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UNIQUENESS OF MEROMORPHIC FUNCTIONS
WHEN TWO NON-LINEAR DIFFERENTIAL

POLYNOMIALS SHARE A SMALL FUNCTION

Indrajit Lahiri and Pulak Sahoo

Abstract. In the paper we deal with the uniqueness of meromorphic functions
when two non-linear differential polynomials generated by two meromorphic
functions share a small function.

1. Introduction, definitions and results

Let f and g be two non-constant meromorphic functions defined in the open
complex plane C. For a ∈ {∞} ∪ C we say that f and g share the value a CM
(counting multiplicities) if f , g have the same a-points with the same multiplicity
and we say that f , g share the value a IM (ignoring multiplicities) if we do not
consider the multiplicities. We denote by T (r, f) the Nevanlinna characteristic
function of the meromorphic function f and by S(r, f) any quantity satisfying
S(r, f) = o{T (r, f)} as r →∞ possibly outside a set of finite linear measure.

A meromorphic function α is said to be a small function of f if T (r, α) = S(r, f).
We denote by T (r) the maximum of T (r, f) and T (r, g). Also we denote by S(r)
any quantity satisfying S(r) = o{T (r)} as r →∞, possibly outside a set of finite
linear measure.

In the recent past a number of authors worked on the uniqueness problem of
meromorphic functions when differential polynomials generated by them share
certain values (cf. [1], [2], [3], [4], [6], [9], [10], [11]).

In [6] following question was asked:
What can be said if two non-linear differential polynomials generated by two mero-
morphic functions share 1 CM?

A considerable amount of research has already been done in this direction ([1],
[3], [4], [10], [11]). In 2002 Fang-Fang [3] and in 2004 Lin-Yi [11] independently
proved the following result.

Theorem A. Let f and g be two non-constant meromorphic functions and n (≥ 13)
be an integer. If fn(f − 1)2f ′ and gn(g − 1)2g′ share 1 CM, then f ≡ g .

Also in [3] Fang-Fang proved the following theorem.
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Theorem B. Let f and g be two non-constant meromorphic functions and n (≥ 28)
be an integer. If fn(f − 1)2f ′ and gn(g − 1)2g′ share 1 IM, then f ≡ g .

In 2001 an idea of gradation of sharing of values was introduced to measure how
close a shared value is to being shared CM or to being shared IM. This notion is
known as weighted sharing of values and is defined as follows.

Definition 1.1 ([8, 7]). Let k be a nonnegative integer or infinity. For a ∈ C∪{∞}
we denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity
m is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is
an a-point of f with multiplicity m (≤ k) if and only if it is an a-point of g with
multiplicity m (≤ k) and z0 is an a-point of f with multiplicity m (> k) if and only
if it is an a-point of g with multiplicity n (> k), where m is not necessarily equal
to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) and
(a,∞) respectively.

If α = α(z) is a small function of f and g then f , g share (α, k) means that
f − α and g − α share (0, k).

In 2004 Lahiri-Sarkar [10] proved the following theorems.

Theorem C ([10]). Let f and g be two non-constant meromorphic functions
such that 2Θ(∞; f) + 2Θ(∞; g) + min

{
Θ(∞; f),Θ(∞; g)

}
> 4. If fn(f − 1)f ′ and

gn(g − 1)g′ share (1, 2) then f ≡ g, where n (≥ 7) is an integer.

Theorem D ([10]). Let f and g be two non-constant meromorphic functions such
that 2Θ(∞; f) + 2Θ(∞; g) + min

{
Θ(∞; f),Θ(∞; g)

}
> 4. If fn(f2 − 1)f ′ and

gn(g2 − 1)g′ share (1, 2), then either f ≡ g or f ≡ −g, where n (≥ 8) is an integer.
If n is an even integer then the possibility f ≡ −g does not arise.

In the paper we investigate uniqueness of meromorphic functions when two
non-linear differential polynomials share a small function. We now state the main
result of the paper.

Theorem 1.1. Let f and g be two non-constant meromorphic functions and
α ( 6≡ 0,∞) be a small function of f and g. Let n and k (≥ 2) be two positive
integers such that fn(fk − a)f ′ and gn(gk − a)g′ share (α,m), where a (6= 0) is a
finite complex number. Then f ≡ g or f ≡ −g provided one of the following holds:

(i) m ≥ 2 and n > max
{

4, k + 10 − 2Θ(∞; f) − 2Θ(∞; g) − min{Θ(∞; f),
Θ(∞; g)}

}
;

(ii) m = 1 and n > max
{

4, 3k
2 + 12− 3Θ(∞; f)− 3Θ(∞; g)

}
;

(iii) m = 0 and n > max
{

4, 4k + 22− 5Θ(∞; f)− 5Θ(∞; g)−min
{

Θ(∞; f),
Θ(∞; g)}

}
.
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Also the possibility f ≡ −g does not arise if n and k are both even or both odd
or if n is even and k is odd.

For standard definitions and notations of the value distribution theory we refer
the reader to [5].

2. Lemmas

In this section we present some lemmas which will be needed to prove the
theorem.
Lemma 2.1 ([12, 13]). Let f be a non-constant meromorphic function and P (f) =
a0 + a1f + a2f

2 + · · ·+ anf
n, where a0, a1, a2, . . . , an ( 6= 0) are constants. Then

T
(
r, P (f)

)
= nT (r, f) + S(r, f) .

Lemma 2.2 ([14]). Let f be a non-constant meromorphic function. Then
N(r, 0; f (k)) ≤ kN(r,∞; f) +N(r, 0; f) + S(r, f) .

Lemma 2.3 ([8]). Let f and g be two non-constant meromorphic functions sharing
(1, 2). Then one of the following cases holds:

(i) T (r) ≤ N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g) + S(r),
(ii) f ≡ g,
(iii) fg ≡ 1.

Lemma 2.4 ([1]). Let f and g be two non-constant meromorphic functions sharing
(1,m) and

f ′′

f ′
− 2f ′

f − 1 6≡
g′′

g′
− 2g′

g − 1 .

Now the following hold:
(i) if m = 1 then T (r, f) ≤ N2(r, 0; f)+N2(r, 0; g)+N2(r,∞; f)+N2(r,∞; g)+

1
2N(r, 0; f) + 1

2N(r,∞; f) + S(r, f) + S(r, g);
(ii) if m = 0 then T (r, f) ≤ N2(r, 0; f)+N2(r, 0; g)+N2(r,∞; f)+N2(r,∞; g)+

2N(r, 0; f) +N(r, 0; g) + 2N(r,∞; f) +N(r,∞; g) + S(r, f) + S(r, g).
Lemma 2.5 ([15]). If

f ′′

f ′
− 2f ′

f − 1 ≡
g′′

g′
− 2g′

g − 1
and

lim sup
r→∞,r 6∈E

N(r, 0; f) +N(r, 0; g) +N(r,∞; f) +N(r,∞; g)
T (r) < 1

then f ≡ g or fg ≡ 1, where E is a set of finite linear measure and not necessarily
the same at each of its occurrence.
Lemma 2.6. Let f and g be two non-constant meromorphic functions and α
( 6≡ 0,∞) be a small function of f and g. Let n (≥ 4) and k (≥ 2) be positive
integers. Then for any non-zero constant a,

fn(fk − a)f ′gn(gk − a)g′ 6≡ α2 .
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Proof. We suppose that

(2.1) fn(fk − a)f ′gn(gk − a)g′ ≡ α2 .

Let z0 (α(z0) 6= 0,∞) be a zero of f with multiplicity p. Then z0 is a pole of g
with multiplicity q, say. From (2.1) we get

np+ p− 1 = nq + kq + q + 1

and so

(2.2) kq + 2 = (n+ 1)(p− q) .

From (2.2) we get q ≥ n−1
k and again from (2.2) we obtain

p ≥ 1
n+ 1

[ (n+ k + 1)(n− 1)
k

+ 2
]

= n+ k − 1
k

.

Let z1
(
α(z1) 6= 0,∞

)
be a zero of fk − a with multiplicity p. Then z1 is a pole

of g with multiplicity q, say. So from (2.1) we get

2p− 1 = (n+ k + 1)q + 1

≥ n+ k + 2

i.e.,

p ≥ n+ k + 3
2 .

Since a pole of f (which is not a pole of α) is either a zero of gn(gk − a) or a zero
of g′, we have

N(r,∞; f) ≤ N(r, 0; g) +N(r, a; gk) +N0(r, 0; g′) + S(r, f) + S(r, g)

≤ k

n+ k − 1N(r, 0; g) + 2
n+ k + 3N(r, a; gk) +N0(r, 0; g′)

+ S(r, f) + S(r, g)

≤
( k

n+ k − 1 + 2k
n+ k + 3

)
T (r, g) +N0(r, 0; g′) + S(r, f) + S(r, g) ,

where N0(r, 0; g′) denotes the reduced counting function of those zeros of g′ which
are not the zeros of g(gk − a).

Let fk − a = (f − a1)(f − a2) . . . (f − ak). Then by the second fundamental
theorem we get

kT (r, f) ≤ N(r,∞; f) +N(r, 0; f) +
k∑
j=1

N(r, aj ; f)−N0(r, 0; f ′) + S(r, f)

= N(r,∞; f) +N(r, 0; f) +N(r, a; fk)−N0(r, 0; f ′) + S(r, f)

≤
( k

n+ k − 1 + 2k
n+ k + 3

)
T (r, g) +N0(r, 0; g′) + k

n+ k − 1N(r, 0; f)
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+ 2
n+ k + 3N(r, a; fk)−N0(r, 0; f ′) + S(r, f) + S(r, g)

≤
( k

n+ k − 1 + 2k
n+ k + 3

){
T (r, f) + T (r, g)

}
+N0(r, 0; g′)

−N0(r, 0; f ′) + S(r, f) + S(r, g) .(2.3)

Similarly we get

kT (r, g) ≤
( k

n+ k − 1 + 2k
n+ k + 3

){
T (r, f) + T (r, g)

}
+N0(r, 0; f ′)

−N0(r, 0; g′) + S(r, f) + S(r, g) .(2.4)

Adding (2.3) and (2.4) we obtain(
1− 2

n+ k − 1 −
4

n+ k + 3

){
T (r, f) + T (r, g)

}
≤ S(r, f) + S(r, g) ,

which is a contradiction. This proves the lemma. �

Lemma 2.7. Let f and g be two non-constant meromorphic functions and F =

fn+1
( fk

n+ k + 1−
a

n+ 1

)
and G = gn+1

( gk

n+ k + 1−
a

n+ 1

)
, where a is a non-zero

constant. Further let F0 = F ′

α
and G0 = G′

α
, where α ( 6≡ 0,∞) is a small function

of f and g. Then S(r, F0) and S(r,G0) are replaceable by S(r, f) and S(r, g)
respectively.

Proof. By Lemma 2.1 we get

T (r, F0) ≤ T (r, F ′) + S(r, f)

≤ 2T (r, F ) + S(r, f)

= 2(n+ k + 1)T (r, f) + S(r, f)

and similarly

T (r,G0) ≤ 2(n+ k + 1)T (r, g) + S(r, g) .

This proves the lemma. �

Lemma 2.8. Let F , G, F0 and G0 be defined as in Lemma 2.7. Then

(i) T (r, F ) ≤ T (r, F0) +N(r, 0; f) +N
(
r, n+k+1

n+1 a; fk
)
−N(r, a; fk)

−N(r, 0; f ′) + S(r, f),

(ii) T (r,G) ≤ T (r,G0) +N(r, 0; g) +N
(
r, n+k+1

n+1 a; gk
)
−N(r, a; gk)

−N(r, 0; g′) + S(r, g).
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Proof. We prove (i) only as the proof of (ii) is similar. By Nevanlinna’s first
fundamental theorem and lemma 2.1 we get

T (r, F ) = T
(
r,

1
F

)
+O(1)

= N(r, 0;F ) +m
(
r,

1
F

)
+O(1)

≤ N(r, 0;F ) +m
(
r,
F0

F

)
+m(r, 0;F0) +O(1)

= N(r, 0;F ) + T (r, F0)−N(r, 0;F0) + S(r, F )

= T (r, F0) +N(r, 0; f) +N
(
r,
n+ k + 1
n+ 1 a; fk

)
−N(r, a; fk)−N(r, 0; f ′) + S(r, f) .

This proves the lemma. �

Following lemma can be proved in the line of Lemma 2.10 [10].

Lemma 2.9. Let F and G be defined as in Lemma 2.7, where k and n (≥ 3 + k)
are positive integers. Then F ′ ≡ G′ implies F ≡ G.

Lemma 2.10. Let F and G be defined as in Lemma 2.7 and F ≡ G. If k ≥ 2 and
n+ k ≥ 5 then either f ≡ g or f ≡ −g. Also if n and k are both even or both odd
or if n is even and k is odd then the possibility f ≡ −g does not arise.

Proof. Clearly if n and k are both even or both odd or if n is even and k is odd,
then f ≡ −g contradicts F ≡ G.

Let neither f ≡ g nor f ≡ −g. We put h = g
f . Then h 6≡ 1 and h 6≡ −1. Also

F ≡ G implies

fk = a
n+ k + 1
n+ 1

hn+1 − 1
hn+k+1 − 1 .

Since f is non-constant, we see that h is not a constant. Again since fk has no simple
pole, h− αm has no simple zero, where αm = exp

( 2mπi
n+k+1

)
and m = 1, 2, . . . , n+ k.

Hence Θ(αm;h) ≥ 1
2 for m = 1, 2, . . . , n+ k, which is impossible. Therefore either

f ≡ g or f ≡ −g. This proves the lemma. �

3. Proof of the Theorem

Proof of Theorem 1.1. Let F , G, F0 and G0 be defined as in Lemma 2.7. We
consider the following three cases of the theorem separately.

Case (i). Since F0 and G0 share (1, 2), one of the possibilities of Lemma 2.3 holds.
We suppose that

T0(r) ≤ N2(r, 0;F0) +N2(r, 0;G0) +N2(r,∞;F0) +N2(r,∞;G0)
+ S(r, F0) + S(r,G0) ,(3.1)

where T0(r) = max
{
T (r, F0), T (r,G0)

}
. We now choose a number ε such that

0 < 2ε < n− k − 10 + 2Θ(∞; f) + 2Θ(∞; g) + min
{

Θ(∞; f),Θ(∞; g)
}
.
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Now by Lemma 2.2, Lemma 2.7 and Lemma 2.8 we get from (3.1)

T (r, F ) ≤ T (r, F0) +N(r, 0; f) +N
(
r,
n+ k + 1
n+ 1 a; fk

)
−N(r, a; fk)

−N(r, 0; f ′) + S(r, f)

≤ N2(r, 0;F0) +N2(r, 0;G0) +N2(r,∞;F0) +N2(r,∞;G0) +N(r, 0; f)

+N
(
r,
n+ k + 1
n+ 1 a; fk

)
−N(r, a; fk)−N(r, 0; f ′) + S(r, f) + S(r, g)

≤ 2N(r, 0; f) +N(r, a; fk) +N(r, 0; f ′) + 2N(r,∞; f) + 2N(r, 0; g)
+N(r, a; gk) +N(r, 0; g′) + 2N(r,∞; g) +N(r, 0; f)

+N
(
r,
n+ k + 1
n+ 1 a; fk

)
−N(r, a; fk)−N(r, 0; f ′) + S(r, f) + S(r, g)

= 2N(r, 0; f) + 2N(r,∞; f) +N(r, 0; f) +N
(
r,
n+ k + 1
n+ 1 a; fk

)
+ 2N(r, 0; g) +N(r, a; gk) +N(r, 0; g′) + 2N(r,∞; g) + S(r, f) + S(r, g)

≤
{

5 + k − 2Θ(∞, f) + ε
}
T (r, f) +

{
6 + k − 3Θ(∞, g) + ε

}
T (r, g)

+ S(r, f) + S(r, g) .

So by Lemma 2.1 we obtain

(n+ k + 1)T (r, f) ≤
{

11 + 2k − 2Θ(∞, f)− 3Θ(∞, g) + 2ε
}

× T (r) + S(r) .(3.2)

Similarly we get

(n+ k + 1)T (r, g) ≤
{

11 + 2k − 3Θ(∞, f)− 2Θ(∞, g) + 2ε
}

× T (r) + S(r) .(3.3)

From 3.2 and 3.3 we see that[
n− k − 10 + 2Θ(∞; f) + 2Θ(∞; g) + min

{
Θ(∞; f),Θ(∞; g)

}
− 2ε

]
T (r) ≤ S(r) ,

which is a contradiction. Hence 3.1 does not hold. So by Lemma 2.3 either F0G0 ≡ 1
or F0 ≡ G0. Since by Lemma 2.6 F0G0 6≡ 1, we get F0 ≡ G0. Now the result follows
from Lemma 2.9 and Lemma 2.10.

Case (ii). We put

H =
(F ′′0
F ′0
− 2F ′0
F0 − 1

)
−
(G′′0
G′0
− 2G′0
G0 − 1

)
.

Also we choose a number ε such that

0 < 2ε < n− 3k
2 − 12 + 3Θ(∞; f) + 3Θ(∞; g) .



208 I. LAHIRI AND P. SAHOO

We suppose that H 6≡ 0. Since F0 and G0 share (1, 1), by Lemma 2.2, Lemma
2.4(i), Lemma 2.7 and Lemma 2.8 we get

T (r, F ) ≤ T (r, F0) +N(r, 0; f) +N(r, n+ k + 1
n+ 1 a; fk)−N(r, a; fk)

−N(r, 0; f ′) + S(r, f)

≤ N2(r, 0;F0) +N2(r, 0;G0) +N2(r,∞;F0) +N2(r,∞;G0)

+ 1
2N(r, 0;F0) + 1

2N(r,∞;F0) +N(r, 0; f) +N
(
r,
n+ k + 1
n+ 1 a; fk

)
−N(r, a; fk)−N(r, 0; f ′) + S(r, f) + S(r, g)

≤ 2N(r, 0; f) +N(r, a; fk) +N(r, 0; f ′) + 2N(r,∞; f) + 2N(r, 0; g)+

N(r, a; gk) +N(r, 0; g′) + 2N(r,∞; g) + 1
2N(r, 0; f) + 1

2N(r, a; fk)

+ 1
2N(r, 0; f ′) + 1

2N(r,∞; f) +N(r, 0; f) +N
(
r,
n+ k + 1
n+ 1 a; fk

)
−N(r, a; fk)−N(r, 0; f ′) + S(r, f) + S(r, g)

≤
{3k

2 + 7− 3Θ(∞, f) + ε
}
T (r, f) + {6 + k − 3Θ(∞, g) + ε}T (r, g)

+ S(r, f) + S(r, g)

≤
{

13 + 5k
2 − 3Θ(∞, f)− 3Θ(∞, g) + 2ε

}
T (r) + S(r) .

So by Lemma 2.1 we get

(n+ k + 1)T (r, f) ≤
{

13 + 5k
2 − 3Θ(∞, f)− 3Θ(∞, g) + 2ε

}
T (r) + S(r) .

Similarly we get

(n+ k + 1)T (r, g) ≤
{

13 + 5k
2 − 3Θ(∞, f)− 3Θ(∞, g) + 2ε

}
T (r) + S(r) .

Combining the above two inequalities we obtain{
n− 3k

2 − 12 + 3Θ(∞; f) + 3Θ(∞; g)− 2ε
}
T (r) ≤ S(r) ,

which is a contradiction. Hence H ≡ 0. Now by Lemma 2.1 we get
(n+ k)T (r, f) = T (r, fn(fk − a)) + S(r, f)

≤ T (r, F ′) + T (r, f ′) + S(r, f)

≤ T (r, F0) + 2T (r, f) + S(r, f)

and so

T (r, F0) ≥ (n+ k − 2)T (r, f) + S(r, f) .
Similarly we get

T (r,G0) ≥ (n+ k − 2)T (r, g) + S(r, g) .
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Also we see by Lemma 2.2 that
N(r, 0; F0) +N(r,∞;F0) +N(r, 0;G0) +N(r,∞;G0)

≤ N(r, 0; f) +N(r, a; fk) +N(r, 0; f ′) +N(r,∞; f) +N(r, 0; g)
+N(r, a; gk) +N(r, 0; g′) +N(r,∞; g) + S(r, f) + S(r, g)

≤ (k + 2)T (r, f) + 2N(r,∞; f) + (k + 2)T (r, g) + 2N(r,∞; g)
+ S(r, f) + S(r, g)

≤
{
k + 4− 2Θ(∞; f) + ε

}
T (r, f) +

{
k + 4− 2Θ(∞; g) + ε

}
T (r, g)

+ S(r, f) + S(r, g)

≤ 2k + 8− 2Θ(∞; f)− 2Θ(∞; g) + 2ε
n+ k − 2 T0(r) + S(r) ,

where S0(r) = o
{
T0(r)

}
as r →∞ possibly outside a set of finite linear measure

and ε (> 0) is sufficiently small.
In view of the hypothesis we get from above

lim sup
r→∞,r 6∈E

N(r, 0;F0) +N(r,∞;F0) +N(r, 0;G0) +N(r,∞;G0)
T0(r) < 1 .

So by Lemma 2.5 we obtain either F0G0 ≡ 1 or F0 ≡ G0. Hence the result follows
from Lemma 2.6, Lemma 2.9 and Lemma 2.10.

Case (iii). Using Lemma 2.4(ii) this case can be proved as case II. This proves the
theorem. �
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