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Quenching for semidiscretizations of a semilinear heat

equation with Dirichlet and Neumann boundary conditions

Diabate Nabongo, Théodore K. Boni

Abstract. This paper concerns the study of the numerical approximation for the following
boundary value problem:8><>: ut(x, t) − uxx(x, t) = −u−p(x, t), 0 < x < 1, t > 0,

ux(0, t) = 0, u(1, t) = 1, t > 0,

u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,

where p > 0. We obtain some conditions under which the solution of a semidiscrete form
of the above problem quenches in a finite time and estimate its semidiscrete quenching
time. We also establish the convergence of the semidiscrete quenching time. Finally, we
give some numerical experiments to illustrate our analysis.

Keywords: semidiscretizations, discretizations, heat equations, quenching, semidiscrete
quenching time, convergence

Classification: 35K55, 35B40, 65M06

1. Introduction

Consider the following boundary value problem:

ut(x, t)− uxx(x, t) = −u−p(x, t), 0 < x < 1, t > 0,(1)

ux(0, t) = 0, u(1, t) = 1, t > 0,(2)

u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,(3)

where p > 0, u
′

0(0) = 0, u0(1) = 1, u0(x) < 1 for x ∈ [0, 1).

Definition 1.1. We say that a solution u of (1)–(3) quenches in a finite time if
there exists a finite time Tq such that ‖u(x, t)‖inf > 0 for t ∈ [0, Tq), but

lim
t→Tq

‖u(x, t)‖inf = 0,

where ‖u(x, t)‖inf = min0≤x≤1 u(x, t). The time Tq is called the quenching time
of the solution u.
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The theoretical study of solutions for semilinear heat equations which quench
in a finite time has been the subject of investigations of many authors (see [2],
[4]–[8] and the references cited therein). Under some conditions, the authors have
proved that the solution u of (1)–(3) quenches in a finite time and have given
some estimates of the quenching time.
In this paper, we are interested in the numerical study of the phenomenon of

quenching using a semidiscrete form of (1)–(3). We give some conditions under
which the solution of the semidiscrete form quenches in a finite time and estimate
its semidiscrete quenching time. We also prove that the semidiscrete quenching
time converges to the real one when the mesh size goes to zero. A similar study
has been undertaken by some authors concerning the phenomenon of blow-up (we
say that a solution blows up in a finite time if it takes an infinite value in a finite
time)(see [1]). In [3], some schemes have been used to study the phenomenon of
extinction.
This paper is organised as follows. In the next section, we construct a semidis-

crete scheme and give some lemmas which will be used later. In Section 3, under
some conditions, we prove that the solution of a semidiscrete form of (1)–(3)
quenches in a finite time and estimate its semidiscrete quenching time. In Sec-
tion 4, we study the convergence of the semidiscrete quenching time. Finally, in
the last section, we give some numerical results to illustrate our analysis.

2. A semidiscrete problem

In this section, we give some lemmas which will be used later. We start by the
construction of a semidiscrete scheme as follows. Let I be a positive integer, and
define the grid xi = ih, 0 ≤ i ≤ I, where h = 1/I. Approximate the solution u

of the problem (1)–(3) by the solution Uh(t) = (U0(t), U1(t), . . . , UI(t))
T of the

following semidiscrete equations

dUi(t)

dt
= δ2Ui(t)− (Ui(t))

−p, 0 ≤ i ≤ I − 1, t ∈ (0, T h
q ),(4)

UI(t) = 1, t ∈ (0, T
h
q ), Ui(0) = ϕi > 0, 0 ≤ i ≤ I,(5)

where ϕi < 1 for 0 ≤ i ≤ I − 1,

δ2Ui(t) =
Ui+1(t)− 2Ui(t) + Ui−1(t)

h2
, 1 ≤ i ≤ I − 1,

δ2U0(t) =
2U1(t)− 2U0(t)

h2
.

Here (0, T h
q ) is the maximal time interval on which ‖Uh(t)‖inf > 0, where

‖Uh(t)‖inf = min0≤i≤I Ui(t). When T
h
q is finite, then we say that the solu-

tion Uh(t) of (4)–(5) quenches in a finite time, and the time T
h
q is called the

semidiscrete quenching time of the solution Uh(t).
The following lemma is a semidiscrete form of the maximum principle.
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Lemma 2.1. Let αh ∈ C0([0, T ),RI+1) and let Vh ∈ C1([0, T ),RI+1) be such
that

dVi(t)

dt
− δ2Vi(t) + αi(t)Vi(t) ≥ 0, 0 ≤ i ≤ I − 1, t ∈ (0, T ),(6)

VI (t) ≥ 0, t ∈ (0, T ),(7)

Vi(0) ≥ 0, 0 ≤ i ≤ I.(8)

Then Vi(t) ≥ 0 for 0 ≤ i ≤ I, t ∈ (0, T ).

Proof: Let T0 < T and define the vector Zh(t) = e
λtVh(t), where λ is such that

αi(t) − λ > 0, 0 ≤ i ≤ I, t ∈ [0, T0]. Let

m = min
0≤i≤I,0≤t≤T0

Zi(t).

For i = 0, . . . , I, Zi(t) is a continuous function on the compact [0, T0]. Then,
there exist i0 ∈ {0, 1, . . . , I} and t0 ∈ [0, T0] such that m = Zi0(t0). If i0 ∈
{0, 1, . . . , I − 1}, then we observe that

(9)
dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0,

(10) δ2Zi0(t0) = δ
2Z0(t0) =

2Z1(t0)− 2Z0(t0)

h2
≥ 0 if i0 = 0,

(11) δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
≥ 0 if 1 ≤ i0 ≤ I − 1.

Using (6), a straightforward computation yields

(12)
dZi0(t0)

dt
− δ2Zi0(t0) + (αi0(t0)− λ)Zi0(t0) ≥ 0 if 0 ≤ i0 ≤ I − 1.

From the inequalities (9)–(12), it is not hard to see that (αi0(t0)−λ)Zi0(t0) ≥ 0,
0 ≤ i0 ≤ I − 1. Due to (7) and the fact that αi0(t0) − λ > 0, we see that
Zh(t0) ≥ 0. We deduce that Vh(t) ≥ 0 for t ∈ [0, T0] which leads us to the desired
result. �

The lemma below shows a property of the semidiscrete solution.

Lemma 2.2. Let Uh be the solution of (4)–(5). Then

(13) Ui(t) < 1, 0 ≤ i ≤ I − 1, t ∈ (0, T h
q ).
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Proof: Let t0 be the first t ∈ (0, T
h
q ) such that Ui(t) < 1 for t ∈ [0, t0), 0 ≤ i ≤

I − 1, but Ui0(t0) = 1 for a certain i0 ∈ {0, . . . , I − 1}. We observe that

(14)
dUi0(t0)

dt
= lim

k→0

Ui0(t0)− Ui0(t0 − k)

k
≥ 0,

(15) δ2Ui0(t0) =
Ui0+1(t0)− 2Ui0(t0) + Ui0−1(t0)

h2
≤ 0 if 1 ≤ i0 ≤ I − 1,

(16) δ2Ui0(t0) = δ
2U0(t0) =

2U1(t0)− 2U0(t0)

h2
≤ 0 if i0 = 0,

which implies that

dUi0(t0)

dt
− δ2Ui0(t0) + (Ui0(t0))

−p > 0.

But, this contradicts (4) and the proof is complete. �

Another version of the maximum principle for semidiscrete equations is the
following comparison lemma.

Lemma 2.3. Let f ∈ C0(R × R,R). If Vh, Wh ∈ C1([0, T ),RI+1) are such that

dVi(t)

dt
− δ2Vi(t) + f(Vi(t), t) <

dWi(t)

dt
− δ2Wi(t) + f(Wi(t), t),(17)

0 ≤ i ≤ I − 1, t ∈ (0, T ),

VI(t) < WI (t), t ∈ (0, T ),(18)

Vi(0) < Wi(0), 0 ≤ i ≤ I,(19)

then Vi(t) < Wi(t), 0 ≤ i ≤ I, t ∈ (0, T ).

Proof: Let Zh(t) =Wh(t)−Vh(t) and let t0 be the first t > 0 such that Zi(t) > 0
for t ∈ [0, t0), 0 ≤ i ≤ I, but Zi0(t0) = 0 for a certain i0 ∈ {0, . . . , I}.
We observe that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0,

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
≥ 0 if 1 ≤ i0 ≤ I − 1,

δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

h2
≥ 0 if i0 = 0.

Therefore if i0 ∈ {0, . . . , I − 1}, then we have

dZi0(t0)

dt
− δ2Zi0(t0) + f(Wi0(t0), t0)− f(Vi0(t0), t0) < 0,

which contradicts (17). If i0 = I, then we have a contradiction because of (18).
This ends the proof. �

The lemma below reveals a property of the operator δ2.
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Lemma 2.4. Let Vh and Uh ∈ R
I+1. If δ+(U0)δ

+(V0) ≥ 0 and

δ+(Ui)δ
+(Vi) ≥ 0, δ−(Ui)δ

−(Vi) ≥ 0, 1 ≤ i ≤ I − 1,

then
δ2(UiVi) ≥ Uiδ

2Vi + Viδ
2Ui, 0 ≤ i ≤ I − 1,

where δ+(Ui) =
Ui+1−Ui

h , δ−(Ui) =
Ui−1−Ui

h .

Proof: A straightforward computation yields

δ2(U0V0) = 2δ
+(U0)δ

+(V0) + U0δ
2V0 + V0δ

2U0,

δ2(UiVi) = δ
+(Ui)δ

+(Vi) + δ
−(Ui)δ

−(Vi) + Uiδ
2Vi + Viδ

2Ui, 1 ≤ i ≤ I − 1.

Using the assumptions of the lemma, we obtain the desired result. �

The following result shows another property of the semidiscrete solution.

Lemma 2.5. Let Uh be the solution of (4)–(5) such that the initial data at (5)
satisfy

(20) ϕi+1 > ϕi, 0 ≤ i ≤ I − 1.

Then, we have

(21) Ui+1(t) > Ui(t), 0 ≤ i ≤ I − 1, t ∈ (0, T h
q ).

Proof: Let t0 ∈ (0, T
h
q ) be the first t > 0 such that Ui+1(t) > Ui(t) for t ∈ (0, t0),

0 ≤ i ≤ I − 1, but

Uk+1(t0) = Uk(t0) for a certain k ∈ {0, . . . , I − 1}.

Without loss of generality, we may suppose that k is the smallest integer which
satisfies the above equality.
If k = I − 1 then UI(t0) = UI−1(t0) = 1. But, this contradicts Lemma 2.2. If
k ∈ {0, . . . , I − 2}, then letting Zk(t) = Uk+1(t)− Uk(t), we observe that

dZk(t0)

dt
= lim

k→0

Zk(t0)− Zk(t0 − k)

k
≤ 0,

δ2Zk(t0) = δ
2Z0(t0) =

Z1(t0)− 3Z0(t0)

h2
> 0 if k = 0,

δ2Zk(t0) =
Zk+1(t0)− 2Zk(t0) + Zk−1(t0)

h2
> 0 if 1 ≤ k ≤ I − 2.

Therefore, if 0 ≤ k ≤ I − 2, we get

dZk(t0)

dt
− δ2Zk(t0) + (Uk+1(t0))

−p − (Uk(t0))
−p < 0,

which contradicts (4). This ends the proof. �

Remark 2.1. The above result reveals that if the initial data of the semidiscrete
solution are increasing in space, then the semidiscrete solution is also increasing
in space. This property will be used later to show that the semidiscrete solution
attains its minimum at the first node.
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3. Quenching in the semidiscrete problem

In this section, under some assumptions, we show that the solution Uh of (4)–
(5) quenches in a finite time and estimate its semidiscrete quenching time.

Let us give another property of the operator δ2 useful in this section.

Lemma 3.1. Let Uh ∈ R
I+1 such that Uh > 0. Then, we have

δ2U−p
i ≥ −pU−p−1

i δ2Ui for 0 ≤ i ≤ I − 1.

Proof: Apply Taylor’s expansion to obtain

δ2U
−p
0 = −pU

−p−1
0 δ2U0 + (U1 − U0)

2 p(p+ 1)

h2
θ
−p−2
0 ,

δ2U−p
i = −pU−p−1

i δ2Ui + (Ui+1 − Ui)
2 p(p+ 1)

2h2
θ−p−2
i

+ (Ui−1 − Ui)
2 p(p+ 1)

2h2
η−p−2
i if 1 ≤ i ≤ I − 1,

where θi is an intermediate value between Ui+1 and Ui and ηi the one between
Ui−1 and Ui. Use the fact that Uh > 0 to complete the rest of the proof. �

Our result about the quenching time is the following.

Theorem 3.1. Let Uh be the solution of (4)–(5). Assume that there exists a
constant A > 0 such that the initial data at (5) satisfy

δ2ϕi − ϕ
−p
i ≤ −A cos(ih

π

2
)ϕ

−p
i , 0 ≤ i ≤ I − 1,(22)

1−
π2

2A(p+ 1)
‖ϕh‖

p+1
inf > 0.(23)

If (20) holds, then Uh quenches in a finite time T
h
q which satisfies the following

estimate

T h
q < −

8

π2
ln

(
1−

π2

2A(p+ 1)
‖ϕh‖

p+1
inf

)
.

Proof: Since (0, T h
q ) is the maximal time interval on which ‖Uh(t)‖inf > 0, our

aim is to show that T h
q is finite and satisfies the above inequality. Introduce the

vector Jh(t) such that

Ji(t) =
dUi(t)

dt
+ Ci(t)U

−p
i (t), 0 ≤ i ≤ I, t ∈ [0, T h

q ),



Quenching for semidiscretizations of a semilinear heat equation 469

where Ci(t) = Ae
−λht cos(ihπ

2 ) with λh =
2−2 cos(h π

2
)

h2
. It is not hard to see that

(24)
dCi(t)

dt
− δ2Ci(t) = 0, Ci+1(t) < Ci(t), 0 ≤ i ≤ I − 1.

Using Lemma 2.5, we observe that

(25) δ+(U−p
0 )δ

+(C0) ≥ 0 and δ+(U−p
i )δ

+(Ci) ≥ 0, δ−(U−p
i )δ

−(Ci) ≥ 0

for 1 ≤ i ≤ I − 1. A straightforward computation gives

dJi(t)

dt
− δ2Ji(t) =

d

dt
(
dUi(t)

dt
− δ2Ui(t)) + U

−p
i

dCi(t)

dt
− pCi(t)U

−p−1
i

dUi(t)

dt

− δ2(Ci(t)U
−p
i (t)), 0 ≤ i ≤ I − 1.

It follows from (25), Lemmas 2.4 and 3.1 that

δ2(Ci(t)U
−p
i (t)) ≥ U−p

i (t)δ
2Ci(t)− pCi(t)U

−p−1
i (t)δ2Ui(t), 0 ≤ i ≤ I − 1.

We deduce that

dJi(t)

dt
− δ2Ji(t) ≤

d

dt
(
dUi(t)

dt
− δ2Ui(t))− pCi(t)U

−p−1
i (

dUi(t)

dt
− δ2Ui(t))

+ U
−p
i (t)(

dCi(t)

dt
− δ2Ci(t)), 0 ≤ i ≤ I − 1.

In virtue of (4) and (24), we arrive at

dJi(t)

dt
− δ2Ji(t) ≤ pU−p−1

i (t)Ji(t), 0 ≤ i ≤ I − 1, t ∈ (0, T h
q ).

Obviously, JI(t) = 0. From the assumption (22), we get Jh(0) ≤ 0. It follows

from Lemma 2.1 that Jh(t) ≤ 0 for t ∈ (0, T
h
q ). This estimate may be rewritten

as follows

dUi(t)

dt
≤ −Ae−λht cos(ih

π

2
)U−p

i (t), 0 ≤ i ≤ I, t ∈ (0, T h
q ).

We observe that λh ≤ π2

2 for h small enough. Hence, we get

(26) Up
0 (t)dU0(t) ≤ −Ae−

π2

2
tdt for t ∈ (0, T h

q ).

From Lemma 2.5, U0(t) = ‖Uh(t)‖inf . Therefore, integrating (26) over (0, T
h
q ),

we obtain

T h
q ≤ −

8

π2
ln(1−

π2

2A(p+ 1)
‖Uh(0)‖

p+1
inf ).

Use the fact that Uh(0) = ϕh and (23) to complete the rest of the proof. �
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Remark 3.1. Assume that there exists a time t0 ∈ (0, T
h
q ) such that

1−
π2

2A(p+ 1)
e−

π2

2
t0‖Uh(t0)‖

p+1
inf > 0.

Integrating the inequality (26) over (t0, T
h
q ), and using the fact that U0(t0) =

‖Uh(t0)‖inf , we arrive at

T h
q − t0 ≤ −

8

π2
ln

(
1−

π2

2A(p+ 1)
e−

π2

2
t0‖Uh(t0)‖

p+1
inf

)
.

Remark 3.2. It is easy to find a vector ϕh and a positive constant A such that
(22), (23) hold. In fact, one may find a vector ψh and a constant A ∈ (0, 1) such
that

δ2ψi − ψ
−p
i ≤ −Aψ

−p
i , 0 ≤ i ≤ I − 1,

which implies that

δ2ψi − ψ−p
i ≤ −A cos(ih

π

2
)ψ−p

i , 0 ≤ i ≤ I − 1.

Let ϕh = εψh where 0 < ε < 1. It is not hard to see that

δ2ϕi − ϕ
−p
i ≤ −A cos(ih

π

2
)ϕ

−p
i , 0 ≤ i ≤ I − 1,

and the inequality (22) follows. To obtain (23), it suffices to take ε small enough.

4. Convergence of the semidiscrete quenching time

In this section, under some assumptions, we prove that the semidiscrete quench-
ing time converges to the real one when the mesh size goes to zero.
We denote

uh(t) = (u(x0, t), . . . , u(xI , t))
T .

In order to obtain the convergence of the semidiscrete quenching time, we firstly
prove the following theorem about the convergence of the semidiscrete scheme.

Theorem 4.1. Assume that the problem (1)–(3) has a solution u ∈ C4,1([0, 1]×
[0, T ]) such that min0≤t≤T ‖u(x, t)‖inf = ρ > 0 and the initial data at (5) satisfy

(27) ‖ϕh − uh(0)‖∞ = o(1) as h→ 0.

Then, for h sufficiently small, the problem (4)–(5) has a unique solution Uh ∈

C1([0, T ],RI+1) such that

(28) max
0≤t≤T

‖Uh(t)− uh(t)‖∞ = O(‖ϕh − uh(0)‖∞ + h
2) as h→ 0.
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Proof: Problem (4)–(5) has for each h a unique solution Uh ∈ C1([0, T h
q ),R

I+1).

Let t(h) be the greatest value of t > 0 such that

(29) ‖Uh(t)− uh(t)‖∞ <
ρ

2
for t ∈ (0, t(h)).

Relation (27) implies that t(h) > 0 for h sufficiently small. Let t∗(h) =
min{t(h), T }. From the triangle inequality, we get

‖Uh(t)‖inf ≥ ‖uh(t)‖inf − ‖Uh(t)− uh(t)‖∞ for t ∈ (0, t∗(h)),

which implies that

(30) ‖Uh(t)‖inf ≥ ρ−
ρ

2
=
ρ

2
for t ∈ (0, t∗(h)).

Consider the error
eh(t) = Uh(t)− uh(t).

By a direct calculation, we find that for t ∈ (0, t∗(h)),

(31)
dei(t)

dt
− δ2ei(t) = p(Θi(t))

−p−1ei(t) +
h2

12
uxxxx(x̃i, t), 0 ≤ i ≤ I − 1,

where Θi is an intermediate value between Ui(t) and u(xi, t). Let M > 0 be such
that

(32)
‖uxxxx(x, t)‖∞

12
≤M for t ∈ [0, T ], p(

ρ

2
)
−p−1

≤M.

Using (30)–(31), it is not hard to see that

dei(t)

dt
− δ2ei(t) ≤M |ei(t)|+Mh2, 0 ≤ i ≤ I − 1, t ∈ (0, t∗(h)).

Introduce the vector zh(t) such that

zi(t) = e
(M+1)t(‖ϕh − uh(0)‖∞ +Mh2), 0 ≤ i ≤ I, t ∈ [0, T ].

A straightforward computation yields

dzi(t)

dt
− δ2zi(t) > M |zi(t)|+Mh2, 0 ≤ i ≤ I − 1, t ∈ (0, t∗(h)),(33)

zI(t) > eI(t), t ∈ (0, t
∗(h)),(34)

zi(0) > ei(0), 0 ≤ i ≤ I.(35)
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It follows from Comparison Lemma 2.3 that

zi(t) > ei(t) for t ∈ (0, t∗(h)), 0 ≤ i ≤ I.

In the same way, we also show that

zi(t) > −ei(t) for t ∈ (0, t∗(h)), 0 ≤ i ≤ I,

which implies that

‖Uh(t)− uh(t)‖∞ ≤ e(M+1)t(‖ϕh − uh(0)‖∞ +Mh2), t ∈ (0, t∗(h)).

Let us show that t∗(h) = T . Suppose that T > t(h). From (29), we obtain

ρ

2
= ‖Uh(t(h))− uh(t(h))‖∞ ≤ e(M+1)T (‖ϕh − uh(0)‖∞ +Mh2).

Since the term on the right hand side of the above inequality goes to zero as h
tends to zero, we deduce that ρ

2 ≤ 0, which is impossible. Consequently t∗(h) = T
and the proof is complete. �

Now, we are in a position to prove the main result of this section.

Theorem 4.2. Suppose that the solution u of (1)–(3) quenches in a finite time Tq

such that u ∈ C4,1([0, 1]× [0, Tq)) and the initial data at (5) satisfy condition (27).
Under the assumptions of Theorem 3.1, problem (4)–(5) admits a unique solution

Uh(t) which quenches in a finite time T
h
q with limh→0 T

h
q = Tq.

Proof: Let 0 < ε < Tq/2. There exists a constant R > 0 such that

(36) −
8

π2
ln

(
1−

π2

2A(p+ 1)
xp+1

)
<
ε

2
for x ∈ [0, R].

Since u quenches in a finite time Tq, then there exists T1 ∈ (Tq −
ε
2 , Tq) such that

0 < ‖u(x, t)‖inf <
R

2
for t ∈ (T1, Tq).

Let T2 =
T1+Tq

2 . Obviously, we have 0 < ‖u(x, t)‖inf <
R
2 for t ∈ [0, T2]. It

follows from Theorem 4.1 that

‖Uh(t)− uh(t)‖∞ <
R

2
for t ∈ [0, T2],

which implies that

‖Uh(T2)− uh(T2)‖∞ <
R

2
.
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Applying the triangle inequality, we obtain

‖Uh(T2)‖inf ≤ ‖Uh(T2)− uh(T2)‖∞ + ‖uh(T2)‖inf ≤
R

2
+
R

2
= R.

We deduce from Remark 3.1 and (36) that

|T h
q − T2| ≤ −

8

π2
ln

(
1−

π2

2A(p+ 1)
e−

π2

2
T2‖Uh(T2)‖

p+1
inf

)
<
ε

2
.

Consequently, we find that

|T h
q − Tq| ≤ |T h

q − T2|+ |T2 − Tq| ≤
ε

2
+
ε

2
= ε,

and the proof is complete. �

5. Numerical experiments

In this section, we consider the problem (1)–(3) in the case where p = 1,
u0(x) = 0.05 + 0.95 sin(

π
2x). We give some computational results concerning

some approximations of the real quenching time. We start by proposing some
schemes which will be used later for our numerical experiments.
At first, we approximate the solution u(x, t) of the problem (1)–(3) by the

solution U
(n)
h = (U

(n)
0 , U

(n)
1 , . . . , U

(n)
I )T of the following explicit scheme

U
(n+1)
i − U

(n)
i

∆tn
= δ2U

(n)
i − (U

(n)
i )−p−1U

(n+1)
i , 0 ≤ i ≤ I − 1,

U
(n)
I = 1, U

(0)
i = ϕi, 0 ≤ i ≤ I,

where n ≥ 0. In order to permit the discrete solution to reproduce the properties
of the continuous one when the time t approaches the quenching time Tq, we need

to adapt the size of the time step so that we take ∆tn = min{
h2

2 , τ‖U
(n)
h

‖p+1
inf }

with τ = const ∈ (0, 1). Let us notice that the restriction on the time step ensures
the positivity of the discrete solution.
At second, we approximate the solution u(x, t) of the problem (1)–(3) by the

solution U
(n)
h
of the implicit scheme below

U
(n+1)
i − U

(n)
i

∆tn
= δ2U

(n+1)
i − (U

(n)
i )−p−1U

(n+1)
i , 0 ≤ i ≤ I − 1,

U
(n)
I = 1, U

(0)
i = ϕi, 0 ≤ i ≤ I,

where n ≥ 0. As in the case of the explicit scheme, here, we choose ∆tn =

τ‖U
(n)
h

‖p+1
inf with τ = const ∈ (0, 1). For the implicit scheme, the existence and

positivity of the discrete solution is also guaranteed using standard methods (see,
for instance, [3]).
In both schemes, we take ϕi = 0.05 + 0.95 sin(

π
2 ih), τ = h

2.
We need the following definition.
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Definition 5.1. We say that the solution U
(n)
h
of the explicit scheme or the

implicit scheme quenches in a finite time if limn→+∞ ‖U
(n)
h

‖inf = 0 and the series∑+∞
n=0∆tn converges. The quantity

∑+∞
n=0∆tn is called the numerical quenching

time of the discrete solution U
(n)
h
.

In Tables 1 and 2, in rows, we present the numerical quenching times, the
number of iterations, CPU times and the orders of the approximations corre-
sponding to meshes of 16, 32, 64, 128. We take for the numerical quenching time

Tn =
∑n−1

j=0 ∆tj which is computed at the first time when

∆tn = |Tn+1 − Tn| ≤ 10−16.

The order (s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

Table 1:

Numerical quenching times, numbers of iterations, CPU times (seconds) and or-
ders of the approximations obtained with the explicit Euler method:

I Tn n CPUt s
16 0.5619 4632 1 -
32 0.5661 18026 4 -
64 0.5671 69898 27 2.07
128 0.5672 270200 687 3.03

Table 2:

Numerical quenching times, numbers of iterations, CPU times (seconds) and or-
ders of the approximations obtained with the implicit Euler method:

I Tn n CPUt s
16 0.5634 4633 1 -
32 0.5664 18030 10 -
64 0.5672 69899 430 1.91
128 0.5674 270249 7200 2.00
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