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Pseudocomplemented directoids

Ivan Chajda

Abstract. Directoids as a generalization of semilattices were introduced by J. Ježek and
R. Quackenbush in 1990. We modify the concept of a pseudocomplement for commuta-
tive directoids and study several basic properties: the Glivenko equivalence, the set of
the so-called boolean elements and an axiomatization of these algebras.
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The concept of a pseudocomplemented semilattice was introduced by O. Frink
[2], see also [1] for reader’s convenience. Recall that S = (S;∧,∗ , 0) is a pseudo-
complemented semilattice if (S;∧) is a meet-semilattice with the least element 0
and for each a ∈ S, a∗ is the greatest element of S such that a ∧ a∗ = 0; a∗ is
called the pseudocomplement of a.

The concept of a semilattice was generalized by J. Ježek and R. Quackenbush
[3] as follows.

Let (D;≤) be an ordered set which is downward directed, i.e. for any a, b ∈ D
the set L(a, b) = {x ∈ D;x ≤ a and x ≤ b} of all common lower bounds is
non-void. For a, b ∈ D we choose an arbitrary element c ∈ L(a, b) and define
a ⊓ b = b ⊓ a = c if a, b are non-comparable and a ⊓ b = b ⊓ a = a if a ≤ b. The
groupoid (D;⊓) is called a commutative directoid . It was shown in [3] (see also
[1]) that commutative directoids are axiomatized by three simple axioms

(D1) x ⊓ x = x;
(D2) x ⊓ y = y ⊓ x;
(D3) x ⊓ ((x ⊓ y) ⊓ z) = (x ⊓ y) ⊓ z.

Of course, x ≤ y if and only if x ⊓ y = x.

If an ordered set (D;≤) is upward directed, i.e. U(a, b) = {x ∈ D; a ≤ x and
b ≤ x} 6= ∅ for each a, b, we can define dually a⊔b = b⊔a ∈ U(a, b) arbitrarily if a, b
are non-comparable and a⊔b = b⊔a = b if a ≤ b. The resulting groupoid (D;⊔) is
again a commutative directoid, (D1)–(D3) are satisfied when ⊓ is replaced by ⊔.
In this case, x ≤ y if and only if x⊔ y = y. Let us recall the concept of a λ-lattice
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introduced by V. Snášel [5]. An algebra L = (L;⊔,⊓) of type (2, 2) is called a
λ-lattice if (L;⊔) and (L;⊓) are commutative directoids and the absorption laws

x ⊓ (x ⊔ y) = x and x ⊔ (x ⊓ y) = x

are satisfied.
Our aim is to introduce the concept of pseudocomplementation in commutative

directoids in the way that ensures basic properties similar to those of pseudocom-
plemented semilattices (see e.g. [1], [2], [4]). Of course, it can be done in several
ways but not each of them gets “nice” results. Hence, one choice is as follows.
Let A = (A;⊓, 0) be a commutative directoid with the least element 0. Let

a ∈ A. An element b ∈ A is called the pseudocomplement of a if it is the greatest
element with the property a∧ b = 0 (where a∧ b means inf(a, b) and the notation
a ∧ b = 0 means that a ∧ b exists and is equal to 0). The pseudocomplement
of a will be denoted by a∗. If there exists the pseudocomplement a∗ for each
a ∈ A, A will be called a pseudocomplemented directoid and will be denoted by
A = (A;⊓,∗ , 0).
Since a ⊓ b is a common lower bound of a, b, we have a ⊓ b ≤ a ∧ b whenever

the infimum a ∧ b exists. Hence, we obtain immediately the following.

Lemma 1. If the pseudocomplement a∗ of a ∈ A exists then a ⊓ a∗ = 0. If
b ≤ a∗ then a ⊓ b = 0.

Let us note that the converse of the second assertion of Lemma 1 does not
hold. If a∗ exists and a ⊓ b = 0 then b need not be bellow a∗. Moreover, the
condition a ∧ a∗ = 0 in the definition of pseudocomplement cannot be replaced
by a ⊓ a∗ = 0 to obtain this assertion as one can recognize from the following.

Example 1. Let A = {0, p, a, b, 1} and the directoid A = (A;⊓) is visualized in
Figure 1, where a ⊓ b = 0.

1

p

a b

0 = a ⊓ b

Figure 1

Then b is the greatest element with a ⊓ b = 0 but p ≤ b and a ⊓ p = p 6= 0.

Pseudocomplements in directoids satisfy several properties which are well-
known in pseudocomplemented semilattices, see e.g. [2].
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Lemma 2. Let A = (A;⊓,∗ , 0) be a pseudocomplemented directoid, a, b ∈ A.
Then

(1) a ≤ a∗∗;
(2) a ≤ b implies b∗ ≤ a∗;
(3) a ≤ b implies a∗∗ ≤ b∗∗;
(4) a∗∗∗ = a∗;
(5) 0∗ is the greatest element of A ; denote 0∗ = 1;
(6) 1∗ = 0;
(7) 0∗∗ = 0;
(8) if a = b∗ then a = a∗∗;
(9) a ⊓ (a∗ ⊓ b)∗ = a.

Proof: (1) Since a∧a∗ = 0 and a∗∗ is the greatest element ofA with a∗∗∧a∗ = 0,
we obtain a ≤ a∗∗.
(2) Since b ∧ b∗ = 0 and a ≤ b then also a ∧ b∗ exists and a ∧ b∗ ≤ b ∧ b∗ = 0,

i.e. a ∧ b∗ = 0. Hence, b∗ ≤ a∗.
(3) Follows immediately by (2).
(4) By (1) we have a ≤ a∗∗ and a∗ ≤ a∗∗∗. By (2) we obtain from a ≤ a∗∗ also

a∗ ≥ a∗∗∗ thus a∗∗∗ = a∗.
(5) Since 0 ∧ x = 0 for each x ∈ A, we have x ≤ 0∗ thus 0∗ is the greatest

element of A, i.e. 0∗ = 1.
(6) Since 1 ∧ x = x for each x ∈ A, we have 1∗ = 0.
(7) 0∗∗ is the pseudocomplement of 0∗ = 1, i.e. 0∗∗ = 1∗ = 0.
(8) If a = b∗ then a∗∗ = b∗∗∗ = b∗ = a.
(9) Since a∗ ⊓ b ≤ a∗, we apply (2) and (1) to obtain (a∗ ⊓ b)∗ ≥ a∗∗ ≥ a

whence a ⊓ (a∗ ⊓ b)∗ = a. �

For a pseudocomplemented directoid A = (A;⊓,∗ , 0) we denote by B(A) =
{x∗;x ∈ A} the set of boolean elements . Due to (8) of Lemma 2, B(A) = {x ∈
A;x = x∗∗}. Denote by D(A) = {x ∈ A;x∗ = 0}, the set of dense elements of
A. Let us introduce the following concept. Let L = (L;⊔,⊓) be a λ-lattice with
the least element 0 and the greatest element 1. For a ∈ L, an element b ∈ L is
called the complement of a if a ⊓ b = 0 and a ⊔ b = 1. L is called complemented
if every element of L has a complement. This enables us to reveal the structure
of boolean elements in a pseudocomplemented directoid.

Theorem 1. Let A = (A;⊓,∗ , 0) be a pseudocomplemented directoid. Define
the binary operations ∩ and ⊔ on B(A) as follows

x ⊔ y = (x∗ ⊓ y∗)∗ and x ∩ y = (x ⊓ y)∗∗.

Then B(A) = (B(A);⊔,∩,∗ , 0, 1) is a complemented λ-lattice (where a∗ is a com-
plement of a ∈ B(A)).
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Proof: Assume a, b ∈ B(A). Due to (8) of Lemma 2, a∗, a ⊔ b and a ∩ b belong
to B(A). Due to (6) and (7), also 0, 1 ∈ B(A) thus B(A) = (B(A);⊔,∩,∗ , 0, 1)
is an algebra of type (2, 2, 1, 0, 0). By (9) of Lemma 2, a ⊔ b = (a∗ ⊓ b∗)∗ is a
common upper bound of a and b. If a ≤ b then b∗ ≤ a∗ and (a∗ ⊓ b∗)∗ = b∗∗ = b
thus (B(A);⊔) is a commutative directoid.
Further, a∩ b = (a⊓ b)∗∗ ≤ a∗∗ = a, similarly a∩ b ≤ b thus a∩ b is a common

lower bound of a and b. If a ≤ b then a ∩ b = (a ⊓ b)∗∗ = a∗∗ = a thus (B(A);∩)
is also a commutative directoid. Further, x ⊓ y ≤ x yields (x ⊓ y)∗ ≥ x∗ thus

x ⊔ (x ∩ y) = x ⊔ (x ⊓ y)∗∗ = (x∗ ⊓ (x ⊓ y)∗)∗ = x∗∗ = x

and x = x∗∗ ≤ (x∗ ⊓ y∗)∗ yields

x ∩ (x ⊔ y) = x ∩ (x∗ ⊓ y∗)∗ = (x ⊓ (x∗ ⊓ y∗)∗)∗∗ = x∗∗ = x,

i.e. B(A) satisfies the DeMorgan laws and hence it is a λ-lattice. Evidently, 0 is
the least and 1 the greatest element of B(A).
Finally, a ∩ a∗ = (a ⊓ a∗)∗∗ = 0∗∗ = 0 and a ⊔ a∗ = (a∗ ⊓ a∗∗)∗ = (a∗ ⊓ a)∗ =

0∗ = 1 thus a∗ is a complement of a for any a ∈ B(A). �

Remark. For a pseudocomplemented directoid A = (A;⊓,∗ , 0) and a, b ∈ B(A),
a ⊓ b need not be a boolean element and B(A) need not be a lattice, see the
following example.

e

d∗

a

f

1

c∗ b∗

p

a∗

e∗f ∗

d

0

cb

e ⊓ f e∗ ⊓ f ∗

Figure 2
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Example 2. Consider a pseudocomplemented directoid whose diagram is de-
picted in Figure 2, where b∗ ⊓ c∗ = a and x ⊓ y = x ∧ y for {x, y} 6= {e, f}
and {x, y} 6= {e∗, f∗}. Let x∗ be the pseudocomplement of x. Then D(A) =
{p, 1}, B(A) = {0, a, b, c, d, e, f, a∗, b∗, c∗, d∗, e∗, f∗, 1}. Clearly e ⊓ f /∈ B(A) and
e∗ ⊓ f∗ /∈ B(A) but e ∩ f = (e ⊓ f)∗∗ = a∗∗ = a ∈ B(A) and e∗ ∩ f∗ = d∗∗ =
d ∈ B(A). The complemented λ-lattice B(A) = (B(A);⊔,∩,∗ , 0, 1) is visualized
in Figure 3. It is evident that B(A) is not a lattice since b ∨ c and b∗ ∧ c∗ do not
exist.

e

d∗

a

f

c∗ b∗

1

a∗

e∗f ∗

d

0

cb

Figure 3

The converse of Theorem 1 is evident. If B = (B;⊔,⊓,∗ , 0, 1) is a complemented
λ-lattice where a∗ is a pseudocomplement of a ∈ B then B is the set of all boolean
elements of the pseudocomplemented directoid D = (B;⊓,∗ , 0).

1

0

a b

dc

Figure 4

On the other hand, every commutative directoid A = (A;⊓) with the least
element p and the greatest element 1 can be considered as the set of dense elements
of a certain pseudocomplemented directoid. Namely, we can add an element 0
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and define x ⊓ 0 = 0 for any x ∈ A and x∗ = 0 for x ∈ A, 0∗ = 1. Then
A0 = (A ∪ {0},⊓,∗ , 0) is clearly a pseudocomplemented directoid with D(A0) =
A. However, D(A) need not have a least element in general. Consider e.g. the
directoid in Figure 4 where c ⊓ d = a and x ⊓ y = x ∧ y otherwise. Then clearly
a∗ = b, b∗ = a and c∗ = d∗ = 1∗ = 0, 0∗ = 1. Thus B(A) = {0, a, b, 1} (which
is even a lattice with respect to ⊔ and ∩) and D(A) = {c, d, 1}, i.e. it has not a
least element.

Lemma 3. Let A = (A;⊓,∗ , 0) be a pseudocomplemented directoid. Define a
binary relation Φ on A as follows

〈x, y〉 ∈ Φ if and only if x∗ = y∗.

Then Φ is an equivalence on A and

(a) for each x ∈ A, the class [x]Φ has the greatest element which is x∗∗;
(b) for each x ∈ A, the class [x]Φ contains a unique element of B(A) which
is x∗∗.

Proof: It is straightforward that Φ is an equivalence on A. Assume a ∈ [x]Φ.
Then a∗ = x∗, i.e. x∗∗ = a∗∗ ≥ a. Moreover, x∗∗∗ = x∗ thus x∗∗ ∈ [x]Φ, i.e. x

∗∗

is the greatest element of [x]Φ. Further, x
∗∗ ∈ B(A). Assume b ∈ B(A) ∩ [x]Φ.

Then b = b∗∗ = x∗∗ thus x∗∗ is the unique element of B(A) included in [x]Φ. �

Due to the equivalent formulation as for semilattices in [2], call Φ the Glivenko
equivalence of A = (A;⊓,∗ , 0).
The following result is an easy consequence.

Corollary. Let A = (A;⊓,∗ , 0) be a pseudocomplemented directoid and Φ the
Glivenko equivalence on A. Define the following operations on the quotient set
A/Φ:

[x]Φ ⊓ [y]Φ = [x ⊓ y]Φ;
[x]Φ ⊔ [y]Φ = [(x

∗ ⊓ y∗)∗]Φ;
[x]Φ

∗ = [x∗]Φ.

Then [1]Φ = D(A), [0]Φ = {0} and A/Φ = (A/Φ;⊔,⊓,∗ , D(A), {0}) is a comple-
mented λ-lattice isomorphic to B(A).

The afore mentioned isomorphism h : A/Φ→ B(A) is given by h([x]Φ) = x∗∗.
In the definition of a pseudocomplement in directoids, we had to use infimum,

which is not an operation of directoids. Hence, we are interested if pseudocom-
plemented directoids can be axiomatized in the language containing only its ope-
rations.

Theorem 2. An algebra A = (A;⊓,∗ , 0) of type (2, 1, 0) is a pseudocomple-
mented directoid if and only if it satisfies the axioms (D1), (D2), (D3) and

(P1) x ⊓ 0 = 0;
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(P2) x ⊓ 0∗ = x;
(P3) x ⊓ (x∗ ⊓ y) = 0;
(P4) x ⊓ (y ⊓ z) = 0 for each z ∈ A ⇒ y ⊓ x∗ = y.

Proof: Every pseudocomplemented directoid surely satisfies (D1)–(D3), (P1)
and (P2). Since x∗ ⊓ y ≤ x∗, Lemma 1 yields x ⊓ (x∗ ⊓ y) = 0 which is (P3).
Since x∗ is the pseudocomplement of x, x ∧ x∗ exists and is equal to 0 and x∗ is
the greatest element of this property. Assume x ⊓ (y ⊓ z) = 0 for each z ∈ A and
let x ∧ y do not exist. Then there is a 6= 0 such that a ≤ x, a ≤ y. Hence

x ⊓ (y ⊓ a) = x ⊓ a = a 6= 0,

a contradiction. Thus x∧ y exists and is equal to 0. Hence y ≤ x∗, i.e. y ⊓x∗ = y
proving (P4).
Conversely, assume (D1)–(D3), (P1) and (P2). Then A is a commutative

directoid with the least element 0 and the greatest element 0∗. Denote 1 = 0∗.
Taking y = 1 in (P3) we obtain x⊓x∗ = 0. Assume y ≤ x∗. Then x∗ ⊓ y = y and
(P3) yields x ⊓ y = x ⊓ (x∗ ⊓ y) = 0. Hence, x ∧ x∗ exists and is equal to 0.
Assume now that x ∧ y = 0. Since x ⊓ y ≤ x ∧ y and y ⊓ z ≤ y for any z ∈ A,

we obtain x ⊓ (y ⊓ z) ≤ x ∧ (y ⊓ z) ≤ x ∧ y = 0 thus x ⊓ (y ⊓ z) = 0. By (P4) we
conclude y ≤ x∗, i.e. x∗ is really the greatest element of A with x ∧ x∗ = 0. �
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