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RULED W-SURFACES IN MINKOWSKI 3-SPACE <3
1

R. A. Abdel-Baky and H. N. Abd-Ellah

Abstract. In this paper, we study a spacelike (timelike) ruled W-surface
in Minkowski 3-space which satisfies nontrivial relation between elements of
the set {K, KII , H, HII}, where (K,H) and (KII , HII) are the Gaussian
and mean curvatures of the first and second fundamental forms, respectively.
Finally, some examples are constructed and plotted.

1. Introduction

Let <3 = {(xi) | xi ∈ <, i = 1, 2, 3} be a 3-dimensional vector space, x = (xi)
and y = (yi) be two vectors in <3. The Lorentz scalar product of the vectors x
and y is defined by

〈x,y〉 = −x1y1 + x2y2 + x3y3 .

The space <3
1 =

(
<3, 〈 , 〉

)
is called a Lorentz 3-space or Minkowski 3-space. The

Lorentz vector product of the vectors x and y is defined by
x× y = (x2y3 − x3y2, x1y3 − x3y1, x2y1 − x1y2) .

This yields

e1 × e2 = −e3, e2 × e3 = e1, e3 × e1 = −e2 ,

where e1, e2, e3, are the base of the space <3
1. A vector x in <3

1 is spacelike, lightlike
(isotropic) or timelike if 〈x,x〉 > 0, 〈x,x〉 = 0 or 〈x,x〉 < 0, respectively. Moreover,
for x ∈<3

1 the norm is defined by ‖x‖ =
√
|〈x,x〉|, then the vector x is called a

spacelike and a timelike unit vector if 〈x,x〉 = +1 and −1 respectively [1]. The
unit spheres in Minkowski 3-space <3

1 are defined by
S2

1 =
{

x ∈ <3
1 | −x2

1 + x2
2 + x2

3 = 1
}
,

H2
0 =

{
x ∈ <3

1 | −x2
1 + x2

2 + x2
3 = −1, x1 > 0

}
.

It is well known that the set of all Lorentzian transformations which preserve the
Lorentzian metric form a group which is called Lorentzian group. A transformation
in this group which lies in the connected component of the identity transformation
is called a proper rotation and is denoted by A where detA = 1 [4, 10]. Using linear
algebra concepts, it is easy to see that the proper rotation preserves a fixed vector
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invariant which is called the axis of rotation with causal character in <3
1. Depending

on the causal character of the axis of rotation i.e., being timelike, spacelike, there
are two types of Lorentzian group of transformations generated by:

−
X = A1X , (elliptic group),(1.1)
−
X = A2X , (hyperbolic group),(1.2)

where,

A1 =

1 0 0
0 cosu1 − sin u1

0 sin u1 cosu1

 A2 =

cosh u1 sinh u1 0
sinh u1 cosh u1 0

0 0 1

 ,

X = (Xi)t , X =
(
Xi

)t
.

Similarly, as for Euclidean 3-space E3 we could define a Lorentzian screw motion
as a Lorentzian rotation around an axis with causal character together with a
translation in the direction of the axis. Using (1.1) and (1.2) , we give Lorentzian
screw motion as a non-trivial one-parameter group of Lorentzian transformations
as the following :

X = A1X + T1 ,(1.3)

X = A2X + T2 ,(1.4)

where T1 and T2 are translations along the axis of rotation and given by T1 =(
bu1, 0, 0

)t and T2 =
(
0, 0, bu1)t, b 6= 0, according to the axis of rotation is timelike

or spacelike, respectively.
Now we consider orbits of straight lines under the above two one-parameter

groups of Lorentzian screw motions. Let L be a straight line which meets the axis
of the screw motion orthogonally at a point p. If the screw motion is a cubic screw
motion, then we require furthermore that L also cuts the orbit of p by the screw
motion orthogonally at p. According to these conditions the orbit of L under the
screw motion is a surface with vanishing mean curvature. The transformation (1.3)
leads to the so-called helicoid of first kind which in these coordinates, has the
same equations as the ordinary right helicoid in Euclidean 3-space. While, the
transformation (1.4) leads to the so called helicoid of second and third kind [3],
depending on the type spacelike or timelike of the generators. Without loss of
generality we take X =

(
0, u2, 0

)
and X =

(
u2, 0, 0

)
, respectively as the direction

of L. Thus, we have three types of helicoids namely:

first kind : X(u1, u2) = (bu1, u2 cosu1, u2 sin u1), b = const.,(1.5)
second kind : X(u1, u2) = (u2 sinh u1, u2 cosh u1, bu1) ,(1.6)

third kind : X(u1, u2) = (u2 cosh u1, u2 sinh u1, bu1) .(1.7)

The helicoid of the third kind is timelike but the other two types of helicoids
consists of spacelike and timelike pieces. A surface in the Minkowski 3-space <3

1 is
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called a spacelike or timelike if the induced metric on the surface is a Riemannian
or Lorentzian metric [10, 11].

These mentioned surfaces are called Lorentzian helicoids or, more precisely, the
right Lorentzian helicoids. In equations (1.5)–(1.7), if we replace the linear function
bu1 by a smooth function f

(
u1) such that f ′ never vanishes, then those surfaces

are called right Lorentzian conoid [5]. Whenever one applies a Lorentzian screw
motion to a straight line which is not orthogonal to the axis of rotation or does
not meet it, one obtains the so called general helicoidal surface [4].

In Euclidean 3-space E3 the relations ϕ(K,H) = 0, ϕ(KII , H) = 0, and aKII +
bH = const., where a, b are constants, on ruled surfaces were investigated in
[2, 9]. For surfaces with KII = H, KII =

√
K, KII = const.; we refer to [7, 8, 9]

for the history and general results in this problem. In Minkowski 3-space <3
1, for

non-developable ruled surfaces the linear relations aKII +bH+cHII +dK = const.,
a2 + b2 + c2 6= 0 and aKII + bH + cK = const., a2 + b2 6= 0 along each generator,
were studied in [5] and [12], respectively.

In this paper, the Minkowski versions of the major results proved in [2, 9] are
given and additional results are obtained. Moreover, for some special cases new
examples are constructed and plotted.

2. Ruled surfaces in Minkowski 3-space <3
1

A ruled surface M in <3
1 is a surface generated by a straight line moving along a

curve. The various positions of the generating lines are called the generators of the
surface. Then, as in the Euclidean case, one can introduce the standard parameters
in the ruled form:
(2.1) M : R(u1, u2) = r(u1) + u2e(u1) ,
such that

〈e, e〉 = ε , 〈e′, e′〉 = η , 〈e′, t〉 = 0 , t = r′ , ′ = d

du1

and ε, η ∈ {1,−1}. In this case the base curve r(u1) is the striction curve, and the
parameter u1 is the arclength of the spherical image or indicatrix e = e(u1) ∈ S2

1
or H2

0 . Excluding e is constant or null or e′ null.
Here, and following, we assume that the indices {i, j, α, β} run over the ranges

{1, 2} unless otherwise stated. The Einstein summation convention will be used,
that is, repeated indices, with one upper index and one lower index, denoted
summation over its range.

Then, the elements of the first fundamental form gij are given by:

(2.2) g11 = ‖t‖2 + η
(
u2)2

, g12 = 〈e, t〉 , g22 = ε .

In terms of the moving frame {e, e′, e×e′} with signs ε, η, −εη, the curve r = r(u1)
can be reconstructed from
(2.3) t = εg12e− εηλe× e′ ,
where λ = 〈t, e×e′〉 is the distribution parameter of the ruled surface. One obtains
(2.4) Det(gij) = g = η

(
ε(u2)2 − λ2) .
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The generator e = e(u1) can be reconstructed from
(2.5) e′′ = εη(−e + κge× e′) ,
where κg = det(e′′, e′, e) is called the geodesic curvature of e(u1). Let

(2.6)
√
|g| = ‖R1 ×R2‖ =

√
λ2 − ε (u2)2

, Ri = ∂R
∂ui

.

The unit normal vector of the surface is given by:

(2.7) n = 1√
|g|

(ηλe′ − u2e× e′) .

This leads to the elements of the second fundamental form hij where

(2.8)
h11 = 1√

|g|
{ελ(−λκg + g12)− λ′u2 + κg(u2)2} ,

h12 = λ√
|g|

, h22 = 0 ,
√
|g| 6= 0 .

2.1. Curvature functions. A surface M in an Euclidean 3-space E3 with positive
Gaussian curvature K possesses a positive definite second fundamental form II if
appropriately orientated. Therefore, the second fundamental form defines a new
Riemannian metric on M . In turn, we can consider the Gaussian curvature KII

of the second fundamental form which is regarded as a Riemannian metric. If a
surface has non-zero Gaussian curvature everywhere, KII can be defined formally
and it is the curvature of the Riemannian or pseudo-Riemannian manifold (M, II)
depending on Det(hij) > 0 or < 0, respectively.

Naturally, we can extend such a notion to surfaces in a Minkowski 3-space <3
1.

Thus we define the second Gaussian curvature KII by [6]
(2.9)

KII = 1
h2

∣∣∣∣∣∣
−h11,22

2 + h12,12 − h22,11
2

h11,1
2 h12,1 − h11,2

2
h12,2 − h22,1

2 h11 h12
h22,2

2 h12 h22

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 h11,2
2

h22,1
2

h11,2
2 h11 h12

h22,1
2 h12 h22

∣∣∣∣∣∣
 ,

where h = Det(hij), hij,α = ∂hij
∂uα and hij,αβ = ∂2hij

∂uα∂uβ
.

It is well known that a minimal surface has vanishing second Gaussian curvature
but a surface with vanishing second Gaussian curvature need not be minimal.

Since Brioschi’s formulas in Euclidean and Minkowski 3-spaces are the same, we
are able to define HII of M by replacing the components of the first fundamental
form gij by the components of the second fundamental form hij respectively in
Brioschi’s formula. Consequently, the second mean curvature HII is given by [5]:

(2.10) HII = H − 1
2∆
(

ln
√
|K|
)
,

where ∆ is the Laplacian with respect to the second fundamental form of M ,
expressed as:

(2.11) ∆ = − 1√
|h|

∂

∂ui

[√
|h|hij ∂

∂uj

]
, (hij) = (hij)−1 .
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The Gaussian curvature K and the mean curvature H are given by [1]:

(2.12) K = ε
h

g
and H = 1

2 ε tr(gij hjk) ,

respectively.
From Eqs. (1.5)–(1.7) we have the following

Corollary 1. For the right Lorentzian helicoids of first, second and third kind
(Figs. 1, 2 and 3), one can get:

(2.13) κg = g12 = 0 and λ = εb = const. ,

and thus

(2.14) K = b2

(b2 − ε(u2)2)2 , H = HII = KII = 0 .

Corollary 2. For the right Lorentzian conoids of first, second and third kind (Figs.
4, 5 and 6), one can obtain:

κg = g12 = 0 and λ = εf ′(u1) ,(2.15)

and thus

K = f ′2(u1)
(f ′2(u1)− ε(u2)2)2 , H = −εf ′′(u1t)

2(f ′′(u1)− ε(u2)2t) 3
2
u2 ,

(2.16)
−6H = 2HII = 3KII .

3. Ruled Weingarten-surfaces

In this section, we study ruled Weingarten-surfaces (W-surfaces) M of which
there exists a nontrivial functional relation between a pair {A,B}, A 6= B, of the
curvatures K, KII , H and HII . A nondevelopable ruled surface M , is called an
{A,B}-W-surface if there exist a nontrivial functional relation ϕ(A,B) = 0, or,
equivalently, the corresponding Jacobian determinant is identically zero, i.e.,

(3.1) ∂(A,B)
∂(u1, u2) ≡ 0 .
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Using Equations (2.2)–(2.8) and in view of Eqs. (2.9)–(2.12) one can obtain the
curvature functions K, H, KII and HII in the following form:

K = λ2

|g|2
, H = 1

2
√
|g|3

{
εκg(u2)2 − ελ′u2 − λ(λκg + g12)

}
,(3.2)

KII = 1
2λ2
√
|g|3

{
κg(u2)4 + ελ(g12 − 2λκg) (u2)2

+ 2ελ2λ′u2 + λ3(g12 + λκg)
}

(3.3)

HII = 1
2λ2
√
|g|3

{
− 2κg(u2)4 + ελ(5λκg + 2g12) (u2)2 + 3ελ2λ′u2

+ λ3(g12 − 3λκg)
}
.(3.4)

By a straightforward calculation, we get:

K2 = 4λ2

|g|3
u2 ,(3.5)

K1 = 2
|g|3

{
(−λλ′(u2)2 + λ3λ′) + ε(3λλ′′ − λ2λ′′)u2

+ λ2(λλ′κg − λ2κ′g + 2λ′g12 − λg′12)
}
,(3.6)

H2 = 1
2
√
|g|5

{
κg(u2)3 − 2λ′(u2)2 − ελ(λκg + 3g12)u2 − ελ2λ′

}
,(3.7)

H1 = 1
2
√
|g|5

{
− κ′g(u2)4 + λ′′(u2)3

+ ε(−λλ′κg + 2λ2κ′g + λ′g12 + λg′12)(u2)2

+ ε(3λλ′2 − λ2λ′′)u2 + λ2(λλ′κg − λ2κ′g + 2λ′g12 − λg′12)
}
,(3.8)

(KII)2 = 1
2λ2
√
|g|5

{
− εκg(u2)5 + λ(g12 + 2λκg) (u2)3

+ 4λ2λ′(u2)2 + ελ3(5g12 − λκg)u2 + 2ελ4λ′
}
,(3.9)

(KII)1 = 1
2λ3
√
|g|5

{
− ε(λκ′g − 2λ′κg)(u2)6

+
(
λ2(3λκ′g − 5)λ′κg + λ(λ′g12 − λg′12)

)
(u2)4

− 2λ3λ′′(u2)3 +
(
λ3λ′(4λκg − 5g12)− 3λ5κ′g

)
(u2)2

+ 2ελ4(λλ′′ − 3λ′2)u2 + λ7κ′g − λ6λ′κg + λ6g′12 − 2λ5λ′g12
}
,(3.10)
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(HII)2 = 1
2λ2
√
|g|5

{
2εκg(u2)5 − 3λ2κg(u2)3 + 6λ2λ′(u2)2

+ ελ3(7g12 + λκg)u2 + 3ελ4λ′
}
,(3.11)

where φi = ∂φ
∂ui .

Applying formula (3.1) when A = K and B = H, we have:

(3.12) K1H2 −K2H1 = 0 ,

then from Equations (3.5)–(3.8), we get

(3.13) K1H2 −K2H1 = 1√
|g|11

ai(u2)i , i = 0, . . . , 5, ai = ai(u1) ,

where

(3.14)


a0 =−λ5λ′ , a1 =ε(−5λ5λ′κg − 2λ6κ′g + λ4λ′g12 − 2λ5g′12) ,
a2 =3λ3λ′2 − 2λ4λ′′ , a3 =−2λ3λ′κg + 4λ4κ′g − 8λ2λ′g12 + 2λ3g′12 ,

a4 =ε(2λ2λ′′ − λλ′2) , a5 =ε(−2λ2κ′g + λλ′κg) .

Now we assume λ 6= 0 and K 6= 0. Therefore in a neighborhood of any point with
λ 6= 0, the vanishing of the coefficients of (u2)0, (u2)5 implies λ′ = 0, and κ′g = 0.
Then the vanishing of the coefficient of (u2)3 implies g′12 = 0.

Hence we have the following theorem:

Theorem 1. Suppose M be any non-developable ruled surface in <3
1 such that

the generator is nowhere null. A necessary and sufficient condition that M be a
W-surface is that the distribution parameter and the geodesic curvature of spherical
indicatrix of the generators are constant as well the generators be inclined at
constant angle to the striction curve, which consequently is a geodesic curve.

As, it is a well known result for the general helicoidal surface [4] that the
quantities λ, κg, g12 are constants, and that vice versa. Then in view of the
expressions K and H in Eq. (3.2), we obtain the following result:

Theorem 2. Suppose M be any non-developable ruled surface in <3
1 such that the

generator is nowhere null. Then the following conditions are equivalent:
(i) M is a W-ruled surface,
(ii) the quantities λ, κg, g12 are constants,
(iii) 2H = ∓ κg

|λ|
1
2
K

1
4 − g12

|λ|
1
2
K

3
4 , for constants λ, κg, g12,

(iv) M is a congruent to a part of a general helicoidal surface.

Corollary 3. In the particular case κg = 0 or g12 = 0, one can get the following
relation:

(3.15) K3 = 16 λ
2

g4
12
H4 , or K = 16λ

2

κ4
g

H4 ,

respectively.
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Similarly, according to (3.1), we have:

(3.16) (KII)1H2 − (KII)2H1 = 0 ,

substituting Eqs. (3.7)–(3.10) in (3.16), and after straightforward computations,
the following polynomial of degree 9 in the variable u2 is obtained as follows:

(3.17) 1
4λ3|g|5

ai(u2)i = 0 , i = 1, . . . , 9, ai = ai(u1) ,

where

a9 = 2κg(λ′κg − λκ′g) ,(3.18)

a8 = 2λλ′κ′g − 4λ′2κg + λλ′′κg ,(3.19)

a7 = λ
[
λκ

′

g(4g12 + 8λκg) + λ′κg (−4g12 − 8λκg)
]
,(3.20)

a6 = λ
[
λ′(2λg12 − λ2κ′g) + λ′2(2g12 + 8λκg)

]
,(3.21)

a5 = −λ2[2ελg′12(λκg − g12) + 3λ2κ′g(λκg + 2εg12 + 3ελκg)
+ λ′(4εg12 − 4λ2κ2

g − 15ελκgg12 − 8ελ2κ2
g + 5λκgg12)

]
,(3.22)

a4 = −λ3[3λλ′(εg12 − 2λκ
′

g + 3ελκ′g) + λ′2(8λκg − 10g12

+ 5εg12 − 3ελκg) + λ′′(3εg12 − 2ελg12 + 6ελκg − 7ελ2κg)
]
,(3.23)

a3 = −λ4[λ′(g2
12(7− 15ε) + λκgg12(1 + 7ε) + 4λ2κ2

g(1 + ε)
− 12ε(λ′2 + λ′′)

)
+ 4λg′12(g12 − λκg)

+ λ2κ′g(9g12 − 9εg12 − 3ελκg − 5λκg)
]
,(3.24)

a2 = −λ5[(− λ2κ′g(3ε− 2) + 4g12λ
′)+ λ′2

(
λκg(4ε− 6)− εg12(5 + 16ε)

)
+ λ′′

(
g12(15 + λ)− 3λκg(1− λ)

)]
,(3.25)

a = −2ελ6[(λκg − g12)λg′12 + λ2κ′g) + λ′(2g2
12 − λκg(g12 + λκg)

− 3ε(λ′2 − λ′′)
]
,(3.26)

a0 = λ7λ′(λλ′κg + λ2κ′g + λg′12 − 2λ′g12) .(3.27)

Thus, we give the following theorem:

Theorem 3. Suppose M be any non-developable ruled surface in <3
1 such that the

generator is nowhere null. Then M is a II-W surface if and only if one of the
following cases is satisfied:

(i) λ, κg, g12 are constants, λ 6= 0,
(ii) λ′κg = λκ′g, 2λ′g12 = λg′12, 2λ′2 = λλ′′, λ 6= 0,

or, if λ′, κg, g12 6= 0 : g
′
12
g12

= 2κ
′
g

κg
= 2λ

′

λ = λ′′

λ′ ,
(iii) κg = g12 = 0, λ 6= 0 arbitrary (right Lorentzian conoids).
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Proof. The Eqs. (3.18)–(3.27) vanish identically ∀ u2 ∈ R, so we discuss the
following cases:
Case (i): λ′ = 0. The Eq. (3.18) implies κ′g = 0. Furthermore, one calculates in this
case

(3.28) (KII)1H2 − (KII)2H1 = 1
4λ3|g|5

bi(u2)i , i = 1, 3, 5, 7, bi = bi(u1) ,

which vanishes if and only if g′12 = 0. Therefore λ, κg, g12 are constants.
Case (ii): λ′ 6= 0. Let us consider a neighborhood of a point with λ′ 6= 0. The
Eq. (3.18) implies κg = 0 or λ′κg − λκ′g = 0. Let us assume for the moment that
λ′κg = λκ′g and κg 6= 0. Then the Eq. (3.19) implies λλ′′ = 2λ′2, and the Eq. (3.27)
implies λg′12 = 2λ′g12. Thus, we see that the Eqs. (3.20)–(3.26) are vanished. Using
the relations (3.18), (3.19) and (3.27), we get

(3.29) (KII)1 = −u2λ
′

λ
(KII)2 , H1 = −u2λ

′

λ
H2 ,

and thus (KII)1H2 − (KII)2H1 = 0.
Case (iii): λ′ 6= 0 and κg = 0. In this case we have

(3.30) (KII)1H2 − (KII)2H1 = 1
4λ3|g|5

ci(u2)i , i = 0, . . . , 6, ci = ci(u1) .

Therefore, the coefficients ci vanishing identically if g12 = 0 with arbitrary λ. This
is the Case (iii) of the theorem. If g12 6= 0, then we get the equations 2λ′g12 = λg′12,
2λ′2 = λλ′′ which again leads to the Case (ii). The converse is clear, and the
theorem is proved. �

As a result of the above theorem, we have the following theorem which is
analogous to Theorem 1:

Theorem 4. Suppose M be any non-developable ruled surface in <3
1 such that

the generator is nowhere null. A necessary and sufficient condition that M be
a II-W-surface is that the distribution parameter and the geodesic curvature of
spherical indicatrix of the generators are constant as well the generators be inclined
at constant angle to the striction curve, which consequently is a geodesic curve.

For contribution of the works in [5] and [12], the following theorem can be given:

Theorem 5. For non-developable ruled surface in <3
1 whose generator is nowhere

null and aKII + bHII + cH is constant along each generator, then M is congruent
to one of the right Lorentzian conoids, where 2a+ 3b− c 6= 0, a, b, c ∈ R.

Proof. By using Eqs. (3.7), (3.9) and (3.11), the proof of the theorem is clear, since
the above case satisfy the relations (2.15) of the (right) Lorentzian conoids. �

As a result of the above theorem the following linear relations are hold:

Corollary 4.
(i) aKII + bHII = const. where 2a+ 3b 6= 0,
(ii) aKII + cH = const. where 2a− c 6= 0,
(iii) bHII + cH = const. where 3b− c 6= 0.



260 R. A. ABDEL-BAKY AND H. N. ABD-ELLAH

3.1. Examples. Here three examples of ruled II-W surfaces (which are not among
the Lorentzian helicoids or conoids) are constructed for the special case:

(3.31) κg = 0 , g′12
g12

= 2λ
′

λ
= λ′′

λ′
.

The solutions for λ and g12 are

(3.32) λ(u1) = `

u1 , g12(u1) = m

(u1)2 ,

where ` and m are non-vanishing constants.
Using Eqs. (3.31), (3.32) into Eqs. (2.3) and (2.5), we can give:

Example 1. In the case of ε = 1 and η = −1, the curve e(u1) is

(3.33) e(u1) = (sinh u1, cosh u1, 0) ,
and the curve r(u1) can be obtained from

(3.34) r(u1) =
∫

t(u1) du1 =
(
m

∫ u1

u1
0

sinh u
u2 du,m

∫ u1

u1
0

cosh u
u2 du, ` log |u1|

)
.

Example 2. In the case of ε = −1 and η = 1, the curve e(u1) is

(3.35) e(u1) = (cosh u1, sinh u1, 0) ,
and the curve r(u1) is given as

(3.36) r(u1) = −
(
m

∫ u1

u1
0

cosh u
u2 du,m

∫ u1

u1
0

sinh
u2 du, ` log |u1|

)
.

Example 3. In the case of ε = 1 and η = 1, the curve e(u1) is

(3.37) e(u1) = (0, cosu1, sin u1) ,
and the curve r(u1) is given as

(3.38) r(u1) =
(
− ` log |u1|,m

∫ u1

u1
0

cosu
u2 du,m

∫ u1

u1
0

sin u
u2 du

)
.

Remarks. Note that the graphs of the surfaces, given by Examples 1, 2 and 3 are
shown in Figs. 7, 8, Figs. (9, 10 and Figs. 11, 12, respectively. And

(i) The ruled II-W surfaces which are shown in Figs. 7, 9 and Figs. 8, 10
are of type spacelike (timelike) surface if u1u2 >

√
cosh2 u1 + sinh2 u1

(
u1u2 <√

cosh2 u1 + sinh2 u1
)
, respectively.

(ii) The ruled II-W surfaces which are shown in Fig. 11 and Fig. 12 are of type
spacelike (timelike) surface if u1u2 > 1 (u1u2 < 1), respectively.

(iii) Although r(u1) are defined only for u1 > 0 (or u1 < 0), the resulting surfaces
are completely in the Minkowski 3-space <3

1.
(iv) Using Taylor series expansion for the first two components of the base curve

r(u1). Thus, we plotted these types of surfaces depending on some approximation
to Taylor’s remainder terms.
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Fig. 1: A helicoid of the 1st kind
b = 2, u1 ∈ [0, 2π], u2 ∈ [−4, 4]

Fig. 2: A helicoid of the 2nd kind
b = 2, u1 ∈ [−π, π], u2 ∈ [−1, 1]

Fig. 3: A helicoid of the 3rd kind
b = −2, u1 ∈ [−π, π], u2 ∈ [−1, 1]

Fig. 4: A canoid of the 1st kind
f(u1) = sin u1, u1 ∈ [0, 2π], u2 ∈
[−1, 1]
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Fig. 5: A canoid of the 2nd kind
f(u1) = coshu1, u1 ∈ [−π/2, π/2],
u2 ∈ [−1, 1]

Fig. 6: A canoid of the 3rd kind
f(u1) = cosu1, u1 ∈ [−π/2, π/2],
u2 ∈ [−1, 1]

Fig. 7: Spacelike ruled II-W sur-
face ε = 1, η = −1, ` = 10,
m = 15, u1 ∈ [1, π], u2 ∈ [1, 2]

Fig. 8: Timelike ruled II-W sur-
face ε = 1, η = −1, ` = 10,
m = 15, u1 ∈ [1, π], u2 ∈ [−1,−2]

Fig. 9: Spacelike ruled II-W sur-
face ε = −1, η = 1, ` = 10,
m = 15, u1 ∈ [1, π], u2 ∈ [1, 2]

Fig. 10: Timelike ruled II-W sur-
face ε = −1, η = 1, ` = 10,
m = 15, u1 ∈ [1, π], u2 ∈ [−1,−2]
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Fig. 11: Spacelike ruled II-W sur-
face ε = 1, η = 1, ` = 2, m = 3,
u1 ∈ [1, π], u2 ∈ [1, 2]

Fig. 12: Timelike ruled II-W sur-
face ε = 1, η = 1, ` = 2, m = 3,
u1 ∈ [1, π], u2 ∈ [−1,−2]
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