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On approximation of functions

by certain operators preserving x
2

Lucyna Rempulska, Karolina Tomczak

Abstract. In this paper we extend the Duman-King idea of approximation of functions
by positive linear operators preserving ek(x) = xk, k = 0, 2. Using a modification of
certain operators Ln preserving e0 and e1, we introduce operators L∗

n which preserve e0
and e2 and next we define operators L∗

n;r for r-times differentiable functions. We show
that L∗

n and L∗

n;r have better approximation properties than Ln and Ln;r .

Keywords: positive linear operators, polynomial weighted space, degree of approxima-
tion

Classification: 41A25, 41A36

1. Introduction

1.1. It is well known ([3-5]) that many of classical approximation operators Ln

satisfy the following conditions for the functions ek(x) = xk, k = 0, 1, 2:

(1) Ln(e0;x) = 1, Ln(e1;x) = x,

and

(2) Ln(e2;x) = x2 +
ax2 + bx

λn
,

for x ∈ X and n ∈ N = {1, 2, . . .}, where a, b are given non-negative numbers,
a2 + b2 > 0, and (λn)

∞
1 , λ1 ≥ 1, is a fixed increasing and unbounded sequence of

numbers.
We say that the operators Ln preserve the functions e0 and e1 if the conditions

(1) are satisfied.
The conditions (1) and (2) hold, in particular, for the Szász-Mirakyan, Baska-

kov, Post-Widder and Stancu operators ([1]–[5], [7], [11]–[14]).
In the papers [6]–[8], there were introduced certain modified Bernstein, Szász-

Mirakyan and Meyer-König and Zeller operators, which preserve the functions e0
and e2 and have better approximation properties than classical operators.
In the paper [13] we have extended the Duman-King idea, [6]–[8], to the Post-

Widder and Stancu operators considered in polynomial weighted spaces.
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1.2. G. Kirov [9] and other authors (e.g. [10], [11]) have examined approximation
properties of linear operators

(3) Ln;r(f ;x) := Ln (Fr(t, x);x) , n ∈ N,

with

(4) Fr(t, x) :=

r∑

j=0

f (j)(t)

j!
(x − t)j ,

for r-times differentiable functions f , using operators Ln with conditions (1).
These authors have shown that the order of approximation of an r-times differ-
entiable function f by Ln;r(f) is dependent on r and it improves if r grows.

1.3. Let N0 and R be sets of non-negative integers and real numbers, correspond-
ingly, and let I be the interval (0,∞) (or [0,∞)).
Analogously to [2] let p ∈ N0,

(5) w0(x) := 1, wp(x) := (1 + xp)−1 if p ≥ 1,

for x ∈ I, and let Bp ≡ Bp(I) be the set of all functions f : I → R for which fwp

is bounded on I and the norm is defined by the formula

(6) ‖f‖p ≡ ‖f(·)‖p := sup
x∈I

wp(x)|f(x)|.

Next let Cp ≡ Cp(I), p ∈ N0, be the set of all f ∈ Bp for which fwp is uniformly
continuous on I and the norm is given by (6). Cp is called the polynomial weighted
space.
Moreover, let Cr ≡ Cr(I), with a fixed r ∈ N, be the set of all r-times differ-

entiable functions f ∈ Cr with derivatives f
(k) ∈ Cr−k for k = 0, 1, . . . , r and the

norm in Cr is given by (6).
It is obvious that if p, q ∈ N0 and p < q, then Bp ⊂ Bq, Cp ⊂ Cq and

‖f‖q ≤ ‖f‖p for f ∈ Bp. Obviously, for every p ∈ N0 we have wp ∈ C0 and
1

wp
∈ Cp (here C0 ≡ C0).

1.4. The purpose of this paper is to extend the Duman-King and Kirov methods
to the classes of operators Ln and Ln;r satisfying the conditions (1)–(4), defined
in polynomial weighted spaces Cp and Cr.
In Section 2 we shall introduce the operators Ln, L

∗
n, Ln;r and L∗

n;r for func-
tions f ∈ Cp and f ∈ Cr , correspondingly, and we shall give some of their basic
properties.
In Section 3 we shall give the main approximation theorems.
In this paper we shall denote by Mk(α, β), k ∈ N, suitable positive constants

depending only on the indicated parameters α and β.
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2. Definitions and auxiliary results

2.1. Let (Ln)
∞
n=1 (or n ≥ n0) be a sequence of positive linear operators with the

following properties:

(i) Ln : Cp → Bp for every p ∈ N0 and n ∈ N,
(ii) Ln satisfies the conditions (1) and (2) for x ∈ I and n ∈ N, with fixed a,

b and (λn),
(iii) there exists M1 ≡ M1(a, b, p) = const. > 0 such that for the functions

(7) Tn;p(x) := Ln (ϕ
p
x(t);x) , x ∈ I, n ∈ N, 2 ≤ p ∈ N,

with

(8) ϕx(t) := t − x, t ∈ I,

there holds

(9) ‖Tn;2p‖2p ≤ M1λ
−p
n for n ∈ N.

Using the above operators Ln, we define for f ∈ Cp, p ∈ N0, the following
operators:

(10) L∗
n(f ;x) := Ln(f ;un(x)) for x ∈ I, n ∈ N,

where

(11) un(x) :=
−b+

√
b2 + 4λn(a+ λn)x2

2(a+ λn)
.

Next, for the functions f ∈ Cr, r ∈ N, x ∈ I and n ∈ N, we introduce the
operators Ln;r by formulas (3) and (4) and the operators L∗

n;r:

(12) L∗
n;r(f ;x) := L∗

n (Fr(t, x);x) , x ∈ I, n ∈ N,

where Fr is defined by (4).
From the properties of the above operators Ln and formulas (10) and (11), it

follows that L∗
n, n ∈ N, is a positive linear operator acting from the space Cp to

Bp for every p ∈ N0 and by (1), (2) and (8) we have

L∗
n(e0;x) = 1, L∗

n(e1;x) = un(x), L∗
n(e2;x) = x2,(13)

Ln

(
ϕ2x(t);x

)
=

ax2 + bx

λn
(14)

and

(15) L∗
n

(
ϕ2x(t);x

)
= 2x (x − un(x)) ,

for x ∈ I and n ∈ N. Moreover, from (3), (4) and (10)–(12) we deduce that Ln;r

and L∗
n;r for n, r ∈ N, are well defined on the space Cr and

(16) L∗
n;r(f ;x) = Ln;r (f ;un(x)) , x ∈ I, n ∈ N,

for every f ∈ Cr.
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2.2. Here we shall give some lemmas on basic properties of the introduced oper-
ators.
By (i)–(iii) and (10) and (11) we easily obtain the following two lemmas.

Lemma 1. Let un be defined by (11) for x ∈ I and n ∈ N, with fixed numbers

a, b ≥ 0, a2 + b2 > 0 and (λn)
∞
1 given by (2). Then we have

0 ≤ un(x) ≤ x, 0 ≤ x − un(x) ≤
ax+ b

λn
,(17)

√
ax2 + bx

λn
−

√
2x (x − un(x)) ≥

2ax+ b

4 (2ax+ b + 2λnx)

√
ax2 + bx

λn
,(18)

for x ∈ I and n ∈ N, and

(19) lim
n→∞

λn (x − un(x)) =
ax+ b

2
at every x ∈ I.

Lemma 2. For every f, g ∈ Cp, p ∈ N, there holds

|Ln (f(t)g(t);x)| ≤
(
Ln

(
f2(t);x

)) 1
2

(
Ln

(
g2(t);x

)) 1
2

, x ∈ I, n ∈ N.

The identical inequality holds for the operators L∗
n.

By (5) and (17) we easily derive the following inequalities

(20) w2p(x) ≤ w2p(x), 1/w2p(x) ≤ 2/w2p(x), 0 < wp(x)/wp(un(x)) ≤ 1,

for x ∈ I and p ∈ N0.

Lemma 3. Let p ∈ N0 and let a, b and λn be fixed numbers connected with

operators Ln given by the formula (2). Then there exists M2 = M2(a, b, p) =
const. > 0 such that

(21) ‖L∗
n(1/wp)‖p ≤ ‖Ln(1/wp)‖p ≤ M2 for n ∈ N.

Moreover, for every f ∈ Cp and n ∈ N we have

(22) ‖L∗
n(f)‖p ≤ ‖Ln(f)‖p ≤ M2‖f‖p.

The formulas (10) and (11) and the inequality (22) show that L∗
n, n ∈ N, is a

positive linear operator acting from the space Cp into Bp for every p ∈ N0.

Proof: If p = 0, then by (5), (6), (1) and (13) it follows that ‖L∗
n(1/w0)‖0 =

‖Ln(1/w0)‖0 = 1 for n ∈ N.
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If p ∈ N, then by the linearity of Ln and (5), (1) and (8) we have

Ln
(
1/wp(t);x

)
= 1 + Ln(ep;x) ≤ 1 + 2

p (xp + Ln (|ϕx(t)|
p ;x)) ,

which by (5)–(9), (20) and Lemma 2 implies that

wp(x)Ln
(
1/wp;x

)
≤ 2p + 2p

(
w2p(x)Ln

(
ϕ2px (t);x

)) 1
2

≤ 2p
(
1 +

√
M1/λ

p
n

)
≤ 2p

(
1 +

√
M1

)
,

for x ∈ I and n ∈ N. Hence the inequality (21) is proved for Ln.
By (10), (20) and (6) we can write

wp(x)L
∗
n

(
1/wp;x

)
≤ wp (un(x))Ln

(
1/wp;un(x)

)
≤ ‖Ln(1/wp)‖p

for x ∈ I and n ∈ N, which by (6) yields (21) for L∗
n.

The inequality (22) for f ∈ Cp, n ∈ N0, follows by (10), (20), (6), (21) and the
following estimate

wp(x) |L
∗
n(f ;x)| ≤ wp(un(x)) |Ln(f ;un(x)| ≤ ‖Ln(f)‖p

≤ ‖f‖p‖Ln(1/wp)‖p ≤ M2‖f‖p, x ∈ I, n ∈ N.
�

Lemma 4. Let r ∈ N and let Ln;r and L∗
n;r be operators defined by (3), (4) and

(10)–(12) with fixed parameters a, b and λn connected with Ln. Then there exists

M3 =M3(a, b, r) = const. > 0 such that for every f ∈ Cr and n ∈ N there holds

(23) ‖L∗
n;r(f)‖r ≤ ‖Ln;r(f)‖r ≤ ‖f‖r +M3‖f

(r)‖0.

The formulas (3), (4) and (12) and the inequalities (23) show that Ln;r and L∗
n;r,

n ∈ N, are linear operators acting from the space Cr to Br.

Proof: Choose f ∈ Cr with a fixed r ∈ N and t ∈ I. Then, by the modified
Taylor formula we have

(24) f(x) =
r∑

j=0

f (j)(t)

j!
(x − t)j + Ir(t, x), x ∈ I,

where

(25) Ir(t, x) :=
(x − t)r

(r − 1)!

∫ 1

0
(1− u)r−1

[
f (r) (t+ u(x − t))− f (r)(t)

]
du.
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From (24), (25) and (4) it results that

(26) Fr(t, x) = f(x)− Ir(t, x) for t, x ∈ I,

which next by (3) and (1) implies that

(27) Ln;r (f(t);x) = f(x)− Ln (Ir(t, x);x)

and consequently

(28) wr(x)
∣∣Ln;r(f(t);x)

∣∣ ≤ ‖f‖r + wr(x)Ln (|Ir(t, x)| ;x) ,

for x ∈ I and n ∈ N. But if f ∈ Cr, then f (r) ∈ C0 and by (25) and (8) we have

|Ir(t, x)| ≤ (2/r!)‖f (r)‖0 |ϕx(t)|
r

and next by Lemma 2, (20) and (7)–(9) we get

(29)
wr(x)Ln (|Ir(t, x)| ;x) ≤

2

r!
‖f (r)‖0

(
w2r(x)Ln

(
ϕ2rx (t);x

)) 1
2

≤
2

r!
‖f (r)‖0 (M1/λr

n)
1

2 ≤
(
2
√

M1
/
r!

)
‖f (r)‖0,

for x ∈ I and n ∈ N. Now, using (29) to (28), we obtain the inequality (23) for
Ln;r.
The formula (16) and the inequality (20) imply that for f ∈ Cr we can write

wr(x)
∣∣L∗

n;r(f ;x)
∣∣ ≤ wr(un(x))

∣∣Ln;r (f ;un(x))
∣∣

≤ ‖Ln;r(f)‖r for x ∈ I, n ∈ N,

which by (6) completes the proof of (23). �

3. Theorems

3.1. In this section we shall estimate the orders of approximation of a function
f ∈ Cp by Ln(f) and L∗

n(f), and also f ∈ Cr by Ln;r(f) and L∗
n;r(f). We shall

use the modulus of continuity of a function f ∈ Cp, i.e.

(30) ω(f ; t)p := sup
0≤h≤t

‖∆hf(·)‖p for t ≥ 0,

where ∆hf(x) = f(x+ h)− f(x).



On approximation of functions by certain operators preserving x2 585

Theorem 1. Assume that p ∈ N0 is a fixed number and Ln and L∗
n are operators

defined in Section 2. Then there exists M4 = M4(a, b, p) = const. > 0 such that
for every f ∈ Cp having the first derivative f ′ belonging to Cp there holds

(31) wp(x) |Ln(f ;x)− f(x)| ≤ M4‖f
′‖p

√
(ax2 + bx)/λn

and

(32) wp(x) |L
∗
n(f ;x)− f(x)| ≤ M4‖f

′‖p

√
2x (x − un(x)),

for x ∈ I and n ∈ N.

Proof: Choose p ∈ N and f ∈ Cp for which f ′ ∈ Cp. Then for a fixed x ∈ I we
can write

f(t)− f(x) =

∫ t

x
f ′(u) du, t ∈ I.

Using now Ln and (1), (8), Lemma 2 and (20), we get

|Ln(f(x);x) − f(x)| ≤ Ln

(∣∣∣∣
∫ t

x
f ′(u) du

∣∣∣∣ ;x
)

≤ ‖f ′‖pLn

(∣∣∣∣
∫ t

x

du

wp(u)

∣∣∣∣ ;x
)

≤ ‖f ′‖p
(
Ln

(
|ϕx(t)|

/
wp(t);x

)
+ Ln (|ϕx(t)| ;x)

)

≤ ‖f ′‖p

(
Ln

(
ϕ2x(t);x

)) 1
2

((
2Ln

(
1/w2p(t);x

)) 1
2 + 1

)
,

for n ∈ N. From this and by (14), (20) and (21) we immediately obtain the desired
inequality (31).
The proof of (32) is similar. �

Theorem 2. Let p, Ln and L∗
n satisfy the assumptions of Theorem 1. Then

there exists M5 =M5(a, b, p) = const. > 0 such that

(33) wp(x) |Ln(f ;x)− f(x)| ≤ M5ω

(
f ;

√
(ax2 + bx)

/
λn

)

p

and

(34) wp(x) |L
∗
n(f ;x)− f(x)| ≤ M5ω

(
f ;

√
2x(x − un(x))

)

p
,

for x ∈ I and n ∈ N.
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Proof: Similarly to [2] and [13] we use the Steklov function fh of f ∈ Cp, i.e.

fh(x) :=
1

h

∫ h

0
f(x+ t) dt, x ∈ I, h > 0.

It is easily verified that fh and the derivative f ′
h belong to Cp as well, and by (30)

we have:

(35) ‖fh − f‖p ≤ ω(f ;h)p,

and

(36) ‖f ′
h‖p ≤ h−1ω(f ;h)p for h > 0.

Applying (13), (22), Theorem 1, (30), (35) and (36), we get

wr(x) |L
∗
n(f ;x)− f(x)|

≤ wr(x) (|L
∗
n (f(t)− fh(t);x)|+ |Ln (fh(t);x)− fh(x)| + |fh(x) − f(x)|)

≤ M2‖f − fh‖p +M4‖f
′
h‖p

√
2x(x − un(x)) + ‖fh − f‖p

≤ ω(f ;h)p

(
M1 + 1 +M4h

−1
√
2x(x − un(x))

)

for x ∈ I, n ∈ N and h > 0. Now setting h =
√
2x(x − un(x)), we obtain the

desired estimate (34).
The proof of (33) is identical. �

From Theorem 2 and Lemma 1 we can derive the following two corollaries.

Corollary 1. For every f ∈ Cp, p ∈ N0, there holds

lim
n→∞

Ln(f ;x) = f(x) = lim
n→∞

L∗
n(f ;x) at x ∈ I.

This convergence is uniform on every interval [x1, x2], x1 > 0.

Corollary 2. The inequalities (17), (18), (33) and (34) show that the operators
L∗

n, n ∈ N, have better approximation properties than Ln for functions f ∈ Cp,

p ∈ N0.

Theorem 3. Let r ∈ N and let Ln;r and L∗
n;r be operators defined in Section 2.

Then for every f ∈ Cr we have:

(37) wr(x)
∣∣Ln;r(f ;x)− f(x)

∣∣ ≤ 2
r!

(
M1

/
λr

n

) 1
2 ω

(
f (r);

√
(ax2 + bx)

/
λn

)

0
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and

(38) wr(x)
∣∣L∗

n;r(f ;x)− f(x)
∣∣ ≤ 2

r!

(
M1

/
λr

n

) 1
2 ω

(
f (r);

√
2x (x − un(x))

)

0

for x ∈ I and n ∈ N, where M1 = const. > 0 is given by (9).

Proof: First we prove the inequality (37). Fix r ∈ N, f ∈ Cr and x ∈ I. Then
by (27) it follows that

∣∣Ln;r(f ;x)− f(x)
∣∣ ≤ Ln (|Ir(t, x)| ;x) for n ∈ N.

Using (8), (30) and properties of the modulus of continuity of f (r) ∈ C0, we
deduce from (25):

|Ir(t, x)| ≤
|ϕx(t)|

r

(r − 1)!

∫ 1

0
(1− u)r−1ω

(
f (r);u|ϕx(t)|

)

0
du

≤ ω
(
f (r); |ϕx(t)|

)

0

|ϕx(t)|
r

(r − 1)!

∫ 1

0
(1 − u)r−1 du

≤
1

r!
ω

(
f (r); δ

)

0

(
|ϕx(t)|

r + δ−1 |ϕx(t)|
r+1

)
,

for t ∈ I and every fixed δ > 0. Consequently,

∣∣Ln;r(f ;x)− f(x)
∣∣ ≤ 1

r!
ω

(
f (r); δ

)

0

(
Ln (|ϕx(t)|

r ;x) + δ−1Ln

(
|ϕx(t)|

r+1 ;x
))

,

which by Lemma 2, (1), (20), (7)–(9) and (14) implies that

(39)

wr(x)
∣∣Ln;r(f ;x)− f(x)

∣∣ ≤ 1
r!

ω
(
f (r); δ

)

0
‖Tn;2r‖2r

×

(
1 + δ−1

(
Ln

(
ϕ2x(t);x

)) 1
2

)

≤ (1/r!)ω
(
f (r); δ

)

0

(
M1λ

−r
n

) 1
2

(
1 + δ−1

√
(ax2 + bx)

/
λn

)

for n ∈ N. Setting δ =
√
(ax2 + bx)

/
λn to (39), we obtain (37) for chosen x ∈ I

and n ∈ N.
Applying (12), (26), (25) and (13), and arguing as above, we can write the

following analogues of (27) and (39) for f ∈ Cr and L∗
n;r(f), i.e.

L∗
n;r(f ;x)− f(x) = −L∗

n (Ir(t, x);x)
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and

(40)

wr(x)
∣∣L∗

n;r(f ;x)− f(x)
∣∣ ≤ 1

r!
ω

(
f (r); δ

)

0

×
(
w2r(x)L

∗
n

(
ϕ2rx (t);x

)) 1
2

{
1 + δ−1

(
L∗

n

(
ϕ2x(t);x

)) 1
2

}
,

for x ∈ I, n ∈ N and every fixed δ > 0. But by (23) and (6)–(9) it follows that

(41) w2r(x)L
∗
n

(
ϕ2rx (t);x

)
≤ ‖Tn;2r‖2r ≤ M1λ

−r
n

for x ∈ I and n ∈ N. Using (41) and (15) to (40) and next putting δ =√
2x (x − un(x)), we obtain the estimate (38). �

From Theorem 3 and (17) and (18) we can derive:

Corollary 3. Let r ∈ N and f ∈ Cr. Then

lim
n→∞

λ
r/2
n

(
Ln;r(f ;x)− f(x)

)
= 0 = lim

n→∞
λ

r/2
n

(
L∗

n;r(f ;x)− f(x)
)

at every x ∈ I. This convergence is uniform on every interval [x1, x2], x1 > 0.

Corollary 4. The inequalities (33) and (37) show that the order of approxima-
tion of an r-times differentiable function f ∈ Cr by Ln;r(f) is better than by
Ln(f). This order of approximation of f ∈ Cr by Ln;r(f) improves if r ∈ N

grows.

The identical properties have operators L∗
n and L∗

n;r in spaces Cr , r ∈ N.

Moreover, the inequalities (37), (38), (17) and (18) show that operators L∗
n;r have

better approximation properties than Ln;r for functions f ∈ Cr, r ∈ N.

3.2. Here we present the Voronovskaya type theorems for the operators conside-
red.

Theorem 4. Suppose that p ∈ N0 and a function f ∈ Cp has derivatives f
′, f ′′ ∈

Cp. Then

(42) lim
n→∞

λn (Ln(f ;x)− f(x)) =
ax2 + bx

2
f ′′(x)

and

(43) lim
n→∞

λn (L
∗
n(f ;x)− f(x)) = −

ax+ b

2
f ′(x) +

ax2 + bx

2
f ′′(x),

at every x ∈ I.
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Proof: We show only (43) because the proof of (42) is analogous.
Choose a function f satisfying the above assumptions and x ∈ I. Then by the

Taylor formula we can write

f(t) = f(x) + f ′(x)(t − x) +
1

2
f ′′(x)(t − x)2 + α(t, x)(t − x)2, t ∈ I,

where α(t) ≡ α(t, x) is a function belonging to Cp and limt→x α(t) = α(x) = 0.
Using the operator L∗

n and next (8), (13) and (15), we get

(44)
L∗

n(f(t);x) = f(x) + (un(x)− x) f ′(x) + x (x − un(x)) f
′′(x)

+ L∗
n

(
α(t)ϕ2x(t);x

)
, n ∈ N.

Applying Lemma 2, we get

∣∣∣L∗
n

(
α(t)ϕ2x(t);x

)∣∣∣ ≤
(
L∗

n

(
α2(t);x

)) 1
2

(
L∗

n

(
ϕ4x(t);x

)) 1
2
for n ∈ N,

and moreover, by the properties of α(·), Corollary 1 and (41) we have

lim
n→∞

L∗
n

(
α2(t);x

)
= α2(x) = 0,

λ2nL∗
n

(
ϕ4x(t);x

)
≤ M1

/
w4(x), n ∈ N.

From the above it follows that

(45) lim
n→∞

λnL∗
n

(
α(t)ϕ2x(t);x

)
= 0.

Applying (19) and (45), we immediately derive (43) from (44). �

Theorem 5. Let r ∈ N and let f ∈ Cr be a function whose derivatives f (r+1)

and f (r+2) belong to C0. Then, for the operators L∗
n;r, the following asymptotic

formula holds:

(46)

L∗
n;r(f ;x)− f(x) =

(−1)rf (r+1)(x)L∗
n

(
ϕr+1

x (t);x
)

(r + 1)!

+
(−1)r(r + 1)f (r+2)(x)L∗

n

(
ϕr+2

x ;x
)

(r + 2)!

+ ox

(
λ
−(r+2)/2
n

)
as n → ∞,

at every x ∈ I.
The analogous asymptotic formula holds for the operators Ln;r.
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Proof: Choose r ∈ N, x ∈ I and f ∈ Cr satisfying the above assumptions. Then

the derivative f (j), 0 ≤ j ≤ r + 2, is an (r + 2 − j)-times differentiable function

on I. Hence for every f (j), 0 ≤ j ≤ r, we can write the Taylor formula at given x:

f (j)(t) =

r+2−j∑

i=0

f (j+i)(x)

i!
(t − x)i + αj(t, x)(t − x)r+2−j , t ∈ I,

where αj(t) ≡ αj(t, x) is a function belonging to C0 and limt→x αj(t) = αj(x) =
0. Using this formula to Fr given by (4), we get

(47)

Fr(t, x) =

r∑

j=0

(−1)j

j!

r+2−j∑

i=0

f (j+i)(x)

i!
(t − x)j+i

+ (t − x)r+2
r∑

j=0

(−1)j

j!
αj(t)

=

r∑

j=0

(−1)j
r∑

s=j

(
s

j

)
f (s)(x)

s!
(t − x)s

+
f (r+1)(x)(t − x)r+1

(r + 1)!

r∑

j=0

(−1)j
(

r + 1

j

)

+
f (r+2)(x)(t − x)r+2

(r + 2)!

r∑

j=0

(−1)j
(

r + 2

j

)

+ (t − x)r+2Ar(t) for t ∈ I,

with

(48) Ar(t) :=
r∑

j=0

(−1)j

j!
αj(t).

The following identities for m ∈ N0

m∑

j=0

(
m

j

)
(−1)j =

{
1 if m = 0

0 if m ∈ N
,

m∑

j=0

(
m+ 1

j

)
(−1)j = (−1)m,

m∑

j=0

(
m+ 2

j

)
(−1)j = (m+ 1)(−1)m,
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imply that

r∑

j=0

(−1)j
r∑

s=j

(
s

j

)
f (s)(x)

s!
(t − x)s

=

r∑

s=0

f (s)(x)(t − x)s

s!

s∑

j=0

(
s

j

)
(−1)j = f(x),

which applied to (47) yields

Fr(t, x) = f(x) +
(−1)rf (r+1)(x)(t − x)r+1

(r + 1)!

+
(−1)r(r + 1)f (r+2)(x)(t − x)r+2

(r + 2)!
+ (t − x)r+2Ar(t),

for t ∈ I. From this and (12), (13) and (8) we deduce that

(49)

L∗
n;r(f(t);x) = f(x) +

(−1)rf (r+1)(x)L∗
n

(
ϕr+1

x (t);x
)

(r + 1)!

+
(−1)r(r + 1)f (r+2)(x)L∗

n

(
ϕr+2

x (t);x
)

(r + 2)!

+ L∗
n

(
Ar(t)ϕ

r+2
x (t);x

)
for n ∈ N.

We observe that, by the properties of the functions αj , (48) and Corollary 1,

(50) lim
n→∞

L∗
n

(
A2r(t);x

)
= A2r(x) = 0.

Arguing as in the proof of Theorem 4 and applying (50) and (41), we obtain

L∗
n

(
Ar(t)ϕ

r+2
x (t);x

)
= ox

(
λ
−(r+2)/2
n

)
as n → ∞,

which, applied to (49), yields the desired asymptotic formula (46). �

4. Examples

Finally we present four examples of well-known positive linear operators Ln

which satisfy conditions (i)–(iii) given in Section 2.

1. The Szász-Mirakyan operators ([2]–[5])

(51) Sn(f ;x) := e−nx
∞∑

k=0

(nx)k

k!
f

(
k

n

)
, x ≥ 0, n ∈ N,

satisfy the conditions (1) and (2) with a = 0, b = 1 and λn = n for n ∈ N.
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2. The Baskakov operators ([2], [5])

(52)
Vn(f ;x) := (1 + x)−n

∞∑

k=0

(
n+ k − 1

k

) (
x

1 + x

)k

f

(
k

n

)
,

x ≥ 0, n ∈ N,

satisfy also the conditions (1) and (2) with a = b = 1 and λn = n for n ∈ N.

3. The Post-Widder operators ([5], [13]) are defined for f ∈ Cp, p ∈ N0, by the
following integral formula:

(53)

Pn(f ;x) :=

∫ ∞

0
f(t)pn(x, t) dt, x > 0, n ∈ N,

pn(x, t) :=
(n/x)ntn−1

(n − 1)!
exp(−nt/x).

These operators satisfy (1) and (2) with a = 1, b = 0 and λn = n for n ∈ N.

4. The beta Stancu operators ([14], [13]) are defined for f ∈ Cp, p ∈ N0, by the
formula:

(54) L̃n(f ;x) :=

∫ ∞

0
f(t)sn(x, t) dt, x > 0, n ≥ p+ 2,

where

sn(x, t) :=
tnx−1

B(nx, n+ 1)(1 + t)nx+n−1

and B is the Euler beta function. Now the conditions (1) and (2) hold with
a = b = 1 and λn = n − 1 for 2 ≤ n ∈ N.

Using the formulas (3), (4), (10)–(12) and (51)–(54), we can define the modified
Szász-Mirakyan, Baskakov, Post-Widder and Stancu operators: S∗

n, V
∗
n , P

∗
n and

L̃∗
n in the space Cp, p ∈ N0, and the corresponding operators Ln;r and L∗

n;r.
Hence, from Theorems 1–5 and Corollaries 1–4 we can deduce approximation

properties of operators Sn, Vn, Pn and L̃n and their modifications for functions
f ∈ Cp and f ∈ Cr , correspondingly.
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