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Affine regular decagons in GS–quasigroup

V. Volenec, Z. Kolar–Begović

Abstract. In this article the “geometric” concept of the affine regular decagon in a general
GS–quasigroup is introduced. The relationships between affine regular decagon and some
other geometric concepts in a general GS–quasigroup are explored. The geometrical
presentation of all proved statements is given in the GS–quasigroup C( 1

2
(1 +

√
5)).
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1. Introduction

In [1] the concept of GS–quasigroup is defined. A quasigroup (Q, ·) is said to
be golden section quasigroup or shortly GS–quasigroup if it satisfies the (mutually
equivalent) identities

a(ab · c) · c = b,(1)

a · (a · bc)c = b(1′)

and the identity of idempotency

(2) aa = a.

The considered GS–quasigroup (Q, ·) satisfies the identities of mediality, elasticity,
left and right distributivity i.e. we have the identities

ab · cd = ac · bd,(3)

a · ba = ab · a,(4)

a · bc = ab · ac,(5)

ab · c = ac · bc.(5′)

Further, the identities

a(ab · b) = b,(6)

(b · ba)a = b,(6′)

a(ab · c) = b · bc,(7)

(c · ba)a = cb · b,(7′)

a(a · bc) = b(b · ac),(8)

(cb · a)a = (ca · b)b(8′)
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and equivalencies

ab = c ⇔ a = c · cb,(9)

ab = c ⇔ b = ac · c(9′)

also hold.

Let C be the set of points of the Euclidean plane. For any two different points
a, b we define ab = c if the point b or a divides the pair a, c or the pair b, c

respectively, in ratio of the golden section.
In [1] it is proved that (C, ·) is a GS–quasigroup in both cases. We shall

denote these two quasigroups by C(12 (1+
√
5)) and C(12 (1−

√
5)) because we have

c = 12 (1+
√
5) or c = 12 (1−

√
5) if a = 0 and b = 1. These quasigroups can give a

motivation for the definition of “geometric” notions and proving of “geometric”
properties of a general GS–quasigroup. In the quasigroup C(12 (1 +

√
5)) we shall

illustrate (by figures) the properties of a general GS–quasigroup. If we interchange
the roles of both factors in all products we will get the presentation in the same
figure for the quasigroup C(12 (1 −

√
5)).

These two mentioned quasigroups are mutually equivalent since the following
statement is obviously valid.

Lemma 1.1. If the operation • on the set Q is defined by the equivalency a•b =
c ⇔ ba = c, i.e. by the identity a • b = ba, then (Q, •) is a GS–quasigroup if and
only if (Q, ·) is a GS–quasigroup.
From now on let (Q, ·) be any GS–quasigroup. The elements of the set Q are

said to be points .
The following statements are proved in [1] and they will be used later.

Lemma 1.2. Any three of four equalities ab = d, ae = f , dc = e, fc = b imply

the remaining equality.

Lemma 1.3. Any two of four equalities ab = c, dc = b, ac = d, db = a imply the

remaining two equalities.

The points a, b, c, d are said to be the vertices of a parallelogram and we write
Par(a, b, c, d) iff the identity a · b(ca · a) = d holds. In [1] numerous properties
of the quaternary relation Par on the set Q are proved. Let us mention just the
following statements which we shall use afterwards.

Lemma 1.4. From Par(a, b, c, d) and Par(c, d, e, f) it follows Par(a, b, f, e).

Lemma 1.5. Let a, b, c be any three points and d = ac, e = ab, f = ec, g = df .

Then the statements Par(a, b, d, f), Par(b, e, f, g), Par(a, e, d, g) are valid.

We shall say that b is the midpoint of the pair of points a, c and write M(a, b, c)
if Par(a, b, c, b). In [1] the following statements, by means of the properties of the
quaternary relation Par, are proved.



Affine regular decagons in GS–quasigroup 385

Lemma 1.6. For any points a, b there is only one point c such that M(a, b, c).
The statement M(a, b, c) implies the statement M(c, b, a). For any point a it is

valid M(a, a, a).

Lemma 1.7. The statement M(a, b, c) holds if and only if c = ba · b.

Lemma 1.8. For any point p the statements M(a, b, c), M(pa, pb, pc),
M(ap, bp, cp) are mutually equivalent.

In [2] the concept of the GS–trapezoid is defined. The points a, b, c, d succes-
sively are said to be the vertices of the golden section trapezoid and it is denoted
by GST(a, b, c, d) if the identity a · ab = d · dc holds. Because of (9) this identity
is equivalent to the identity d = (a · ab)c.

In [4] the concept of affine regular pentagon is defined. The points a, b, c, d, e

successively are said to be the vertices of the affine regular pentagon and it is
denoted by ARP(a, b, c, d, e) if any two (and then all five) of the five statements
GST(a, b, c, d), GST(b, c, d, e), GST(c, d, e, a), GST(d, e, a, b), GST(e, a, b, c) are
valid.

The concept of the DGS–trapezoid is introduced in [3]. Points a, b, c, d are said
to be the vertices of the double golden section trapezoid or shorter DGS–trapezoid
and we write DGST(a, b, c, d) if the equality ab = dc holds.

The points o, a, b, c are said to be the vertices of a golden section deltoid and
we write GSD(o, a, b, c) if and only if the identity c = oa · b is valid ([5]). In [5]
the following statements are proved.

Lemma 1.9. For any point p the statements GSD(o, a, b, c), GSD(po, pa, pb, pc)
and GSD(op, ap, bp, cp) are mutually equivalent.

Lemma 1.10. If the statements GSD(o, a, b, c), GSD(o, b, c, d) hold then ab =
dc = e i.e. DGST(a, b, c, d) and Par(o, a, e, d) hold.

2. Affine regular decagon in GS–quasigroup

Now we are going to introduce the concept of the affine regular decagon in a
general GS–quasigroup. Firstly, we will prove the theorem which will lead to the
definition of the mentioned concept.

Theorem 2.1. From the equations

(10) oai · ai+1 = ai+2

for i = 0, 1, 2, 3, 4, 5, 6, 7 the equations (10) for i = 8, 9 follow, where indexes are
taken modulo 10 (Figure 1).
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Proof: If we denote by k the equality (10) for i = k then we get

oa1 · a0
(1)
= o[o(oa1 · a0) · o] · o

(5)
= o[(o · oa1)(oa0) · o] · o

(6′)
= o[(o · oa1)(oa0) · (o · oa1)a1] · o

(5)
= [o · (o · oa1)(oa0 · a1)]o

0
= [o · (o · oa1)a2]o

(5′)
= [o · (oa2)(oa1 · a2)]o 1

= o(oa2 · a3) · o 2
= oa4 · o

(6′)
= oa4 · (o · oa4)a4

(5′)
= o(o · oa4) · a4

(1)
= o(o · oa4) · [o(oa4 · a5) · a5]

(3)
= [o · o(oa4 · a5)] · (o · oa4)a5

(5′)
= [o · o(oa4 · a5)][oa5 · (oa4 · a5)]

4
= (o · oa6)(oa5 · a6) 5= (o · oa6)a7

(5′)
= oa7 · (oa6 · a7) 6= oa7 · a8 7

= a9,

wherefrom it follows

oa9 · a0 = o(oa1 · a0) · a0
(1)
= a1,

which means that from equality (10) where i = 0, 1, 2, 4, 5, 6, 7 the equality (10)
for i = 9 follows, and similarly from equalities (10) for i = 9, 0, 1, 3, 4, 5, 6 the
equality (10) for i = 8 follows. �

Figure 1

We shall say that (a0, a1, a2, a3, a4, a5, a6, a7, a8, a9) is the affine regular deca-
gon with the center o and we shall write Affo(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9)
if in a cycle of the equalities (10) for i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, any eight adjacent
(and then all ten) equalities are valid.
From Theorem 2.1 it follows immediately

Corollary 2.2. For any points o, a0, a1 there is a unique octuple of the points

a2, a3, a4, a5, a6, a7, a8, a9 so that Affo(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9).
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Theorem 2.3. If (i0, i1, i2, i3, i4, i5, i6, i7, i8, i9) is any cyclic permutation of
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) or of (9, 8, 7, 6, 5, 4, 3, 2, 1, 0) then Affo(a0, a1, a2, a3, a4,
a5, a6, a7, a8, a9) implies Affo(ai0 , ai1 , ai2 , ai3 , ai4 , ai5 , ai6 , ai7 , ai8 , ai9).

Proof: It is enough to prove the identity

(11) oai · ai−1 = ai−2.

However, we get

oai · ai−1
(10)
= o(oai−2 · ai−1) · ai−1

(1)
= ai−2.

�

Further, let Affo(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9) where i ∈ {0, 1, 2, 3, 4, 5, 6,
7, 8, 9}.
If we denote

(12) oai = bi,

then from (10) and (11) immediately follows

(13) biai±1 = ai±2.

Theorem 2.4. The statements Par(o, bi, bi±1, ai±3), Par(ai, bi, ai±2, ai±3),
Par(o, ai, bi±1, ai±2) are valid.

Proof: On the bases of (12) and (13) we get equalities oai = bi, oai±1 =
bi±1, biai±1 = ai±2, bi±1ai±2 = ai±3 wherefrom according to Lemma 1.5 the
statements of theorem follow. �

Because of (13) we get equalities biai±1 = ai±2 and bi±3ai±2 = ai±1 wherefrom
owing to Lemma 1.3 it follows

(14) biai±2 = bi±3.

Theorem 2.5. The statements M(ai, o, ai+5), M(bi, o, bi+5) are valid.

Proof: Owing to Theorem 2.4 Par(ai, o, bi+3, bi+2) and Par(bi+3, bi+2, o, ai+5)
are valid, wherefrom according to Lemma 1.4 it follows Par(ai, o, ai+5, o), i.e.
M(ai, o, ai+5). Hence, according to Lemma 1.8 it follows M(oai, oo, oai+5) i.e.
M(bi, o, bi+5). �

The property M(ai, o, ai+5) justifies the fact that the point o is called the center
of the considered affine–regular decagon.
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If we apply Lemma 1.7 we get M(ai, o, oai · o), which together with
M(ai, o, ai+5), according to Lemma 1.6, gives the equality ai+5 = oai ·o. Whence,
on the basis of (12), we get

(15) bio = ai+5.

If the statement Affo(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9) is valid then we shall
say that (a0, a3, a6, a9, a2, a5, a8, a1, a4, a7) is the affine regular star–shaped deca-

gon with the center o and we shall write Affo(a0, a3, a6, a9, a2, a5, a8, a1, a4, a7)
(Figure 2).

It is obvious that the implication Affo(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9) ⇒
Affo(a0, a3, a6, a9, a2, a5, a8, a1, a4, a7) is valid.
If (i0, i1, i2, i3, i4, i5, i6, i7, i8, i9) is any cyclic permutation of (0, 1, 2, 3, 4, 5, 6, 7,

8, 9) or of (9, 8, 7, 6, 5, 4, 3, 2, 1, 0) then the implication Affo(a0, a1, a2, a3, a4, a5,
a6, a7, a8, a9) ⇒ Affo(ai0 , ai1 , ai2 , ai3 , ai4 , ai5 , ai6 , ai7 , ai8 , ai9) is also valid.

a
2

a
8

a
7

a
6

a
9

a
5

a
4

a
3

o

a
0

a
1

Figure 2

Let us take (Figure 3)

(16) aio = ci+5.

Then we get successively

ai+5
(15)
= bio

(12)
= oai · o

(4)
= o · aio

(16)
= oci+5,

i.e. the equation

(17) oci = ai

is valid. Further, we get

o · aici±2
(5)
= oai · oci±2

(12),(17)
= biai±2

(14)
= bi±3

(12)
= oai±3,
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wherefrom it follows

(18) aici±2 = ai±3.

Now, we obtain

ai+3 · aio
(16)
= ai+3 · ci+5

(18)
= ai+6.

If we interchange the roles of both factors in all products in the above equality,
then we get the equality oai · ai+3 = ai+6, which means that in the quasigroup

C(12 (1 −
√
5)) the statement Affo(a0, a3, a6, a9, a2, a5, a8, a1, a4, a7) holds when

in the quasigroup C(12 (1 +
√
5)) the statement Affo(a0, a1, a2, a3, a4, a5, a6, a7,

a8, a9) i.e. Affo(a0, a3, a6, a9, a2, a5, a8, a1, a4, a7) holds.
Therefore, the affine regular decagon in the first quasigroup is the affine regular

star–shaped decagon in the second quasigroup, and conversely the affine regular
decagon in the second quasigroup is the affine regular star–shaped decagon in the
first quasigroup.
According to Lemma 1.1 these two quasigroups are equivalent, so it means that

it is a matter of convention which of these two decagons (a0, a1, a2, a3, a4, a5, a6,
a7, a8, a9) and (a0, a3, a6, a9, a2, a5, a8, a1, a4, a7) will be called affine regular deca-
gon and which one affine regular–star shaped decagon, since we cannot differ them
in a general GS–quasigroup. Besides that, it means that each statement about
affine regular decagons which is proved in a general GS–quasigroup, it is also
valid for affine regular star–shaped decagon and vice versa (with above mentioned
interchange of both factors in all products).

Figure 3



390 V.Volenec, Z.Kolar–Begović

In Figure 3 dashed lines present the formulas (20), (21), (30), (31), (36) and
(37) for i = 0 and if the sign on top is considered.
On the base of (18) we get equalities aici±2 = ai±3, ai±3ci±1 = ai, wherefrom

owing to Lemma 1.3 it follows

(19) aici±1 = ci±2.

Because of (17) and (19) we get equalities oci = ai, oci±1 = ai±1, aici±1 =
ci±2, ai±1ci±2 = ci±3, wherefrom owing to Lemma 1.5 we have the statements
analogous to the statements of Theorem 2.4 i.e. we get the following:

Theorem 2.6. The statements Par(o, ai, ai±1, ci±3), Par(ci, ai, ci±2, ci±3),
Par(o, ci, ai±1, ci±2) are valid.

Further we get

oci · ci+1
(17)
= aici+1

(19)
= ci+2,

so it follows:

Theorem 2.7. The statement Affo(c0, c1, c2, c3, c4, c5, c6, c7, c8, c9) is valid
(Figure 3).

Owing to (17), (12) and (18) we get equalities oci±3 = ai±3, oai = bi,
ai±3ci±1 = ai wherefrom according to Lemma 1.2 it follows

(20) bici±1 = ci±3.

According to (20) we get equalities bici±1 = ci±3, bi±4ci±3 = ci±1, wherefrom
because of Lemma 1.3 it follows

(21) bici±3 = bi±4.

From (12) and (17) owing to Lemma 1.3 we also get

biai = ci,(22)

bici = o.(23)

Further, we get because of Lemma 1.3 and oai = bi

aici+5
(17),(16)
= oci · aio

(3)
= oai · cio

(12)
= bi · cio

(5)
= bici · bio

(23),(15)
= oai+5

(12)
= bi+5,

i.e.

(24) aici+5 = bi+5.
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Now, introducing the notation (Figure 3)

(25) obi = di

we get

dibi = ai,(26)

diai = o.(27)

Because of (27), (18) and (17) we obtain the equalities

diai = o, ai±3ci±1 = ai, oci±1 = ai±1,

wherefrom on the basis of Lemma 1.2 it follows

(28) diai±1 = ai±3.

Using (28) we get diai±1 = ai±3, di±4ai±3 = ai±1 wherefrom according to
Lemma 1.3 it follows

(29) diai±3 = di±4.

Theorem 2.8. The statements ARP(a0,a2, a4,a6, a8) and ARP(a1,a3, a5,a7,a9)
are valid.

Proof: The first statement, for example, follows on the base of equalities

d3a2 = a0, d3a4 = a6, d5a4 = a2, d5a6 = a8

which are presented in (28). �

Using (27), (12) and (13) we obtain equalities

diai = o, oai±1 = bi±1, bi±2ai±1 = ai,

which, because of Lemma 1.2, imply the following

(30) dibi±1 = bi±2.

From (30) we get
dibi±1 = bi±2, di±3bi±2 = bi±1,

whence owing to Lemma 1.3 we obtain

(31) dibi±2 = di±3.

Now, we have

obi · bi+1
(25)
= dibi+1

(30)
= bi+2,

so it immediately follows
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Theorem 2.9. The statement Affo(b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) is valid
(Figure 3).

Further we get

dio
(25)
= obi · o

(4)
= o · bio

(15)
= oai+5

(12)
= bi+5,

dici
(25)
= obi · ci

(5′)
= oci · bici

(17),(23)
= aio

(16)
= ci+5,

biai+5
(12),(17)
= oai · oci+5

(5)
= o · aici+5

(24)
= obi+5

(25)
= di+5,

i.e.

dio = bi+5,(32)

dici = ci+5,(33)

biai+5 = di+5(34)

and

dici+5
(16)
= di · aio

(5)
= diai · dio

(27),(32)
= obi+5

(25)
= di+5,

i.e.

(35) dici+5 = di+5.

On the basis of (25), (12) and (21) we get

obi = di, oai±4 = bi±4, bi±4ci±1 = bi,

wherefrom according to Lemma 1.2 we get

(36) dici±1 = ai±4.

Analogously, because of (36), (19) and (20) we get equalities

dici±1 = ai±4, ai±4ci±3 = ci±2, bi±4ci±3 = ci±1

whence it follows

(37) dici±2 = bi±4.

Theorem 2.10. The statements M(ci, bi, di), M(di, ai, ci+5) are valid.

Proof: The statement follows on the base of Lemma 1.7, the first one from

di
(25)
= obi

(23)
= bici · bi,

and the second one from the equalities (27) and (16). �
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Theorem 2.11. The statement Affo(d0, d1, d2, d3, d4, d5, d6, d7, d8, d9) is valid
(Figure 3).

Proof:

odi · di+1
(25)
= odi · obi+1

(5)
= o · dibi+1

(30)
= obi+2

(25)
= di+2.

�

Now, we will introduce some new points which will also be the vertices of new
affine regular decagons.
Owing to (10) the statements GSD(o, ai−1, ai, ai+1) and GSD(o, ai, ai+1, ai+2)

are valid, wherefrom according to Lemma 1.10 the statement DGST(ai−1, ai, ai+1,

ai+2) holds i.e. ai−1ai = ai+2ai+1. Let us denote now (Figure 4)

(38) ai,i+1 = ai−1ai = ai+2ai+1,

then we have

oai,i+1 · ai+1,i+2
(38)
= (o · ai−1ai) · aiai+1

(5)
= (oai−1 · oai) · aiai+1

(3)
= (oai−1 · ai)(oai · ai+1)

(12)
= bi−1ai · biai+1

(13)
= ai+1ai+2

(38)
= ai+2,i+3

i.e.

(39) oai,i+1 · ai+1,i+2 = ai+2,i+3,

so it immediately follows:

Figure 4
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Theorem 2.12. The statement Affo(a01,a12,a23,a34,a45, a56,a67,a78,a89,a90)
holds (Figure 4).

Because of (12) and (2) according to Lemma 1.9 the statements GSD(o, bi−1, bi,

bi+1) and GSD(o, bi, bi+1, bi+2) hold, wherefrom according to Lemma 1.10 the
statement DGST(bi−1, bi, bi+1, bi+2) follows i.e. bi−1bi = bi+2bi+1. Let us denote

(40) bi,i+1 = bi−1bi = bi+2bi+1.

Because of (12) and (5) it is obviously valid

(41) oai,i+1 = bi,i+1.

As we have

obi,i+1 · bi+1,i+2
(41)
= (o · oai,i+1) · oai+1,i+2

(5)
= o(oai,i+1 · ai+1,i+2)

(39)
= oai+2,i+3

(41)
= bi+2,i+3

we immediately get:

Theorem 2.13. The statement Affo(b01, b12, b23, b34, b45, b56, b67, b78, b89, b90)
is valid (Figure 4).

Analogously, because of (25) and (2) and according to Lemma 1.9 GSD(o, di−1,
di, di+1) and GSD(o, di, di+1, di+2) are valid whence applying Lemma 1.10 the
statement DGST(di−1, di, di+1, di+2) is valid i.e. di−1di = di+2di+1. Let us take

(42) di,i+1 = di−1di = di+2di+1.

Because of (25) and (5) we obtain

(43) obi,i+1 = di,i+1.

If we apply (43) and Theorem 2.13 we can get

odi,i+1 · di+1,i+2 = di+2,i+3,

so it follows

Theorem 2.14. The statement Affo(d01,d12,d23,d34, d45, d56, d67,d78,d89,d90)
(Figure 4) is valid.
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