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APPROXIMATION OF SOLUTIONS OF THE FORCED
DUFFING EQUATION WITH NONLOCAL DISCONTINUOUS
TYPE INTEGRAL BOUNDARY CONDITIONS

AHMED ALSAEDI

ABSTRACT. A generalized quasilinearization technique is applied to obtain
a sequence of approximate solutions converging monotonically and quadra-
tically to the unique solution of the forced Duffing equation with nonlocal
discontinuous type integral boundary conditions.

1. INTRODUCTION

Integral boundary conditions for evolution problems have various applications
in chemical engineering, thermoelasticity, underground water flow and population
dynamics, see for example [16] 17, 24]. In fact, boundary value problems involving
integral boundary conditions have received considerable attention, see for instance,
[3, 10], [T2]-[15], [18l 19, 26] and the references therein. In a recent reference [2],
Ahmad, et. al. discussed the existence and uniqueness of the solutions of a boundary
value problem with discontinuous type integral boundary conditions.

The monotone iterative technique coupled with the method of upper and lower
solutions [5], [8] 20} 23] 25] manifests itself as an effective and flexible mechanism that
offers theoretical as well as constructive existence results in a closed set, generated
by the lower and upper solutions. In general, the convergence of the sequence of
approximate solutions given by the monotone iterative technique is at most linear
[111, 21]. To obtain a sequence of approximate solutions converging quadratically,
we use the method of quasilinearization (QSL) [9]. This method has been developed
for a variety of problems [1} 4, [0l [7, 22]. In view of its diverse applications, this
approach is quite an elegant and easier for application algorithms. To the best of
our knowledge, the method of quasilinearization has not been developed for Duffing
equation with nonlocal discontinuous type integral boundary conditions.

In this paper, we apply a quasilinearization technique to obtain the analytic
approximation of the solution of the forced Duffing equation with nonlocal dis-
continuous type integral boundary conditions. In fact, we obtain a sequence of
approximate solutions converging monotonically and quadratically to the unique
solution of the problem at hand. The concept of nonlocal discontinuous integral
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boundary conditions corresponds to a situation when some forcing term is present
at an arbitrary intermediate point of the boundary segment and thereby generates
a discontinuity in the integral boundary conditions.

2. PRELIMINARIES

We consider the following boundary value problem

u'(t) + ou'(t) + f(t,u) =0, te[0,1], o € R\{0},
1

w(0) — el (0) = gu(u(n)) + | a(uls))ds+ [ a(uls))ds,
(2.1) /0 /ﬁ

u(1) + pou' (1) = g2 (u(v)) + /07_ g2(u(s)) ds +/ g2(u(s)) ds,

+
0<y<1,

where f: [0,1] x R - R, ¢g;: R —» R (¢ = 1,2) are continuous functions, ¢; are
continuous functions on (0,7) and (v, 1) and p; are nonnegative constants.

The quasilinearization technique is applied to obtain a sequence of approximate
solutions converging monotonically and quadratically to the unique solution of the

problem ([2.1).
Definition 2.1. A function o € C?[0,1] is a lower solution of (2.1 if

o'(t)+od (t)+ f(t,a(t) =0, tel0,1],

a(O) — /,510/(0) <a (a(fy)) + /O’Y_ T« (a(s)) ds + /+ q1 (a(s)) ds,

a(1) + pac/ (1) < ga(a(y)) + /07_ a2(a(s)) ds +/ a2(a(s)) ds.

+

Similarly, 3 € C2[0,1] is an upper solution of if the inequalities in the
definition of lower solution are reversed.

Since the associated homogeneous problem of has only the trivial solution,
therefore, by Green’s function method, the solution u(t) of can be written as

1
(L+op)— (1 —opz)e=?

x {gl (u(v)) + /07_ a1 (u(s)) ds +/

v+

u(t) =

{((—1 +opg)e 7 +e ")

1

q1(u(s)) ds}
V- g2(u(s)) ds + /

Y+

1

+ (1 +op)—e ) {92 (u(v)) + /

0

a2 (u(s)) dsH
+ /01 G(Ls)f(s,u(s)) ds,
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where
[(1—ops) — e [(1+om) —e ], 0<t<s
[(1—op2) — eI D] [(14+om)—e ], s<t<I,

G(t,s) = A{

A _ eUS
o[(1—opuz) — (1 +opi)e]’

Observe that G(t,s) > 0 on (0,1) x (0,1). We state the following results which

lay a foundation to establish the main result. We omit the proof as the method of

proof is similar to the one employed in [2].

Theorem 2.1. Let o and 3 be lower and upper solutions of the boundary value
problem respectively. Let f:[0,1] xR — R be such that f,(t,u) <0 and g; are
continuous functions on (0,7) and (v,1) satisfying one sided Lipschitz condition:
gi(u) —q(v) < Li(u—w),0 < L;<1,i=12, and g;: R — R are continuous
functions satisfying one sided Lipschitz condition: g;(u) — g;(v) < Lf(u —v),
0<Lf<1,i=1,2. Then a(t) < B(t).

Theorem 2.2. Assume that a and 3 are lower and upper solutions of the boundary
value problem respectively such that a(t) < B(t). If f:[0,1] x R — R,
gi: R — R are continuous functions and q; are continuous functions on (0,7) and
(v,1) with g; and q; satisfying one sided Lipschitz condition, then there exists a
solution u(t) of such that a(t) < u(t) < B(¢), t € [0,1].

3. MAIN RESULT

Theorem 3.1. Assume that

(A1) a and B € C?[0,1] are respectively lower and upper solutions of [2.1) such
that o(t) < B(t);

(A2) f(t,u) € C*([0,1]xR) be such that f,,(t,u) < 0 and (fuu(t,w)+duu(t,u)) >

0, where ¢y (t,u) > 0 for some continuous function ¢(t,u) on [0,1] x R;

(As) q; are continuous functions on (0,7) and (v,1) satisfying 0 < ¢i(u) < 1,
and (g (u) + x7 (u)) > 0 with x} >0, i =1,2;

7
(A4) gi € C*(R) be such that 0 < gj(u) < 1 and (g} (u) + ¥} (v)) < 0 with
P <0,i=1,2.
Then, there exists a sequence {a,} of approzimate solutions converging monotoni-
cally and quadratically to the unique solution of the problem ([2.1)).

Proof. Let F: [0,1] xR — R and G;, K;: R — R be defined by F(t,u) = f(¢t,u)+
ot u), Gi(u) = gi(u) + ¥ (u), Ki(u) = qi(u) + xi(u) so that Fy,(t,u) > 0,
G!(u) <0, K/'(u) > 0. Using the generalized mean value theorem together with
(A2), (A3) and (A4), we obtain

(3.1) f@tw) = f(t,v) + Fu(t,v)(u—v) + é(t,v) — (¢, u),
(3.2) gi(u) < gi(v) + Gi(v)(u —v) + ¥i(v) —P;(u), u,veR,
(3.3) gi(u) > qi(v) + Ki(v)(u —v) + xi(v) = xi(u), u,v€R.
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We set
F(t,u,a) = f(t,a) + Fu(ta)(u — a) + 6(t, a) — ¢(t,u),
Qi(u, @) = gi(a) + Ki(a)(u — a) + xi(a) — xi(u) ,
gi(u(y), . B) = gi(a(v)) + GL(B()) (u(y) — a()) +di(@) = pi(u),
and note that
Fu(t,u,a) <0, 0<(0/0u)Qi(u,a) <1, 0< (8/8u)§i(u('y),a,ﬁ) <1.
Now, we fix @ = ag and consider the problem

u”(t) + ou' (t) + F(t,u, o) = 0, te[0,1],
u(0) — pa ' (0) = g (u(v), a0, B) + /OW_ Q1 (u(s), ao(s)) ds

1
+ /Y+ Q1 (u(s), ao(s)) ds,

w(1) + ' (1) = G (u(), a0, B) + / " Qulu(s), ao(s)) ds

+/ Q2(u(s),ao(s)) ds.

+

As a first step, it will be shown that ag, 3 are respectively lower and upper
solutions of ([3.4). Using (A1) together with the fact that F(¢, ag, o) = f(¢, o),
g1 (a(7), a0, 8) = gi(ao(7)) and Qi(ao, an) = ¢i(ag), we have

oy (t) + oay(t) + F(t, ag, an) = ag(t) + oaf(t) + f(t,an) >0, telo,1],

a0(0) — 1a(0) < g1 (ao(7)) + / " i (ao(s)) ds + / n{aols)) ds

and

B (t)+ B (t)+ F(t, B, a0) < B"(t) +of'(t) + f(t,5) <0, teo,1].
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Moreover, there exists co, ¢1 € (ao(v), 3(7)) and ¢z, ¢3 € (o, 8) so that

a1 (B(M)) — a1 (B(v), 0, B)
= g1(B(7) — g1(0(7)) — G (ﬁ(v)) B(7) — ao(7)) — 1 (o)) + ¥1(B())
= [gi(co) = g5 (BO))] (B() — o () + [¥4(c1) = ¥4 (B())] (B(v) —ao (7)) =0
1(B(s)) — Q1(B(s), a0 (s))
= q1(B(s)) — q1(ao(s)) — K1 (ao(s)) (B(s) — ao(s)) — x1(ao(s
= [q1(c2) — @1 (@0(9))] (B(s) —ao(s)) +[xi(c3) = X1 (@0(s))] (B(s) —ao(s)) > 0

and consequently, we obtain

i
—
—~
~
~—
=
—
—
=y
—~
»
~
~—

1

B(0) — ,ulﬁ’(()) >0 (5(7)) + /07_(11 (5(5)) ds +/ q1 (5(3)) ds

Y+
y— 1
> 51(8(7), a0, ) +/0 Q1(8(s), ao(s)) ds + +Q1(5(8)7040(3)) ds.

Similarly, it can be shown that

y— 1
B(1)+p2B' (1) > g2(8(7), a0, B) +/0 Q2(B(s), ao(s)) d5+/+ Q2(B(s), ao(s)) ds.

Thus we conclude that «g and [ are respectively lower and upper solutions of (3.4)).
Hence, by Theorems and there exists the unique solution «; of (3.4) such
that

aot) < art) < B(t),  telo,1].

Next, we consider

u”(t) 4+ ou' (t) + F(t,u,0q) =0, te0,1],

w(0) — 1 (0) = g (u(r), a1, ) + / T Qu(uls), an(s)) ds

+ [H Q1 (u(s), a1 (s)) ds,

u(1) + pou’ (1) = ga(u(v), o1, B) + /O’Y_ Q2(u(s),u(s)) ds
+ /7+ Q2 (u(s), a1 (s)) ds.

Using the earlier arguments, it can be shown that a; and 3 are lower and upper
solutions of ([3.5)) respectively and by Theorems and there exists the unique
solution s of (3.5) such that

a1(t) < as(t) < B(¢), t€0,1].
Continuing this process successively yields a sequence {«,,} of solutions satisfying

ap(t) < an(t) < ag(t) < - < an(t) < B(t), telo,1],
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where the element «,, of the sequence {«,,} is a solution of the problem
u”’(t) + ou' (t) + F(t,u,on 1) =0, te0,1],

u(0) — /' (0) = g1 (u(7), an-1,8) + /O’Y_ Q1 (u(s), op—1(s)) ds
u(1) 4 pou/ (1) = o (u(v), an—1,8) + /07— Q2 (u(s), op—1(s)) ds

and is given by

anlt) = i T gy (o) anes. )
[ @ ma) s+ [ @uanls)ani(9) ]
TFon 1()1_25:)6_0 pr(an()n-1.6)
+/07_ @a(an(s) an1(9) ds+ | @a(an(s): an1(5) ds|
(3.6) / G(t,)F (5, cun(s), an_1 (s)) ds.

Using the fact that [0, 1] is compact and the monotone convergence of the sequence
{a,} is pointwise, it follows that the convergence of the sequence is uniform. If
u(t) is the limit point of the sequence, taking the limit n — oo in (3.6]), we obtain

1

- _(1_0M2)6_0+6_0t U N u(s)) ds
u= (I+om)—(1—opz)ee [91( (1) +/O a1 (u(s)) d +L+

o Tut) + ) ds [ aafuto)) ]

(I+op) — (1 —op2 v+

/Gts (s,u(s)) ds.

q1(u(s)) ds}

Thus, u(t) is a solution of (2.1)). Now, we show that the convergence of the sequence
is quadratic. For that we set w,(t) = (u(t) — an(t)) >0, ¢t € [0,1]. In view of (As),
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it follows by Taylor’s theorem that

W) +owl,(t) =u" +ou' — (o) +oal) = —f(t,u) + F(t,an, an_1)
=—f(t,u) + f(t, an1) + Fult, an—1)(om — an_1)
+ ¢t an-1) — ¢(t, ay)
=— fult,ca)(w — apn—1) — Fu(t, an—1)(u — ay)
+ By (t,an—1)(u—an_1) — ¢u(t,c5)(an — n-1)

= [— fultyeq) + Fu(t,on—1) — (bu(t,cs)}wn_l
+ [— F.(t,an—1) + ¢u(t,05)]wn

= [— Fu(t,cq) + Fu(t,an—1) + du(t,cq) — ¢u(t,05)}wn,1
+ [ = Fult,an—1) + ¢u(t, c5)|wy

> [f F,(t,u) + Fu(t,an—1) + out, an—1) — du(t, an)]wn_l
+ [ = Fult,an—1) + ¢ult,an_1)]wn

(37) > [_ Fuu(tv C6) - ¢uu(tv 67)]“}727,71 - fu(ta anfl)wn > _Al”anl”2 s

where a1 < ¢4, c6 < Uy, ap—1 < ¢35, ¢7 < iy, A is a bound on ||Fy,|, B is a
bound on ||¢y.|| and A; = A + B. Further, we have

wn (0) = pawy, (0) = g1(u(v)) — g1 (an(v), an-1,8)
+ /OV [q1(u(s)) — Q1(an(s), an—1(s))] ds
[ v (u9) = Qafon(s).00ma ()] s
= g1 (u(¥)) = g1(an-1(7)) = GL(B()) (@ — 1)
+ /07 [q1(u(s)) — 1 = (an—1(s)) = K{(an—1(s))(an — an—1) — x1(an-1)

1
+ x1(an) ds+/ q1(u(s)) — q1 (an—1(s)) — K1 (an—1(s))(an — an-1)
v+

= x1(an—1) + x1(an)] ds
< [5ote + vt m)] Wia ) + [GLEM) ~ vhim)]wn()

+/07‘ [(Kl(an 1(5)) = X1(n3)) wn(s) + (%qi’(é‘z) +x’1’(n4)) wfhl(s)} ds
+ /: (an-1(5)) = Xx1(13)) wn(s) + (%q/l'(fz) + x’{(m)) %21—1(5)} ds
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and

wn(l) + :U‘Qw'ln(l) = 92(u(7)) - §2(an(7)7 On—1, 6)
+ /07 [q2(u(s)) — Q2(an(s), an—1(s))] ds
+/ [q2(u(s)) — Q2(an(s), an—1(s))] ds
Y+
< [308(69) + w5 15)] wBa () + [C4(8) — (o)) wa()
[ (3001 9) = o lm) o) + (G560 + x5 w21 (5)]
)

/1
+ [ [t

+

¥
+

b Om)eon(s) + (5a4(E) + X5 0)) w3 (5)] ds

where a1 <& <u, j=1,...,4, a1 <1y Loy <u, v=1,...,8 In view
of (As) and (Ay), there exists A; < 1, Af < 1, M; > 0 and M} > 0 such that
G — 1] < X2, K= 2] < A, 1307+ X0 < M; and |Lg!'+u!!| < My Letting X =
max{A1, A2}, \* = max{A}, A5}, M* = max{M;, MJ}, and M = max{M;, M},
we get

wn(0) = pyw;, (0) < M*w?2 1 () + N wn(7)

+ A[/O7 wn(s) ds + /i on(s) ds]

.
y— 1

—|—M{/ wi_l(s) ds+/ wi_l(s) ds] ,
0 v+

Wi (1) 4+ powl (1) < M*w2_ () + Mwn(7)
1
+ A / s)ds —|—/ wn (s
v+
y— 1
+ M[/ w2 | (s)ds +/ w2 (s) ds} .
0 ol
Using the estimates (3.7) and (3.8), we obtain

—(1—opz)e™ +e ¢ _
) = o o= (91(0) = 91 (@n () €n, )

+ /07 [ql (u(s)) - Q1 (an(s),an_l(s))] ds
+ /+ [q1(u(s)) — Q1 (an(s), an-1(s))] ds)

(L+op)—e
(I+op)—(1—opz)e?

(3.8)

(92(u(2) = 2 (@n (7). €1, 5)
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Y —

+ / — Qo (n(s), ani(s))] ds
0

+/71 QQ(O‘W( )s Oén—1(5))] ds)

+ G(t, $)[f(s,u(s)) = F(t, an, 1) ds

1—opg)e ™ +e
T (I+om)—(1—opz)e”

+>\</van(s)ds+[/:wn(s)ds) +M(/07wi_l(s)ds+L:wi_1(s)ds)}

(1—|—o"u,1) _ e 0t o )
(I+ou)—(1—ops)e=° [M wi_1(Y) + Nwn ()

+>\(/7_ (s )ds+/; u(s) ds) +M(/07_w,%1(s)ds+Liw31(5)ds)}
/Gts "(s) + own(s)] ds
<220+ X +A( [ ens)as+

0 v+

,Lh

~ [M*wifl(v) + Nwn ()

1

wn(8) ds)

y— 1 1
—i—M(/ w2, (s) d8+/ w2, (s) ds) —|—A1Hwn_1||2/ G(t,s)ds
0 v+ 0
< M |lwp—1]? + X [lwnll + Mlwnll + Mlwn—1[1* + Az[lwp—1]>
= N lwn || + M [|wp [

where Ay provides a bound on A; fol G(t,s). We choose A* and A so that \** =
A+ A< 1and M** = M* + M + A,. Taking the maximum over [0, 1], we get

*%

S e

where ||u|| = max {|u(t)|: ¢ € [0,1]}. This establishes the quadratic convergence of
the sequence of iterates. (I

Remark. The results obtained in [2] appear as a special case of our results if we
take v =1/2 in (2.1) and ¢; =0 = x;, 4 = 1,2 in the assumptions (As) and (A4)
of Theorem B.11
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