n ∈ N .

[8, p. 267, Lemma 1]
(R13) If H is a subloop of a finite Moufang loop L, u is an element of L, and d is

the smallest positive integer such that ud ∈ H , then | 〈H, u〉 | ≥ d|H |, with
equality if and only if each element of 〈H, u〉 has a unique representation
in the form huα, where h ∈ H and 0 ≤ α < d. [3, p. 5, Lemma 0]

(R14) Let L be a Moufang loop and K a normal subloop of L. Then L/K is a
group ⇒ La ⊂ K. [10, Lemma 1(a), p. 563]

(R15) Suppose |L| = pαm where p is a prime, (p, m) = 1, (p − 1, pαm) = 1 and
L has an element of order pα. Then L = P ⋊ K, a split extension of a
normal subloop K of order m with a subloop P of order pα. [12, p. 39,
Theorem 1]

(R16) Sylow’s first theorem: If p is a prime and pα divides |G|, then G has a
subgroup of order pα. [7, p. 92, Theorem 2.12.1]

(R17) Sylow’s second theorem: If p is a prime and pn divides |G| but pn+1 ∤
|G|, then any two subgroups of G of order pn are conjugates. [7, p. 99,
Theorem 2.12.2]

(R18) Sylow’s third theorem: The number of p-Sylow subgroups in G, for a given
prime p, is of the form 1+ kp and divides |G|. [7, p. 100, Theorem 2.12.3]

(R19) If m = pα1
1 pα2
2 · · · pαk

k
, with p1 < p2 < · · · < pk odd primes and αi > 0

for all i, then every group of order m is abelian if and only if both the
following conditions hold:

(a) αi ≤ 2 for all i ∈ {1, 2, . . . , k}; and

(b) p
αj

j 6≡ 1(mod pi) for any i and j.

[4, p. 239, Lemma 1.8]

4. Main results

Lemma 1. Let G be a group of order pq where p and q are primes with p < q
and q 6≡ 1(mod p). Then there exists P , a normal subgroup of order p in G.
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Proof: By Sylow’s first theorem (R16), ∃P < G such that |P | = p. Then by
Sylow’s third theorem (R18), the number of p-Sylow subgroups in G, np, is given
as np ≡ 1(mod p) where np divides |G|. Since |G| = pq, np = 1 or pq since
p 6≡ 1(mod p) and q 6≡ 1(mod p).
Suppose np = pq. Then np ≡ 1(mod p) ⇒ pq ≡ 1(mod p) ⇒ pq − 1 = kp for

some k ∈ N ⇒ p(q − k) = 1. This is a contradiction. Therefore np = 1. Then by
Sylow’s second theorem (R17), P ⊳ G. �

Lemma 2. Let G be a group of order p1p2 · · · pn where p1, p2, . . . , pn are distinct

primes with pi 6≡ 1(mod pj) for every i, j ∈ {1, 2, . . . , n}. Then G is a cyclic group.

Proof: For the case of n = 1, the result is trivial. So we can assume that n ≥ 2.
Now ∀ i ∈ {1, 2, . . . , n}, there exists an element xi ∈ G such that |xi| = pi by
(R3)(b). Write y = x1x2 · · ·xn. We shall prove that |y| = |G| by induction on n.
Since y ∈ G, by (R10),

(∗) |y| divides |G|.

Now |y| ≤ |G| by (∗). Suppose |y| < |G|. Then by (∗), pk ∤ |y| for some k ∈

{1, 2, . . . , n}. Now y|y| = (x1x2 · · ·xk−1xk+1 · · ·xn)
|y|x

|y|
k
= 1 since G is abelian

by (R19). Then, since 〈xk〉 ∩ 〈x1x2 · · ·xk−1xk+1 · · ·xn〉 = {1}, by induction on

n, it follows that x
|y|
k
= 1 and hence pk divides |y|. This is a contradiction.

Therefore, |y| = |G|, that is, G is a cyclic group. �

Lemma 3. Let n be the smallest positive integer such that there exists a nonas-
sociative Moufang loop L of order p1p2 · · · pnq3, where pi and q are primes,
2 < p1 < p2 < · · · < q, q 6≡ 1(mod pi) and pi 6≡ 1(mod pj). Then

(a) n ≥ 2;
(b) every proper subloop and proper quotient loop of L is a group;
(c) if H ⊳ L and H 6= {1}, then La ⊳ H ;
(d) |La| = q2; and
(e) L = 〈x〉M , for some x ∈ L, with |x| = p1, and where M is a maximal

normal subloop of order p2p3 · · · pnq3 in L.

Proof: Suppose n < 2. Then L would be a group by (R7) and (R9). This is a
contradiction. So n ≥ 2. This proves (a).
Let H be any proper subloop of L. By (R2), |H | divides |L|.

So |H | = pα1pα2 · · · pαmq3 where αm < n or |H | = pβ1pβ2 · · · pβk
qβ where

βk ≤ n and β ≤ 2. If |H | = pα1pα2 · · · pαmq3, then H is a group since n is
the smallest positive integer such that L is a nonassociative Moufang loop. If
|H | = pβ1pβ2 · · · pβk

qβ , then H is a group by (R8). Hence, every proper subloop
of L is a group. By the same argument, every proper quotient loop of L is a group
too. This proves (b).
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If H ⊳L and H 6= {1}, by (R14), La ⊂ H because L/H is a group by (b). Since
La ⊳ L, La is normal in H too. This proves (c).

By (R6)(a), La is a minimal normal subloop of L. Then by (R3)(a), La is an
elementary abelian group. Now, if La is a Sylow subloop of L, then L must be a
group by (R4). This is a contradiction as L is not associative.

So

(∗) |La| = q or q2.

Assume |La| = q. By Sylow’s first theorem (R16), there exists P1, a subloop
of order p1 in L. Since La ⊳ L, LaP1 is a subloop of L. We also know that

|LaP1| =
|La| |P1|

|La ∩ P1|
=

qp1
1
= p1q.

By Lemma 1, P1 ⊳ LaP1. Also (|La|, |P1|) = (q, p1) = 1. Then by (R5), L is
a group. This is a contradiction. Therefore, |La| 6= q. Hence by (∗), |La| = q2.
This proves (d).

Now |L/La| = p1p2 · · · pnq and L/La is a group by (a). By (R15), there
exists a normal p1-complementM/La in L/La, where |M/La| = p2p3 · · · pnq. So,
|M | = p2p3 · · · pnq3 andM is a maximal normal subloop of L . By (R3)(b), there
exists an element x of order p1 in L. By (R10), x ∈ L − M because |x| does not
divide |M |. Then by (R6)(b), L = 〈x〉M . This proves (e). �

Theorem. Let L be a Moufang loop of order p1p2 · · · pnq3, where pi and q are
primes, 2 < p1 < p2 < · · · < q, q 6≡ 1(mod pi) and pi 6≡ 1(mod pj). Suppose N ,
the nucleus of L, is not trivial. Then L is a group.

Proof: Suppose not. Let n be the smallest positive integer such that there exists
a nonassociative Moufang loop L of order p1p2 · · · pnq3, where pi and q are primes,
2 < p1 < p2 < · · · < q, q 6≡ 1(mod pi) and pi 6≡ 1(mod pj); and let L be such a

loop. From Lemma 3(d), we know that |La| = q2. N is not trivial implies La < N
by (R11) and Lemma 3(c). By (R2), |La| = q2 divides |N |. So |N | ≥ q2. By
Sylow’s theorem, L contains a subloop S of order q3. Thus there exists y ∈ S−La

where | 〈La, y〉 | ≥ q3 by (R13). By (R3)(b), L contains a Hall subloop T of order
p1p2 · · · pn. By (R8), T is a group. Since pi 6≡ 1(mod pj), T = 〈t〉 for some t ∈ L
by Lemma 2.

Now by (R13), | 〈La, y, t〉 | = p1p2 · · · pnq3 = |L|. Thus L = 〈La, y, t〉. Since
La ⊂ N , L = 〈N, y, t〉 = N 〈y, t〉 by (R11). Let Y = 〈y, t〉. Then La = (L, L, L) =
(NY, NY, NY ) = (Y, Y, Y ) = {1} by (R12) and (R1), and hence, L is a group.
This contradicts our first assumption. This concludes the proof of this theorem.

�
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5. Open questions

Recommendations for future research:

1. Are all Moufang loops of order p1p2 · · · pnq3, where p1, p2, . . . , pn and q are
distinct odd primes, associative? It was proven in [4] that all such Moufang
loops are associative if q 6≡ 1(mod p1) and for each i > 1, q2 6≡ 1(mod pi).
We have proven in this paper that all such Moufang loops are associative
if q is the largest prime, q 6≡ 1(mod pi), pi 6≡ 1(mod pj) and the nucleus
is not trivial. So the next case that needs to be considered is that of
Moufang loops of the same order and the same conditions but the nucleus
is trivial.

2. Are all Moufang loops of order p2q3 associative if p and q are odd primes
with p < q and q 6≡ 1(mod p)? The smallest case is 32 · 53.

Acknowledgment. The authors wish to thank the referee for his/her recom-
mendations towards the improvement of this paper.
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